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1 Introduction
In 1912, Bernstein [1] constructed a sequence of polynomials to prove the Weierstrass

approximation theorem as follows:

Bu(f;x) = Zf(g)bn,k(x), (1)
k=0

for any continuous function f € C[0, 1], where x € [0,1], n = 1,2,..., and Bernstein basis

functions b, x(x) are defined by

b (x) = (Z) (1 -2y, )
The polynomials in (1), called Bernstein polynomials, possess many remarkable proper-
ties.

Recently, Cai et al. [2] proposed a new type A-Bernstein operators with parameter
A € [-1,1], they obtained some approximation properties and gave some graphs and nu-
merical examples to show that these operators converge to continuous functions f. These
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operators, which they called A-Bernstein operators, are defined as follows:

2\~ k
B, (f3%) = an,k(k;x)f(;)f ®3)

k=0

where

oA %) = bo(®) = by (),

Zn,i()\;x) = bn,z’(x) + A‘(%bn+l,i(x) - n;221—11 bn+1,i+1(x))r (4)

Z’;'1,;'1()";96) = bn,n(x) . bn+1,n(x)y

n+l

1<i<n-1,byux) (k=0,1,...,n) are defined in (2) and X € [-1,1].
In 3], Cai introduced the A-Bernstein—Kantorovich operators as

k+1

Kuplfin) = 14 DY b [ f0)dt, (5)
k=0

_k_
n+l

where Zn,k()\,x) (k=0,1,...,n) are defined in (2) and A € [-1,1]. He established a global
approximation theorem in terms of second order modulus of continuity, obtained a di-
rect approximation theorem by means of the Ditzian—Totik modulus of smoothness and
derived an asymptotically estimate on the rate of convergence for certain absolutely con-
tinuous functions. Very recently, Acu et al. provided a quantitative Voronovskaja type the-
orem, a Griiss—Voronovskaja type theorem, and also gave some numerical examples of the
operators defined in (5) in [4].

As we know, the generalized Boolean sum operators (abbreviated by GBS operators)
were first studied by Dobrescu and Matei in [5]. The Korovkin theorem for B-continuous
functions was established by Badea et al. in [6, 7]. In 2013, Miclaus [8] studied the approx-
imation by the GBS operators of Bernstein—Stancu type. In 2016, Agrawal et al. [9] con-
sidered the bivariate generalization of Lupas—Durrmeyer type operators based on Pélya
distribution and studied the degree of approximation for the associated GBS operators.
In 2017, Barbosu et al. [10] introduced the GBS operators of Durrmeyer type based on
q-integers, studied the uniform convergence theorem and the degree of approximation
of these operators. Very recently, Kajla and Micldus [11] introduced the GBS operators
of generalized Bernstein—Durrmeyer type and estimated the degree of approximation in
terms of the mixed modulus of smoothness.

Motivated by the above research, the aims of this paper are to propose the bivariate
tensor product of A-Bernstein—Kantorovich operators and the GBS operators of bivariate
tensor product of A-Bernstein—Kantorovich type. We use the mixed modulus of smooth-
ness to estimate the rate of convergence of GBS operators of bivariate tensor product of A-
Bernstein—Kantorovich type for B-continuous and B-differentiable functions, and estab-
lish a Voronovskaja type asymptotic formula for the bivariate A-Bernstein—Kantorovich
operators. In order to show the effect of convergence, we also give some examples and
graphs.

This paper is mainly organized as follows: In Sect. 2, we introduce the bivariate ten-
sor product of A-Bernstein—Kantorovich operators K, ,ﬁﬁ;}z (f;x,y) and the GBS operators
L[K,A,,{;,k2 (f;%,9). In Sect. 3, some lemmas are given to prove the main results. In Sect. 4,
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the rate of convergence for B-continuous and B-differentiable functions of GBS opera-
tors UK, ,ﬁ,l,;,h (f;x,9) is proved. In Sect. 5, we investigate the Voronovskaja type asymptotic
formula for bivariate operators K12 (f; %, 7).

2 Construction of operators
For f € C(I?), I* = [0,1] x [0,1], A1, Ay € [-1, 1], we introduce the bivariate tensor product

of L-Bernstein—Kantorovich operators as

K122 (f5 %, )

t+1 1

~on D+ )Y Y Biialbain) [ / " s dras, ©
i=0 j=0 m+1 n+1
where Zm,i(kl;x) (i= ..,n) and Zn,(kz;y) (=0,1,...,n) are defined in (4), A1, Ay €

[-1,1]. Obviously, when Al =X =0, B0 (f3x,y) reduce to the bivariate tensor product of
classical Bernstein—Kantorovich operators.

