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Abstract
In the current paper, we examine the (p,q)-analogue of Kantorovich type
Lupaş–Schurer operators with the help of (p,q)-Jackson integral. Then, we estimate
the rate of convergence for the constructed operators by using the modulus of
continuity in terms of a Lipschitz class function and by means of Peetre’s K-functionals
based on Korovkin theorem. Moreover, we illustrate the approximation of the
(p,q)-Lupaş–Schurer–Kantorovich operators to appointed functions by the help of
Matlab algorithm and then show the comparison of the convergence of these
operators with Lupaş–Schurer operators based on (p,q)-integers.
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1 Introduction
In 1962, Bernstein–Schurer operators were identified in the paper of Schurer [25]. In
1987, Lupaş [16] initiated the q-generalization of Bernstein operators in rational form.
Some other q-Bernstein polynomial was defined by Phillips [22] in 1997. The develop-
ment q-calculus applications established a precedent in the field of approximation theory.
We may refer to some of them as Durrmeyer variant of q-Bernstein–Schurer opera-
tors [2], q-Bernstein–Schurer–Kantorovich type operators [3], q-Durrmeyer operators
[8], q-Bernstein–Schurer–Durrmeyer type operators [12], q-Bernstein–Schurer opera-
tors [19], King’s type modified q-Bernstein–Kantorovich operators [20], q-Bernstein–
Schurer–Kantorovich operators [23]. Lately, Mursaleen et al. [17] pioneered the research
of (p, q)-analogue of Bernstein operators which is a generalization of q-Bernstein opera-
tors (Philips). The application of (p, q)-calculus has led to the discovery of various modi-
fications of Bernstein polynomials involving (p, q)-integers. For instance, Mursaleen et al.
[18] constructed (p, q)-analogue of Bernstein-Kantorovich operators in 2016, and Khalid
et al. [15] generalised q-Bernstein–Lupaş operators. In the (p, q)-calculus, parameter p
provides suppleness to the approximation. Some recent articles are [1, 4–6, 9, 10, 13], and
[21]. Motivated by the work of Khalid et al. [15], now we define a Kantorovich type Lupaş-
Schurer operators based on the (p, q)-calculus.

First of all, we introduce some important notations and definitions for the (p, q)-calculus,
which is a generalization of q-oscillator algebras. For 0 < q < p ≤ 1 and m ≥ 0, the (p, q)-
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number of m is denoted by [m]p,q and is defined by

[m]p,q := pm–1 + pm–2q + · · · + pqm–2 + qm–1 =

⎧
⎪⎪⎨

⎪⎪⎩

pm–qm

p–q if p �= q �= 1,
1–qm

1–q if p = 1,

m if p = q = 1.

The formula for the (p, q)-binomial expansion is defined by

(cx + dy)m
p,q :=

m∑

l=0

[
m
l

]

p,q

p
(m–l)(m–l–1)

2 q
l(l–1)

2 cm–ldlxm–lyl, (1)

where
[

m
l

]

p,q

=
[m]p,q!

[l]p,q![m – l]p,q!

are the (p, q)-binomial coefficients. From Eq. (1) we get

(x + y)m
p,q = (x + y)(px + qy)

(
p2x + q2y

) · · · (pm–1x + qm–1y
)

and

(1 – x)m
p,q = (1 – x)(p – qx)

(
p2 – q2x

) · · · (pm–1 – qm–1x
)
.

The (p, q)-Jackson integrals are defined by

∫ a

0
f (x) dp,qx = (q – p)a

∞∑

k=0

pk

qk+1 f
(

pk

qk+1 a
)

,
∣
∣
∣
∣
p
q

∣
∣
∣
∣ < 1

and

∫ a

0
f (x) dp,qx = (p – q)a

∞∑

k=0

qk

pk+1 F
(

qk

pk+1 a
)

,
∣
∣
∣
∣
q
p

∣
∣
∣
∣ < 1.

For detailed information about the theory of (p, q)-integers, we refer to [11] and [24].

