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Abstract
Using the orthogonal rank of the tensor, a new estimation method for the upper
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1 Introduction
A tensor is a multidimensional array that can provide a natural and convenient way for
representing the multidimensional data such as discrete forms of multivariate functions,
images, video sequences, and so on [1, 2, 10, 14]. With the successful and widespread use
of the matrix nuclear norm (a sum of the singular values) in the information recovery, the
research on the nuclear norm of the tensor (see Definition 2.3 in Sect. 2) has been a hot
topic in both the theory and applications [5–8].

A natural problem is how to compute the nuclear norm of a tensor. Unfortunately, com-
pared with the matrix nuclear norm, the nuclear norm of a tensor is closely related to the
number field, and the computation of the tensor nuclear norm is NP-hard [5]. Thus, ex-
ploring some simple polynomial-time computable upper bounds on the nuclear norm is
very important.

Relating to the nuclear norm of a tensor, Friedland and Lim established the following
upper bound through the Frobenius norm of this tensor in [5].

Theorem 1.1 ([5]) Let X ∈R
n1×···×nD . Then

‖X ‖∗ ≤
√
√
√
√

D
∏

i=1

ni‖X ‖F .

In [8], Hu established a tighter upper bound.
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Theorem 1.2 (Lemma 5.1 in [8]) Let X ∈R
n1×···×nD . Then

‖X ‖∗ ≤
√

∏D
i=1 ni

max{n1, . . . , nD}‖X ‖F . (1)

Furthermore, Hu established another upper bound on the nuclear norm of a tensor
through the nuclear norms of its unfolding matrices.

Theorem 1.3 (Theorem 5.2 in [8]) Let X ∈R
n1×···×nD . Then

‖X ‖∗ ≤
√

∏D
i=2 ni

max{n2, . . . , nD}‖X(1)‖∗. (2)

In this paper, we present some new upper bounds on the nuclear norms through using
the orthogonal rank of the tensor [9, 12]. Furthermore, taking into account the structure
information of the tensor, some new results of the upper bounds on the nuclear norms are
obtained.

Since the spectral norm and nuclear norm of a tensor are closely related to the num-
ber field [6], for the sake of simplicity, we always assume that the tensors discussed are
nonzero real tensors, and unless mentioned otherwise, we just discuss the spectral and
the nuclear norm over the real field. Some corresponding notations are as follows: a ten-
sor is denoted by the calligraphic letter (e.g., X ), while the scalar is denoted by the plain
letter, and matrices and vectors are denoted by bold letters (e.g., X and x).

The rest of the paper is organized as follows. In Sect. 2, we recall some definitions and
related results which are needed for the subsequent sections. In Sect. 3, we present the
upper bounds on the nuclear norms of general tensors and discuss the factor affecting the
upper bounds. Finally, some conclusions are made in Sect. 4.

2 Notations and preliminaries
This section is devoted to reviewing some conceptions and results related to tensors,
which are needed for the following sections.

Firstly, we discuss the unfolding matrix or matrix representation of a tensor.
Let X = (xi1···iD ) ∈ R

n1×···×nD . Then, by organizing several indexes of X and the re-
maining indexes of X as the row index and the column index, respectively, the ten-
sor X can be reshaped into a matrix form [13]. Especially, if the number of row in-
dex is equal to one, then we get the mode-d matricization X(d), the columns of which
are the mode-d fibers of the tensor (obtained by fixing every coordinate except one,
[xi1···id–11id+1···iD , . . . , xi1···id–1ndid+1···iD ]T ), arranged in a cyclic ordering; see [3] for details.
Contrary to the operation above, a matrix can also be reshaped into a tensor by using
the opposite operation.

In what follows, we review some definitions of the tensor norms.

Definition 2.1 ([3]) Let X = (xi1···iD ) ∈ R
n1×···×nD , the Frobenius norm or Hilbert–

Schmidt norm of the tensor X is defined as

‖X ‖F =
√〈X ,X 〉 =

( n1∑

i1=1

· · ·
nD∑

iD=1

x2
i1···iD

)1/2

.
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Definition 2.2 ([6]) Let “◦” denote the outer product operation. The spectral norm of
X ∈R

n1×···×nD is defined as

‖X ‖2 = max
{〈

X , x(1) ◦ · · · ◦ x(D)〉 : x(d) ∈R
nd ,
∥
∥x(d)∥∥

2 = 1, 1 ≤ d ≤ D
}

.