The GBS operators of the bivariate tensor product of A-Bernstein—Kantorovich type are
defined as

UK (f (8,5)%,9)

= K22 (F(x,8) + f(6,9) = f(£,5);%,))
i+l j+l

=(m+ 1 7’1 + 1 Z )"1: n]()‘Zry)\/:nT T/H.l [f(x,S) +f(t,_)/)
i=0 j=0

m+1 n+l

-f(t, S)] dsdt, (7)
for f € Cy(I?). Obviously, the operators UK, (f;,7) are positive linear operators.

3 Auxiliary results

In order to obtain the main results, we need the following lemmas.

Lemma 3.1 ([4]) For A-Bernstein—Kantorovich operators K,,,(f;x) and n > 1, we have the

following equalities:

I<n,k(1§x) =1

Ko (6:5) 1-2x 1-2x+x"1—(1-x)""1 N
X)) =%+ + ;
wh 2(m+1) n2-1

Onx® —6mx +3x> — 1 2(=2x6%nm + 5 + xm + ™1 — %)\
3m+12 (n—1)(n+ 12
24n%x® — 1812x% + 4nx® + 18nx® + 4x® — 1dnx — 1
4(n+1)3

K (tz;x) =x -

)

K (ts;x) =5 -

A
B [—12n2x3 + 612x% + 1221 + 65 n? — 30x%n
2(n+1)3(n-1)

+ 126"+ 6m + 7" — (1 —x)" ! - 8x + 1];
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K (t4;x) i (51159c4 - 30m%x* + 401> + 55m%x* — 120m%x® — 30mx*

- 5(m+1
21
(n-1)(n+1)*

+75n°x% + 80nx” — 75nx> + 30nx + 1) + (—4n’x*
+ 21343 + 120%x% — 2424 — 8 + 26 1P + 6mPa? + 224%m
+6x™ 1 — 240 n + 3am + 3x"! - 3x).

Lemma 3.2 ([4]) For A-Bernstein—Kantorovich operators K, (f;x) and n > 1, we have

1-2% 1—2x+x"*1—(1—x)”*1)\.

I(n t—x; = 3
2t = %) 2(n +1) i n?-1
x(1-x) 1-6x+6x2 2A[x"1(1-x)+x(1—-x)""]
K (= %)% %) =
’A(( *) x) n+1 i 3(m+ 1)2 i n?-1
(1 — x)\

C(m+12(n-1)
Lemma 3.3 (See [4, Lemma 2.4]) We have
. 1
lim nK,,(t —x;x) = = —x;
n—00 2
lim nK,,; ((t - x)z;x) =x(1-%), x€(0,1),
n—0o0

lim n°K,,; (¢ - %)%%) =0(1), x€(0,1).
n— 00

Lemma 3.4 For the bivariate tensor product of \-Bernstein—Kantorovich operators

K\ (fx,9), we have the following inequalities:

2
KM2 (¢ - )% x,9) < ;
i (( %) xy)_m+1
KM,Az((S_y)Z;x,y) < 2 ;
mn “n+1

A1,A0 a2 (e )2 .
K2 (6= %) (s —9)%%,9) < ErSTCrS

C
K22 (=) (s —p)h,y) < —————;
mn (( A (s-y)e y) T m+1)2mn+1)

C
K2 (e -x)*(s - y)hny) < ————,
i (€ =27 =9)i) = (m+1)(n+1)?

where C is a positive constant.

4 Rate of convergence
We first introduce the definitions of B-continuity and B-differentiability, details can be
found in [12] and [13]. Let X and Y be compact real intervals. A function f: X x ¥ — R

is called a B-continuous function at (xo, yo) € X x Y if

lim )Af((x,y), (%0,50)) =0,

(%)= (x0.50
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where Af((x,7), (x0,%0)) =f (%, %) — f(x0,y) — f (%, ¥0) + f (%0, ¥0) denotes the mixed difference
of f. A function f : X x Y — R is a B-differentiable function at (x9,)9) € X x Y if the
following limit exists and is finite:

Af (%), (%0,¥0))
() —>(090) (6 —%0)(¥ —y0)

The limit is named the B-differential of f at the point (xo, yo) and denoted by Dgf (xo, ¥0)-
The function f : X x Y — R is B-bounded on X x Y if there exists a k > 0 such that
|[Af((x,9), (£,5))] <K for any (x,%),(t,s) e X x Y.
Let B(X x Y), C(X x Y) denote the spaces of all bounded functions and of all continuous
functions on X x Y endowed with the sup-norm || - ||, respectively. We also define the
following function sets:

By(X x Y)={f:X x Y = R|f is B-bounded on X x Y}

with the norm [|f |5 = sup, ) gexxy [ (%), (£,9))],
Cp(X xY)={f:X x Y - R|f is B-continuous on X x Y},

and Dp(X x Y) ={f : X x Y — R|f is B-differentiable on X x Y7}. It is known that C(X x
Y)C Cp(X x Y).
Let f € By(X x Y). Then the mixed modulus of smoothness Wmixed(f; -, ) is defined by

wmixed(f;(Sl;(SZ) = SUP{|Af((x,y)1(t15))| : |x_t| =< 81) |J’—S| =< 82}1

for any 81,8, > 0.