2 Construction of the operator
Definition 1 For any 0 < q < p ≤ 1, we construct a (p, q)-analogue of Kantorovich type
Lupaş–Schurer operator by

K (p,q)
m,s (f ; x) = [m]p,q

m+s∑

l=0

Bp,q
m,l,s(x)

pm–lql

∫ [l+1]p,q
pl–m[m]p,q

[l]p,q
pl–m–1[m]p,q

f (t) dp,qt, x ∈ [0, 1], (2)

where m ∈N, f ∈ C[0, s + 1], s > 0 is a fixed natural number and

Bp,q
m,l,s(x) =

[ m+s
l

]

p,qp
(m+s–l)(m+s–l–1)

2 q
l(l–1)

2 xl(1 – x)m+s–l

∏m+s
j=1 {pj–1(1 – x) + qj–1x} . (3)
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After some calculations we obtain

K (p,q)
m,s (f ; x) =

m+s∑

l=0

Bp,q
m,l,s(x)

∫ 1

0
f
(

p[l]p,q + qlt
pl–m[m]p,q

)

dp,qt. (4)

In the following lemma, we present some equalities for the (p, q)-analogue of Lupaş–
Schurer–Kantorovich operators.

Lemma 1 Let K (p,q)
m,s (·; ·) be given by Eq. (4). Then we have

K (p,q)
m,s (1; x) = 1, (5)

K (p,q)
m,s (t; x) =

(
[m + s]p,q

[m]p,qps–1 –
pm

[2]p,q[m]p,q
+

qm+s

[2]p,q[m]p,qps

)

x +
pm

[2]p,q[m]p,q
, (6)

K (p,q)
m,s

(
t2; x

)
=

[m + s]p,q[m + s – 1]p,qq2p2–2s

[m]2
p,q(p(1 – x) + qx)

x2 +
[m + s]p,qpm–s+1

[m]2
p,q

x

+
2[m + s]p,qqp4m+2s–3(pm+s(1 – x) + qm+sx)

[2]p,q[m]2
p,q(p(1 – x) + qx)

x

+
p–2s(pm+s(1 – x) + qm+sx)(pm+s+1(1 – x) + qm+s+1x)

[3]p,q[m]2
p,q(p(1 – x) + qx)

, (7)

K (p,q)
m,s (t – x; x) =

(
[m + s]p,q

[m]p,qps–1 –
pm

[2]p,q[m]p,q
+

qm+s

[2]p,q[m]p,qps – 1
)

x +
pm

[2]p,q[m]p,q
, (8)

K (p,q)
m,s

(
(t – x)2; x

)
=

(
[m + s]p,q[m + s – 1]p,qq2p2–2s

[m]2
p,q(p(1 – x) + qx)

+
–2[2]p,q[m + s]p,qp1–s + 2pm – 2qm+sp–s

[2]p,q[m]p,q
+ 1

)

x2

+
(

[m + s]p,qpm–s+1

[m]2
p,q

+
2[m + s]p,qqp4m+2s–3(pm+s(1 – x) + qm+sx)

[2]p,q[m]2
p,q(p(1 – x) + qx)

–
2pm

[2]p,q[m]p,q

)

x

+
p–2s(pm+s(1 – x) + qm+sx)(pm+s+1(1 – x) + qm+s+1x)

[3]p,q[m]2
p,q(p(1 – x) + qx)

. (9)

Proof (i) From the definition of the operators in (4), we can easily prove the first claim as
follows:

K (p,q)
m,s (1; x) =

m+s∑

l=0

Bp,q
m,l,s(x)

∫ 1

0
dp,qt

=
m+s∑

l=0

[ m+s
l

]

p,qp
(m+s–l)(m+s–l–1)

2 q
l(l–1)

2 xl(1 – x)m+s–l

∏m+s
j=1 {pj–1(1 – x) + qj–1x}

= 1. (10)
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(ii) We can calculate the second identity for K (p,q)
m,s (t; x) as follows:

K (p,q)
m,s (t; x) =

m+s∑

l=0

Bp,q
m,l,s(x)

∫ 1

0

p[l]p,q + qlt
pl–m[m]p,q

dp,qt

=
m+s∑

l=0

Bp,q
m,l,s(x)

p[l]p,q

pl–m[m]p,q

∫ 1

0
dp,qt +

m+s∑

l=0

Bp,q
m,l,s(x)

ql

pl–m[m]p,q

∫ 1

0
t dp,qt.