Furthermore, ‖X ‖2 is equal to the Frobenius norm of the best rank-one approximation
of the tensor X .

Similar to the matrix case, the nuclear norm can be defined through the dual norm of
the spectral norm.

Definition 2.3 ([6]) Let X ∈R
n1×···×nD , the nuclear norm of X is defined as the dual norm

of the spectral norm. That is,

‖X ‖∗ := max
{〈X ,Y〉 : Y ∈R

n1×···×nD ,‖Y‖2 = 1
}

. (3)

For the nuclear norm defined by (3), it can be shown that

‖X ‖∗ = min

{ P
∑

p=1

|λp| : X =
P
∑

p=1

λpx(1)
p ◦ · · · ◦ x(D)

p ,

∥
∥x(d)

p
∥
∥

2 = 1, x(d)
p ∈R

nd ,λp ∈R, P ∈N

}

.

Another important concept related to the matrix and the tensor is the mode-d multipli-
cation.

Definition 2.4 ([3]) Let X = (xi1···iD ) ∈ R
n1×···×nD . Then the mode-d multiplication of X

by the matrix U = (uij) ∈ R
n′

d×nd is defined by

(X ×d U)i1···id–1i′did+1···iD =
nd∑

id=1

xi1···id–1idid+1···iD ui′did , 1 ≤ d ≤ D.

It should be mentioned that the mode-d multiplication is also available for n′
d = 1.

Furthermore, let

(

W(1), . . . , W(D)) ·X = X ×1 W(1) × · · · ×D W(D).

If for all 1 ≤ d ≤ D the matrices W(d) are orthogonal matrices (W(d)W(d)T is an identity
matrix), then (W(1), . . . , W(D)) ·X is called a multi-linear orthogonal transformation of the
tensor X .

Finally in this section, we introduce the tool used in the paper for the estimation of the
upper bounds.

Definition 2.5 ([9]) The orthogonal rank of X ∈R
n1×···nD is defined as the smallest num-

ber R such that

X =
R
∑

r=1

Ur , (4)
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where Ur (1 ≤ r ≤ R) are rank-one tensors such that 〈Ur1 ,Ur2〉 = 0, (r1 
= r2) for 1 ≤ r1 ≤ R
and 1 ≤ r2 ≤ R.

The decomposition of X given by (4) is also called the orthogonal decomposition of the
tensor X .

For the orthogonal rank of a tensor, the following conclusion is true.

Theorem 2.1 ([11]) Let n1 ≤ · · · ≤ nD. Then, for any X ∈R
n1×···×nD , it holds

r⊥(X ) ≤
D–1
∏

i=1

ni,

where r⊥(X ) denotes the orthogonal rank of X .

Noting the fact that indices relabeling does not change the tensor orthogonal rank, then
by Theorem 2.1, we have that, for any X ∈R

n1×···×nD , it holds

r⊥(X ) ≤
∏D

i=1 ni

max{n1, . . . , nD} . (5)

Especially, for the third order tensor, the following result was established in [11].

Lemma 2.1 ([11]) Let n ≥ 2. Then, for any X ∈R
n×n×2, the following holds:

r⊥(X ) ≤
{

2n – 1, if n is odd;
2n, if n is even.

3 Upper bounds of the nuclear norm
In this section, we discuss the upper bounds on the nuclear norm of a tensor. Meanwhile,
some properties and polynomial-time computable bounds related to the nuclear norm
will be given.

3.1 Upper bounds given by the Frobenius norm
In this subsection, we use the orthogonal rank of a general tensor to establish the upper
bounds on the nuclear norm through the Frobenius norm of this tensor.

Theorem 3.1 Let X ∈R
n1×···×nD . Suppose that

R = max
Y∈Rn1×···×nD

{

rank⊥(Y)
}

.