Let L: Cp(X x Y) — B(X x Y) be a linear positive operator. The operator UL : C,(X x
Y) = B(X x Y) defined for any function f € Cp(X x Y) and any (x,7) € X x Y by
UL(f(t,8);x,9) = L(f(t,y) + f(x,5) — f(£,5); %, ) is called the GBS operator associated to the
operator L.

In the sequel, we will consider functions e; : X x ¥ — R, e;(x,y) = x‘j}j for any (x,y) €
X x Y,and i,j € N. In order to estimate the rate of convergence of UK 5 (f;%,7), we need
the following two theorems.

Theorem 4.1 ([7]) Let L: Cp(X x Y) — B(X x Y) be a linear positive operator and UL :
Cp(X x Y) = B(X x Y) the associated GBS operator. Then for any f € Cp(X x Y), any
(x,y) € (X x Y) and 81,8, > 0, we have

\UL(f (t,5);%,9) —f (%,9)|

< V(x,y)} |1 —L(eoo;x,y)| + [L(eoo;x,y) +87! L((t —x)z;x,y)

+8,° L((s —y)z;x,y) + 51_1551\/L((t —x)%(s —y)z;x,y)]a)mixed(f; 81,82).

Theorem 4.2 ([14]) Let L: Cy(X x Y) — B(X x Y) be a linear positive operator and UL :
Cp(X x Y) — B(X x Y) the associated GBS operator. Then for any f € Dy(X x Y) with
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Dpf € BX x Y),any (x,y) € (X x Y) and 81,8, > 0, we have

[UL(f(t,5);%,9) —f(x,9)]

< |f.9)] |1~ Lieos 1.9)] + 31Daf ooy L((£ - 2(5 - 3 ,9)

+ [\/L((t —%)2(s—y)%%,9) + 81_1\/L((t - x)*s - 9)%%,)

+ 82‘1\/L((t —%)2(s = y)5x,9) + 8718, L((¢ - %)*(s - 9)%5%,9) ]

X wmixed(DEf; 81; 32)

First, we will use B-continuous functions to estimate the rate of convergence of
UK (f;%,9) to f € Cp(I2) by using the mixed modulus of smoothness. We have

Theorem 4.3 For f € Cy(I?), (x,y) € I* and m,n > 1, we have the following inequality:

ALA2 (£, _ ) o ! 1
UKL (5%, 9) f(x,y)|5(3+2«/5)wmlxed(f, T m) (8)

Proof Applying Theorem 4.1 and using Lemma 3.4, we get

(UKL (f5%,9) = f (x,9)

1 2 1 2 2
< |1+ — + = + Omixed(f;81,82).
iVm+1l 5 Vn+l §186,/(m+1)(n+1)

Therefore, (8) can be obtained from the above inequality by choosing §; = \/%1 and &, =
1 m+ D
Vel

Next, we will give the rate of convergence to the B-differentiable functions for
UK (f3%,9)-

Theorem 4.4 Let f € Dy(I%), Dif € B(I?), (x,y) € I* and m,n > 1, we have the following
inequality:

| UKL (f5x,9) - (%)

[HDBfnoo + Omiced (DBf; J% J%ﬂ ©)

<
T Vm+1)(n+1)

where C and M are positive constants.

Proof Using Theorem 4.2 and Lemma 3.4, we have

U2 (F5,9) = f (3%, 9)]

__ OlIDgfllo +[ 2 L1 |c
T Jm+D(m+1) JSm+D)m+1) Ssm+1)Vn+1

1 [ C 4 (Dafs50,6)
+ + WDmixq 301, .
Som+ D)V m+1 " 8.8y(m+ D)(n+1) ed Loz
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UK;n":z(f(S.t);X‘y)

0.5 4

0.8 T s i

Figure 1 Graphs of UKHWO(f(s, t;x,y) and f(x,y)

Hence, taking §; = ﬁ ,8p = ﬁ and using the above inequality, we get the desired result
9). O

Example 4.5 Let f(x,y) = xy + 2%, x,y € [0, 1], the graphs of f(x,y) and UKy",(f(s, £);x,5)
are shown in Fig. 1. Figure 2 shows the partially enlarged graphs of f(x,y) and
UK 10(f (s, £); %,9).