After that, by some simple computations, we have

K (p,q)
m,s (t; x) =

m+s∑

l=0

Bp,q
m,l,s(x)

p[l]p,q

pl–m[m]p,q
+

m+s∑

l=0

Bp,q
m,l,s(x)

ql

pl–m[m]p,q[2]p,q

=
m+s∑

l=1

pm–l+1[m + s]p,q

[m]p,q
.

[ m+s–1
l–1

]

p,qp
(m+s–l)(m+s–l–1)

2 q
l(l–1)

2 xl(1 – x)m+s–l

∏m+s
j=1 {pj–1(1 – x) + qj–1x}

+
1

[m]p,q[2]p,qps

m+s∑

l=0

[ m+s
l

]

p,qp
(m+s–l)(m+s–l–1)

2 q
l(l–1)

2 ( qx
p(1–x) )l

∏m+s–1
j=0 {pj–1 + qj–1( qx

p(1–x) )}

=
[m + s]p,q

[m]p,qps

m+s–1∑

l=0

pm+s–l[ m+s–1
l

]

p,qp
(m+s–l–1)(m+s–l–2)

2 q
l(l+1)

2 xl+1(1 – x)m+s–l–1

∏m+s–1
j=1 {pj(1 – x) + qjx}

+
p(1 – x){pm+s–1 + qm+s–1( qx

p(1–x) )}
[m]p,q[2]p,qps

×
m+s∑

l=0

[ m+s
l

]

p,qp
(m+s–l)(m+s–l–1)

2 q
l(l–1)

2 ( qx
p(1–x) )l

∏m+s
j=1 {pj–1 + qj–1( qx

p(1–x) )}

=
[m + s]p,q

[m]p,qps–1 x +
p(1 – x){pm+s–1 + qm+s–1( qx

p(1–x) )}
[m]p,q[2]p,qps .

Then, K (p,q)
m,s (t; x) is obtained as

K (p,q)
m,s (t; x) =

(
[m + s]p,q

[m]p,qps–1 –
pm

[2]p,q[m]p,q
+

qm+s

[2]p,q[m]p,qps

)

x +
pm

[2]p,q[m]p,q
.

Thus, (6) is obtained.
(iii) For the third identity involving K (p,q)

m,s (t2; x), we write

K (p,q)
m,s

(
t2; x

)
=

m+s∑

l=0

Bp,q
m,l,s(x)

p2[l]2
p,q

p2l–2m[m]2
p,q

∫ 1

0
dp,qt + 2

m+s∑

l=0

Bp,q
m,l,s(x)

p[l]p,qql

p2l–2m[m]2
p,q

∫ 1

0
t dp,qt

+
m+s∑

l=0

Bp,q
m,l,s(x)

q2l

p2l–2m[m]2
p,q

∫ 1

0
t2 dp,qt
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=
m+s∑

l=0

Bp,q
m,l,s(x)

p2[l]2
p,q

p2l–2m[m]2
p,q

︸ ︷︷ ︸
B1

+
2

[2]p,q

m+s∑

l=0

Bp,q
m,l,s(x)

p[l]p,qql

p2l–2m[m]2
p,q

︸ ︷︷ ︸
B2

+
1

[3]p,q

m+s∑

l=0

Bp,q
m,l,s(x)

q2l

p2l–2m[m]2
p,q

︸ ︷︷ ︸
B3

. (11)

Firstly, we calculate B1 as

B1 =
m+s∑

l=0

Bp,q
m,l,s(x)

p2[l]2
p,q

p2l–2m[m]2
p,q

=
m+s–1∑

l=0

p2m–2l[l + 1]p,q[m + s]p,q

[m]2
p,q

.

[ m+s–1
l

]

p,qp
(m+s–l–1)(m+s–l–2)

2 q
l(l+1)

2 xl+1(1 – x)m+s–l–1

∏m+s
j=1 {pj–1(1 – x) + qj–1x} .