Then

‖X ‖∗ ≤ √
R‖X ‖F . (6)

Proof Let Y ∈ R
n1×···×nD be an arbitrary nonzero tensor and the orthogonal rank of Y be

Ry. Suppose that

Y =
Ry
∑

r=1

Ur

is the orthogonal rank decomposition of the tensor Y , where Ry ≤ R.
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Then, according to the properties of the orthogonal rank decomposition and the best
rank-one approximation, we have

‖Y‖2 ≥ max
1≤r≤Ry

{‖Ur‖F
}

(7)

and

‖Y‖2
F =

Ry
∑

r=1

‖Ur‖2
F . (8)

Without loss of generality, suppose that

‖U1‖F = max
1≤r≤Ry

{‖Ur‖F
}

.

Then it follows from (7) and (8) that
〈

X ,
Y

‖Y‖2

〉

≤ ‖X ‖F
‖Y‖F

‖Y‖2

≤ ‖X ‖F

√
∑Ry

r=1 ‖Ur‖2
F

‖U1‖F

≤ ‖X ‖F

√

Ry‖U1‖2
F

‖U1‖F

=
√

Ry‖X ‖F

≤ √
R‖X ‖F . (9)

Thus, according to the arbitrariness of Y and (9), we get

max
Y∈Rn1×···×nD

{〈

X ,
Y

‖Y‖2

〉}

≤ √
R‖X ‖F .

Noting the definition of the nuclear norm (Definition 2.3), the conclusion is established. �

Remark 3.1 Comparing the upper bound given by (6) with the upper bound given by (1),
which is obtained in [8], the new upper bound given by (6) is tighter.

Actually, it follows from (5) that the upper bound given by (6) improves the upper bound
given by (1).

More specifically, we present a simple example to show that the upper bound given by
Theorem 3.1 not only can be tighter than the upper bound given by (1) but also a sharp
bound.

Example 3.1 Let

A =

⎡

⎢
⎣

0 1 0
1 0 0
0 0 0

∣
∣
∣
∣
∣
∣
∣

–1 0 0
0 1 0
0 0 1

⎤

⎥
⎦ ∈R

3×3×2.
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By Theorem 3.1 and Lemma 2.1, we get

‖A‖∗ ≤ √
5
√

12 + 12 + (–1)2 + 12 + 12 = 5 <
√

3 × 3 × 2
3

√
5 =

√
30.

This means that the upper bound given by (3.1) is tighter than the upper bound given by
(1).

Furthermore, by a simple computation, we get ‖A‖2 = 1. Then it follows from the defi-
nition of the nuclear norm that

‖A‖∗ ≥
〈

A,
A

‖A‖2

〉

=
‖A‖2

F
‖A‖2

=
5
1

= 5.

Thus, it holds

‖A‖∗ = 5.

Actually,

A = e1;3 ◦ e2;3 ◦ e1;2 + e2;3 ◦ e1;3 ◦ e1;2 + (–e1;3) ◦ e1;3 ◦ e2;2 + e2;3 ◦ e2;3 ◦ e2;2

+ e3;3 ◦ e3;3 ◦ e2;2 (10)

is a nuclear decomposition of A, where e1;3 = [1, 0, 0]T , e2;3 = [0, 1, 0]T , e3;3 = [0, 0, 1]T ,
e1;2 = [1, 0]T , and e2;2 = [0, 1]T . Since

〈A, e1;3 ◦ e2;3 ◦ e1;2〉 = 〈A, e2;3 ◦ e1;3 ◦ e1;2〉 =
〈

A, (–e1;3) ◦ e1;3 ◦ e2;2
〉

= 〈A, e2;3 ◦ e2;3 ◦ e2;2〉 = 〈A, e3;3 ◦ e3;3 ◦ e2;2〉,

then, according to the sufficient and necessary conditions of the nuclear norm decompo-
sition obtained in [6], we get that (10) is a nuclear decomposition of A.

This also means that the upper bound given by Theorem 3.1 is a sharp upper bound of
the nuclear norm.

3.2 Upper bounds given by nuclear norms of the unfolding matrices of a tensor
In this subsection, we present a new way to establish the upper bounds on the nuclear
norm of a tensor through the nuclear norms of the unfolding matrices of this tensor.

Theorem 3.2 Let X ∈R
n1×···×nD . Suppose that

R̃ = max
Y∈Rn2×···×nD

{

rank⊥(Y)
}

.