5 Voronovskaja type asymptotic formulas for K,),‘,],',lz (f;x,y)
In this section, we will give a Voronovskaja type asymptotic formula for Ky (F; %, 9).
Theorem 5.1 Consider an f € C(I%). Then for any x,y € (0,1) and Ay, ks € [-1,1], we have

lim n[K312(f;%,9) - £ (%,9)]
n— 00

e @)
D DD g4 e et 0+ g -]

Proof For (x,), (t,s) € I2, by Taylor’s expansion, we have

f(&9)
=f(9) + £ 9)(E = %) + £ (%, 9)(s ) + % [ () (& = %)% + 2 (x,9)

X (t=2)(s =) +£3(69)(s = 9)°] + p(t:55%,9)y/ (E = 0)* + (s = 9)", (10)

where p(¢,s;x,7) € C(I%) and lims5)— (xy) (£, 8;%,y) = 0.
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2—_|

UK ((s.):x,y)

15—

Figure 2 Partially enlarged graphs of UKH]O(I((S, );x,y) and f(x,y)
- )

Applying K42 (f; %) to (10), we obtain

K22 (F5,9) = £ (6,9) + £1069) Ko, (8= 25%) + £ (%, 9) K (s = 39)
1
+5 o (e 7Ky (& = 2)%5%) + £ (6, 9) K, (5 = 9)%59)

+ 2 o6, DL (8 = %) (s = )5 %,7) ]

+ K312 (p(6,555,0)/ (8 — %)% + (s — )5 5,9).
Taking the limit on both sides of the above equality, we have

lim n[K352(f5x,9) — £ (x,)]

n— o0
=fi(x,y) lim nK,;, (£ — x;x) +fy’(x,y) lim 1K, (s — ;)
n—00 n—00
1 _ )
t3 [fx’é (@,y) lim 1k, ((t-%)%%)
+f5609) lim 1k, ((s - 9)% )

+ 2 (%) nli)r{.lo nK2 (¢ - x)(s - ), y):l

+ lim nki (p(t, %,V (E—x)* + (s —y)4;x,y). (11)
n—00 ’
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Using Lemma 3.2, we have

lim nK*1*2 ((t —x)(s— y);x,y) = lim n[](m1 (= 2;%) K, (s — y;y)] =0.
i Hn—> 00

n—00

By Cauchy—-Schwarz inequality, we have

nK;172 (p(t, 52, 9)/ (8 = %)% + (s — )% %, )

< \/ Ks2 (02(t,5:%,9); %, y)\/ n2K 2 ((E = %)% + (s - )%, )

< JKi (02t 512, 9)x,9)

X \/nzK,,,;‘1 ((t - x)4;x) + 12K, ((s - y)“;y).
Since lim, g () p(¢,5;%,) = 0, using Lemma 3.3, we obtain

lim nl(fl‘,ln’kz (p(t, S5, )V (& —x)* + (s —y)%;x, y) =0.

n—00

Therefore, by (11), (12), (13) and Lemma 3.3, we have

lim Vl[K:;]L’AZ(f;xry) _f(x)y)]

) )
2

Thus we have obtained the desired result.

(129 + 2220 2) ¢ £ (1 ) + £y (1 -]
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(12)

O

Example 5.2 Consider the function f(x,y) = xy + x2, x,y € [0,1]. The graphs of f(x,y)

and Kzl(’)}zo(f;x, y) are shown in Fig. 3. We also give the graphs of Kll(’)}w(f;x, y) and

18- f(x,y)=xy+x"

AL A
Km‘,n 2(f5x,y)

1 0.8 0.6 0.4 02

01

Figure 3 Graphs of K;(')]’zo(f;x,y) and f(x,y)
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172
m,n

. (fs.)x.Y)

1.6
1.4

1.2

AL .
05 (s Dxy)

0.6
0.4

0.2 -

0.4 0.2
X y

Figure 4 Graphs of Kié]’m(f;x,y) and UKW](’;']O()((S, 0;x,)

LIKll(f10 (s,t);x,y) in Fig. 4 to compare the bivariate A-Bernstein—Kantorovich operators
with GBS operators.

6 Conclusion

In this paper, we deduce the rate of convergence of GBS operators of bivariate tensor prod-
uct of A-Bernstein—Kantorovich type for B-continuous and B-differentiable functions by
using the mixed modulus of smoothness, as well as obtain the Voronovskaja type asymp-
totic formula for bivariate A-Bernstein—Kantorovich operators.
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