Now by using the equality

[l + 1]p,q = pl + q[l]p,q, (12)

we acquire

B1 =
[m + s]p,q

[m]2
p,q

m+s–1∑

l=0

p2m–l

[ m+s–1
l

]

p,qp
(m+s–l–1)(m+s–l–2)

2 q
l(l+1)

2 xl+1(1 – x)m+s–l–1

∏m+s
j=1 {pj–1(1 – x) + qj–1x}

+
[m + s]p,q

[m]2
p,q

m+s–1∑

l=0

p2m–2lq[l]p,q

[ m+s–1
l

]

p,qp
(m+s–l–1)(m+s–l–2)

2 q
l(l+1)

2 xl+1(1 – x)m+s–l–1

∏m+s
j=1 {pj–1(1 – x) + qj–1x}

=
[m + s]p,qp2mx
[m]2

p,qpm+s–1

m+s–1∑

l=0

[ m+s–1
l

]

p,qp
(m+s–l–1)(m+s–l–2)

2 q
l(l–1)

2 ( qx
p(1–x) )l(1 – x)m+s–1

1
pm+s–1

∏m+s–1
j=1 {pj(1 – x) + qjx}

+
[m + s]p,q[m + s – 1]p,qq2x2

[m]2
p,qp2s–2(p(1 – x) + qx)

m+s–2∑

l=0

[ m+s–2
l

]

p,qp
(m+s–l–2)(m+s–l–3)

2 q
l(l–1)

2 ( q2x
p2(1–x) )l

∏m+s–2
j=1 {pj–1 + qj–1( q2x

p2(1–x) )}

=
[m + s]p,qpm–s+1

[m]2
p,q

x +
[m + s]p,q[m + s – 1]p,qp2–2sq2

[m]2
p,q(p(1 – x) + qx)

x2. (13)

Secondly, we work out B2 as follows:

B2 =
2

[2]p,q

m+s∑

l=0

Bp,q
m,l,s(x)

p[l]p,qql

p2l–2m[m]2
p,q

=
2[m + s]p,q

[2]p,q[m]2
p,q

m+s∑

l=1

ql

p2l–2m–1 .

[ m+s–1
l–1

]

p,qp
(m+s–l)(m+s–l–1)

2 q
l(l–1)

2 xl(1 – x)m+s–l

∏m+s
j=1 {pj–1(1 – x) + qj–1x}

=
2[m + s]p,qx
[2]p,q[m]2

p,q

m+s–1∑

l=0

q
p–2m+1 .

[ m+s–1
l

]

p,qp
(m+s–l–1)(m+s–l–2)

2 q
l(l–1)

2 ( q2x
p2(1–x) )l(1 – x)m+s–1

∏m+s
j=2 {pj–1(1 – x) + qj–1x}
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=
2[m + s]p,qqp2m–1x

[2]p,q[m]2
p,q

m+s–1∑

l=0

[ m+s–1
l

]

p,qp
(m+s–l–1)(m+s–l–2)

2 q
l(l–1)

2 ( q2x
p2(1–x) )l(1 – x)m+s–1

∏m+s–2
j=0 {pj+1(1 – x) + qj+1x}

=
2[m + s]p,qqp4m+2s–3x

[2]p,q[m]2
p,q

m+s–1∑

l=0

[ m+s–1
l

]

p,qp
(m+s–l–1)(m+s–l–2)

2 q
l(l–1)

2 ( q2x
p2(1–x) )l

∏m+s–2
j=0 {pj–1 + qj–1( q2x

p2(1–x) )}

=
2[m + s]p,qqp4m+2s–3

[2]p,q[m]2
p,q

.
(pm+s(1 – x) + qm+sx)

p(1 – x + qx)
x. (14)

Thirdly, we deal with B3 as

B3 =
1

[3]p,q

m+s∑

l=0

Bp,q
m,l,s(x)

q2l

p2l–2m[m]2
p,q

=
p2m

[3]p,q[m]2
p,q

m+s∑

l=0

[ m+s
l

]

p,qp
(m+s–l)(m+s–l–1)

2 q
l(l–1)