Then

‖X ‖∗ ≤
√

R̃‖X(1)‖∗. (11)

Proof Let the singular value decomposition of the matrix X(1) be

X(1) = σ1u1vT
1 + · · · + σSuSvT

S , (12)

where us ∈R
n1 , vs ∈R

n2×···×nD , ‖us‖2 = 1, ‖vs‖2 = 1, σs > 0, and 1 ≤ s ≤ S.
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Then equality (12) can be expressed as the following form:

X = σ1u1 ◦ V1 + · · · + σSuS ◦ VS, (13)

where Vs ∈R
n2×···×nD are obtained by reordering the vector vs into (D – 1)th order tensor

with a certain order, 1 ≤ s ≤ S. Suppose that the orthogonal rank decomposition of Vs is

Vs = v(1,s)
1 ◦ · · · ◦ v(D–1,s)

1 + · · · + v(1,s)
Ps ◦ · · · ◦ v(D–1,s)

Ps , 1 ≤ s ≤ S.

Then, by taking the expression of Vs into the right-hand side of (13), we get

X = σ1

P1∑

i=1

u1 ◦ v(1,1)
i ◦ · · · ◦ v(D–1,1)

i + · · · + σS

PS∑

i=1

u1 ◦ v(1,S)
i ◦ · · · ◦ v(D–1,S)

i

= σ1

P1∑

i=1

(∥
∥v(1,1)

i
∥
∥

2 · · ·∥∥v(D–1,1)
i

∥
∥

2

)

u1 ◦ v(1,1)
i

‖v(1,1)
i ‖2

◦ · · · ◦ v(D–1,1)
i

‖v(D–1,1)
i ‖2

+ · · ·

+ σS

PS∑

i=1

(∥
∥v(1,s)

i
∥
∥

2 · · ·∥∥v(D–1,s)
i

∥
∥

2

)

u1 ◦ v(1,S)
i

‖v(1,S)
i ‖2

◦ · · · ◦ v(D–1,S)
i

‖v(D–1,S)
i ‖2

. (14)

Noting that

‖Vs‖2
F =

Ps∑

i=1

∥
∥v(1,s)

i ◦ · · · ◦ v(D–1,s)
i

∥
∥

2
F =

Ps∑

i=1

∥
∥v(1,s)

i
∥
∥

2
F · · ·∥∥v(D–1,s)

i
∥
∥

2
F = ‖vs‖2

F = 1, (15)

where Ps ≤ R̃, 1 ≤ s ≤ S, then it follows from the definition of the nuclear norm and (14)
that

‖X ‖∗ ≤ σ1

P1∑

i=1

∥
∥v(1,1)

i
∥
∥

2 · · ·∥∥v(D–1,1)
i

∥
∥

2 + · · · + σS

PS∑

i=1

∥
∥v(1,s)

i
∥
∥

2 · · ·∥∥v(D–1,s)
i

∥
∥

2

≤ σ1
√

P1 + · · · + σS
√

PS
(

by (15) and Cauchy-Schwarz inequality
)

≤ σ1

√

R̃ + · · · + σS

√

R̃

=
√

R̃‖X(1)‖∗. �

Remark 3.2 Comparing the upper bound given by (11) with the upper bound given by (2),
which is obtained in [8], the new upper bound given by (11) is smaller.

Actually, it follows from inequality (5) that the upper bound given by (11) improves the
upper bound given by (2).

Similar to the discussion of Hu [8], the upper bounds can also be obtained by other
unfolding ways and further improved by considering the multi-linear ranks of a tensor
(ranks of the unfolding matrices).

Corollary 3.1 Let X ∈ R
n1×n2×n3 and rd = rank(X(d)), 1 ≤ d ≤ 3. Then

‖X ‖∗ ≤
√

min{r2, r3}‖X(1)‖∗ +
√

min{r3, r1}‖X(2)‖∗ +
√

min{r1, r2}‖X(3)‖∗
3

.
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Proof According to the conditions of the corollary and the higher order singular value
decomposition of the tensor [3], the tensor X can be expressed as

X =
(

W(1), W(2), W(3)) · X̃ ,

where X̃ ∈R
r1×r2×r3 and W(d) ∈R

nd×rd satisfying that W(d)T W(d) is an identity matrix for
all 1 ≤ d ≤ 3.