2 ( q2x
p2(1–x) )l(1 – x)m+s

∏m+s–2
j=0 {pj+1(1 – x) + qj+1x}

=
p–2s

[3]p,q[m]2
p,q

.
(pm+s(1 – x) + qm+sx)(pm+s+1(1 – x) + qm+s+1x)

p(1 – x) + qx
. (15)

As a consequence, K (p,q)
m,s (t2; x) is found as

K (p,q)
m,s

(
t2; x

)
=

[m + s]p,qpm–s+1

[m]2
p,q

x +
[m + s]p,q[m + s – 1]p,qp2–2sq2

[m]2
p,q(p(1 – x) + qx)

x2

+
2[m + s]p,qqp4m+2s–3

[m]2
p,q[2]p,q

.
(pm+s(1 – x) + qm+sx)

p(1 – x + qx)
x

+
p–2s

[3]p,q[m]2
p,q

.
(pm+s(1 – x) + qm+sx)(pm+s+1(1 – x) + qm+s+1x)

p(1 – x) + qx
.

If we reorganize, we obtain

K (p,q)
m,s

(
t2; x

)
=

[m + s]p,q[m + s – 1]p,qq2p2–2s

[m]2
p,q(p(1 – x) + qx)

x2 +
[m + s]p,qpm–s+1

[m]2
p,q

x

+
2[m + s]p,qqp4m+2s–3(pm+s(1 – x) + qm+sx)

[2]p,q(p(1 – x) + qx)[m]2
p,q

x

+
p–2s(pm+s(1 – x) + qm+sx)(pm+s+1(1 – x) + qm+s+1x)

[3]p,q[m]2
p,q(p(1 – x) + qx)

, (16)

as desired.
(iv) By using the linearity of the operators K (p,q)

m,s , we acquire the first central moment
K (p,q)

m,s (t – x; x) as

K (p,q)
m,s (t – x; x) = K (p,q)

m,s (t; x) – xK (p,q)
m,s (1; x)

=
(

[m + s]p,q

[m]p,qps–1 –
pm

[2]p,q[m]p,q
+

qm+s

[2]p,q[m]p,qps – 1
)

x

+
pm

[2]p,q[m]p,q
. (17)
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(v) Similarly, we write the second central moment K (p,q)
m,s ((t – x)2; x) as

K (p,q)
m,s

(
(t – x)2; x

)
= K (p,q)

m,s
(
t2; x

)
– 2xK (p,q)

m,s (t; x) + x2K (p,q)
m,s (1; x). (18)

We now plug-in into equation (18) expressions (5), (6) and (7). Then we get

K (p,q)
m,s

(
(t – x)2; x

)
=

(
[m + s]p,q[m + s – 1]p,qq2p2–2s

[m]2
p,q(p(1 – x) + qx)

+
–2[2]p,q[m + s]p,qp1–s + 2pm – 2qm+sp–s

[2]p,q[m]p,q
+ 1

)

x2

+
(

[m + s]p,qpm–s+1

[m]2
p,q

+
2[m + s]p,qqp4m+2s–3(pm+s(1 – x) + qm+sx)

[2]p,q[m]2
p,q(p(1 – x) + qx)

–
2pm

[2]p,q[m]p,q

)

x

+
p–2s(pm+s(1 – x) + qm+sx)(pm+s+1(1 – x) + qm+s+1x)

[3]p,q(p(1 – x) + qx)[m]2
p,q

. (19)
�

We can easily see that K (p,q)
m,s (f ; x) are linear positive operators.

Remark 1 [15] Let p, q satisfy 0 < q < p ≤ 1 and limm→∞[m]p,q = 1
p–q . To obtain the con-

vergence results for operators K (p,q)
m,s (f ; x), we take sequences qm ∈ (0, 1), pm ∈ (qm, 1] such

that limm→∞ pm = 1, limm→∞ qm = 1, limm→∞ pm
m = 1 and limm→∞ qm

m = 1. Such sequences
can be constructed by taking pm = 1 – 1/m2 and qm = 1 – 1/2m2.

Now we will present the next theorem, which ensures the approximation process ac-
cording to Korovkin’s approximation theorem.