By the definition of the tensor nuclear norm (Definition 2.3), one can easily verify the
following conclusions:

‖X̃ ‖∗ = ‖X ‖∗, (16)

and

‖X̃(1)‖∗ = ‖X(1)‖∗. (17)

It follows from Theorem 3.2 and (17) that

‖X̃ ‖∗ ≤
√

max
Y∈Rr2×r3

{

rank⊥(Y)
}‖X̃(1)‖∗ ≤√min{r2, r3}‖X(1)‖∗.

Noting (16), we get

‖X ‖∗ ≤√min{r2, r3}‖X(1)‖∗.

Similarly, we have

‖X ‖∗ ≤√min{r3, r1}‖X(2)‖∗,

and

‖X ‖∗ ≤√min{r1, r2}‖X(3)‖∗.

Thus, the conclusion is obtained. �

3.3 Factors affecting the upper bounds on the nuclear norm and further results
In this subsection, we discuss the factors affecting the nuclear norm of a tensor. Especially,
we focus on the structure analysis of a tensor. Based on the discussion, some new upper
bounds on the nuclear norms of tensors are presented.

Firstly, we give a simple example to illustrate that the nuclear norm of a tensor is closely
related to the structure of this tensor.

Example 3.2 Let

A =

[

0 1
1 0

∣
∣
∣
∣
∣

–1 0
0 1

]

. (18)
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Similar to the discussion of Example 3.1, since

A = e1;2 ◦ e2;2 ◦ e1;2 + e2;2 ◦ e1;2 ◦ e1;2 + (–e1;2) ◦ e1;2 ◦ e2;2 + e2;2 ◦ e2;2 ◦ e2;2

and

〈A, e1;2 ◦ e2;2 ◦ e1;2〉 = 〈A, e2;2 ◦ e1;2 ◦ e1;2〉 =
〈

A, (–e1;2) ◦ e1;2 ◦ e2;2
〉

= 〈A, e2;2 ◦ e2;2 ◦ e2;2〉,

then, according to the sufficient and necessary conditions of the nuclear norm decompo-
sition obtained in [6], we get

‖A‖∗ = 4.

It is well known that the nuclear norm of a tensor is closely related to the number field
[6]. Actually, the tensor A can be expressed as the following form:

A =
1
2

[

–1
–i

]

◦
[

1
i

]

◦
[

i
1

]

+
1
2

[

–1
i

]

◦
[

1
–i

]

◦
[

–i
1

]

.

Let

W(1) =
1√
2

[

–1 i
–1 –i

]

, W(2) =
1√
2

[

1 –i
1 i

]

, W(3) =
1√
2

[

–i 1
i 1

]

.

Then it holds

(

W(1), W(2), W(3)) ·A =

[√
2 0

0 0

∣
∣
∣
∣
∣

0 0
0

√
2

]

. (19)

For the sake of convenience, let Â = (W(1), W(2), W(3)) · A. Then, using the same method
as above, we have

〈Â, e1;2 ◦ e1;2 ◦ e1;2〉 = 〈Â, e2;2 ◦ e2;2 ◦ e2;2〉.

Thus ‖Â‖∗ = 2
√

2. Since all three matrices W(k) (1 ≤ k ≤ 3) are unitary matrices, based
on the invariance of the Frobenius norm of a tensor under the multi-linear orthogonal
transformations, we get

‖A‖∗ = ‖Â‖∗ = 2
√

2.

Noting the structures of the tensors given by (18) and (19), the above derivation process
implies that the nuclear norm of a tensor is closely related to the structure of this tensor.
In what follows, we discuss the block diagonal tensor, which can be illustrated by Fig. 1.
Furthermore, the block diagonal tensor can be expressed by using the direct sum operation
“⊕” [4], which is defined as follows:
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Figure 1 The block diagonal tensor with three diagonal blocks

Let A = (ai1···iD ) ∈ R
n1×···×nD and B = (bj1···jD ) ∈ R

n′
1×···×n′

D , then the direct sum of A and
B is an order-D tensor C = (ci1···iD ) = A⊕B ∈R

(n1+n′
1)×···×(nD+n′

D) defined by

ci1···iD =

⎧

⎪
⎪
⎨

⎪
⎪
⎩

ai1···iD , if 1 ≤ iα ≤ nα ,α = 1, 2, . . . , D;

bi1–n1,...,iD–nD , if nα + 1 ≤ iα ≤ nα + n′
α ,α = 1, 2, . . . , D;

0, otherwise.

Based on the discussion above, we present some properties of the spectral norm and
nuclear norm of the tensor.

Lemma 3.1 Let X (l) ∈R
n(l)

1 ×···×n(l)
D , 1 ≤ l ≤ L, and

X = X (1) ⊕ · · · ⊕X (L) ∈R
(
∑L

l=1 n(l)
1 )×···×(

∑L
l=1 n(l)

D ).

Then

‖X ‖2 = max
1≤l≤L

{∥
∥X (l)∥∥

2

}

. (20)

Proof According to the definition of the spectral norm of a tensor (Definition 2.3), it is
easy to get

‖X ‖2 ≥ max
1≤l≤L

{∥
∥X (l)∥∥

2

}

.

Thus, the rest of the proof just needs to show

‖X ‖2 ≤ max
1≤l≤L

{∥
∥X (l)∥∥

2

}

. (21)

Firstly, we consider the case of the third order tensors.
Suppose that X (l) ∈R

n(l)
1 ×n(l)

2 ×n(l)
3 (1 ≤ l ≤ L),

X = X (1) ⊕ · · · ⊕X (L) ∈R
(
∑L

l=1 n(l)
1 )×(

∑L
l=1 n(l)

2 )×(
∑L

l=1 n(l)
3 ),

and σu◦v ◦w is the best rank-one approximation of X , where σ = ‖X ‖2, u ∈ R

∑L
l=1 n(l)

1 , v ∈
R

∑L
l=1 n(l)

2 , w = [wT
1 , . . . , wT

L ]T ∈R

∑L
l=1 n(l)

3 , wl ∈ R
n(l)

3 (1 ≤ l ≤ L), and ‖u‖2 = ‖v‖2 = ‖w‖2 = 1.



Kong et al. Journal of Inequalities and Applications  (2018) 2018:282 Page 11 of 17

Then the following matrix

X ×3 wT =

⎡

⎢
⎢
⎣

X (1) ×3 wT
1

. . .
X (L) ×3 wT

L

⎤

⎥
⎥
⎦

is a block diagonal matrix. It follows

‖X ‖2 =
∥
∥X ×3 wT∥∥

2 = max
1≤l≤L

{∥
∥X (l) ×3 wT

l
∥
∥

2

}≤ max
1≤l≤L

{∥
∥X (l)∥∥

2

}

.

Hence, inequality (21) is proved. This also implies that equality (20) is true for the third
order tensors.

Secondly, for the case of higher order tensors with order larger than or equal to four, the
same result can be established by the recursive method.

In all, the conclusion is true. �

Then, based on Lemma 3.1, the following two results related to the nuclear norms of
tensors can be established.

Lemma 3.2 Let O ∈R
n(1)

1 ×···×n(1)
D be a zero tensor, and X ∈R

n(2)
1 ×···×n(2)

D . Then

‖O ⊕X ‖∗ = ‖X ⊕O‖∗ = ‖X ‖∗.

Proof Suppose that

‖X ‖∗ =
P
∑

p=1

|σp|

and

X =
P
∑

p=1

σpx(1)
p ◦ · · · ◦ x(D)

p ,

where for all 1 ≤ p ≤ P, x(1)
p ◦ · · · ◦x(D)

p are rank-one tensors with ‖x(1)
p ‖2 = · · · = ‖x(D)

p ‖2 = 1.
Then

O ⊕X =
P
∑

p=1

σp

(

x(1)
p

0

)

◦ · · · ◦
(

x(D)
p

0

)

,

where all 0s denote zero vectors with suitable dimensions. This implies

‖O ⊕X ‖∗ ≤ ‖X ‖∗.

Furthermore, assume that

‖X ‖∗ = 〈X ,Y〉,

where Y ∈ R
n(2)

1 ×···×n(2)
D and ‖Y‖2 = 1.
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Then, by Lemma 3.1, we have

‖O ⊕Y‖2 = ‖Y‖2 = 1.

It follows from Definition 2.5 that

‖O ⊕X ‖∗ ≥ 〈O ⊕X ,O ⊕Y〉 = 〈X ,Y〉 = ‖X ‖∗.

Thus it holds ‖O ⊕X ‖∗ = ‖X ‖∗.
Using the same method, the equality ‖X ⊕O‖∗ = ‖X ‖∗ can be proved. �

Lemma 3.3 Let X (l) ∈R
n(l)

1 ×···×n(l)
D , 1 ≤ l ≤ L, and

X = X (1) ⊕ · · · ⊕X (L) ∈R
(
∑L

l=1 n(l)
1 )×···×(

∑L
l=1 n(l)

D ).

Then

‖X ‖∗ =
L
∑

l=1

∥
∥X (l)∥∥∗.

Proof We just need to prove the case of L = 2. For the general case, the conclusion can be
obtained in a recursive way.

Let

X̃1 = X (1) ⊕O(1), X̃2 = O(2) ⊕X (1),

where O(1) ∈R
n(2)

1 ×···×n(2)
D and O(2) ∈R

n(1)
1 ×···×n(1)

D are both zero tensors.
Then, by using Lemma 3.2, we get

‖X ‖∗ = ‖X̃1 + X̃2‖∗ ≤ ‖X̃1‖∗ + ‖X̃2‖∗ =
∥
∥X (1)∥∥∗ +

∥
∥X (2)∥∥∗. (22)

Suppose that

∥
∥X (l)∥∥∗ =

〈

X (l),Y (l)〉, and Y (l) ∈R
n(l)

1 ×···×n(l)
D ,
∥
∥Y (l)∥∥

2 = 1.

Then, by Lemma 3.1, we get

∥
∥Y (1) ⊕Y (2)∥∥

2 = 1.

Thus, according to Definition 2.5, we have

‖X ‖∗ = max
Y∈R(n(1)

1 +n(2)
1 )×···×(n(1)

D +n(2)
D )

‖Y‖2=1

{〈X ,Y〉}

≥ 〈X (1) ⊕X (2),Y (1) ⊕Y (2)〉

=
∥
∥X (1)∥∥∗ +

∥
∥X (2)∥∥∗. (23)

Combined (22) with (23), the results can be obtained. �
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Based on the fact that the nuclear norm of a tensor is also kept invariant under the
multi-linear orthogonal transformation, we get the following result.

Corollary 3.2 Let X ∈ R
n1×···×nD . If the tensor X admits a diagonal structure under the

multi-linear orthogonal transformations, then

‖X ‖∗ =
P
∑

p=1

|σp|,

where σp (1 ≤ p ≤ P) are the diagonal elements and P ≤ n1.

This case presented by Corollary 3.2 is consistent with the definition of the nuclear norm
of the matrix case, and in this case, the nuclear norm of the tensor can be accurately cal-
culated.

Taking into account the structure information of the tensor, some new results of the
upper bounds on the nuclear norms can be obtained. For the convenience of comparison,
we just present the upper bounds on the nuclear norms of tensors through the dimensions
of the tensors, without considering the orthogonal rank of the tensors.

Theorem 3.3 Let X ∈ R
n1×···×nD and L be the maximum number of diagonal blocks that

the tensor X can attain under the multi-linear orthogonal transformations. Suppose that
the size of each diagonal block is n(l)

1 × · · · × n(l)
D and

ñl =
∏D

i=1 n(l)
i

max{n(l)
1 · · ·n(l)

D } , 1 ≤ l ≤ L.

Then it holds

‖X ‖∗ ≤
√
√
√
√

L
∑

l=1

ñl‖X ‖F . (24)

Proof Assume that

X = D(X ) ×1 W(1) · · · ×D W(D),

where

D(X ) = D(1) ⊕ · · · ⊕D(L)

and W(d) ∈R
nd×nd (1 ≤ d ≤ D) are orthogonal matrices, D(l) ∈R

n(l)
1 ×···×n(l)

D , 1 ≤ l ≤ L.
Then it follows from the invariance of the Frobenius norm of a tensor under the multi-

linear orthogonal transformation that

‖X ‖2
F =

L
∑

l=1

∥
∥D(l)∥∥2

F . (25)
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Furthermore, since the nuclear norm of a tensor is also kept invariant under the multi-
linear orthogonal transformation, we get

‖X ‖∗ =
∥
∥D(X )

∥
∥∗.

Hence, by Lemma 3.3 and (25), we get

‖X ‖∗ =
∥
∥D(X )

∥
∥∗

=
L
∑

l=1

∥
∥D(l)∥∥∗

≤
L
∑

l=1

√

ñl
∥
∥D(l)∥∥

F

≤
√
√
√
√

L
∑

l=1

ñl

√
√
√
√

L
∑

l=1

∥
∥D(l)

∥
∥

2
F (by Cauchy-Schwarz inequality)

=

√
√
√
√

L
∑

l=1

ñl‖X ‖F .
�

Without loss of generality, suppose that

nD = max{n1, . . . , nD}.

Since

n1 =
L
∑

l=1

n(l)
1

...

nD–1 =
L
∑

l=1

n(l)
D–1,

it is easy to get

∏D
i=1 ni

max{n1, . . . , nD} =
D–1
∏

i=1

ni

=

( L
∑

l=1

n(l)
1

)

· · ·
( L
∑

l=1

n(l)
D–1

)

≥
L
∑

l=1

ñl.

Thus, the upper bound given by (24) improves (1). Theorem 3.3 also shows that the
upper bound on the nuclear norm can be improved by using the structural information.

Similarly, the following upper bound can also be obtained.
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Theorem 3.4 Let X ∈ R
n1×···×nD , and L be the maximum number of diagonal blocks that

the tensor X can attain under the multi-linear orthogonal transformations. Suppose that
the size of each diagonal block is n(l)

1 × · · · × n(l)
D , and

ñl =
∏D

i=2 n(l)
i

max{n(l)
2 · · ·n(l)

D } , 1 ≤ l ≤ L,

and

ñ = max
1≤l≤L

{ñl}.

Then it holds

‖X ‖∗ ≤ √
ñ‖X(1)‖∗. (26)

Proof Similar to the proof of Theorem 3.3, assume

X = D(X ) ×1 W(1) · · · ×D W(D),

where

D(X ) = D(1) ⊕ · · · ⊕D(L)

and W(d) ∈R
nd×nd (1 ≤ d ≤ D) are orthogonal matrices.

Then it holds

‖X ‖∗ =
∥
∥D(X )

∥
∥∗

=
L
∑

l=1

∥
∥D(l)∥∥∗

≤
L
∑

l=1

√

ñl
∥
∥D(l)

(1)
∥
∥∗

≤ √
ñ

L
∑

l=1

∥
∥D(l)

(1)
∥
∥∗

≤ √
ñ

L
∑

l=1

‖D(1)‖∗

=
√

ñ‖X(1)‖∗. �

Theorem 3.4 implies that the upper bound given by nuclear norms of the unfolding
matrices is more closely related to the structure. For the sake of clarity, we give a simple
example to illustrate.



Kong et al. Journal of Inequalities and Applications  (2018) 2018:282 Page 16 of 17

Example 3.3 Let A be defined in Example 3.2, and

B = A⊕A

=

⎡

⎢
⎢
⎢
⎣

0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

–1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0
0 0 0 0
0 0 0 1
0 0 1 0

∣
∣
∣
∣
∣
∣
∣
∣
∣

0 0 0 0
0 0 0 0
0 0 –1 0
0 0 0 1

⎤

⎥
⎥
⎥
⎦

.

Then, by Theorem 1.2, we get

‖B‖∗ ≤ √
4 ∗ 4‖B‖F = 8

√
2.

It follows from Theorem 3.4 that

‖B‖∗ ≤ √
2 ∗ 2‖B‖F = 4

√
2.

There has been a marked improvement in the upper bounds on the nuclear norm.

4 Conclusions
In this paper, we provide a new estimation method for the upper bounds on the nuclear
norms and obtain some new upper bounds related to the nuclear norms. Meanwhile, it is
found that the upper bounds on the nuclear norms are not only related to the dimensions
of the tensor but also to the structure of the tensor. Taking into consideration the structure
information of the tensor, the upper bounds on the nuclear norms can be improved.
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