Theorem 1 Let K (p,q)
m,s (f ; x) satisfy the conditions pm → 1, qm → 1, pm

m → 1 and qm
m → 1

as m → ∞ for qm ∈ (0, 1), pm ∈ (qm, 1]. Then for every monotone increasing function f ∈
C[0, s + 1], operators K (p,q)

m,s (f ; x) converge uniformly to f .

Proof By the Korovkin theorem, it is sufficient to prove that

lim
m−→∞

∥
∥K (p,q)

m,s ek – ek
∥
∥ = 0, k = 0, 1, 2,

where ek(x) = xk , k = 0, 1, 2.
(i) By using Eq. (5), it can be clearly seen that

lim
m−→∞

∥
∥K (p,q)

m,s e0 – e0
∥
∥ = lim

m−→∞ sup
x∈[0,1]

∣
∣K (p,q)

m,s (1; x) – 1
∣
∣ = 0.

(ii) By Eq. (6), we write

lim
m−→∞

∥
∥K (p,q)

m,s e1 – e1
∥
∥

= lim
m−→∞ sup

x∈[0,1]

∣
∣K (p,q)

m,s (t; x) – x
∣
∣
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= lim
m−→∞ sup

x∈[0,1]

∣
∣
∣
∣

(
[m + s]p,q

ps–1[m]p,q
–

pm

[2]p,q[m]p,q
+

qm+s

[2]p,q[m]p,qps – 1
)

x +
pm

[2]p,q[m]p,q

∣
∣
∣
∣

≤ lim
m−→∞

(
[m + s]p,q

ps–1[m]p,q
– 1 +

qm+s

[2]p,q[m]p,qps

)

= 0.

(iii) From Eq. (7), we have

lim
m−→∞

∥
∥K (p,q)

m,s e2 – e2
∥
∥

= lim
m−→∞ sup

x∈[0,1]

∣
∣K (p,q)

m,s
(
t2; x

)
– x2∣∣

= lim
m−→∞ sup

x∈[0,1]

∣
∣
∣
∣

(
[m + s]p,q[m + s – 1]p,qq2p2–2s

[m]2
p,q(p(1 – x) + qx)

– 1
)

x2

+
[m + s]p,qpm–s+1

[m]2
p,q

x +
2[m + s]p,qqp4m+2s–3(pm+s(1 – x) + qm+sx)

[2]p,q[m]2
p,q(p(1 – x) + qx)

x

+
p–2s(pm+s(1 – x) + qm+sx)(pm+s+1(1 – x) + qm+s+1x)

[3]p,q[m]2
p,q(p(1 – x) + qx)

∣
∣
∣
∣

≤ lim
m−→∞

((
[m + s]p,q[m + s – 1]p,qq2p2–2s

[m]2
p,q(p(1 – x) + qx)

– 1
)

+
[m + s]p,qpm–s+1

[m]2
p,q

+
2[m + s]p,qqp4m+2s–3(pm+s(1 – x) + qm+sx)

[2]p,q[m]2
p,q(p(1 – x) + qx)

+
p–2s(pm+s(1 – x) + qm+sx)(pm+s+1(1 – x) + qm+s+1x)

[3]p,q[m]2
p,q(p(1 – x) + qx)

)

= 0.

Consequently, the proof is finished. �

Before mentioning local approximation properties, we will give two lemmas as follows.

Lemma 2 If f is a monotone increasing function, then the constructed operators K (p,q)
m,s (f ; x)

are linear and positive.

Lemma 3 Let 0 < q < p ≤ 1, 0 < u < v, and 1
u + 1

v = 1. Then the operators K (p,q)
m,s (f ; x) satisfy

the following Hölder inequality:

K (p,q)
m,s

(|fg|; x
) ≤ (

K (p,q)
m,s

(|f |u; x
)) 1

u
(
K (p,q)

m,s
(|g|v; x

)) 1
v .

3 Local approximation properties
Let f be a continuous function on C[0, s + 1]. The modulus of continuity of f is denoted
by w(f ,σ ) and given as

w(f ,σ ) = sup
|y–x|≤σ

x,y∈[0,1]

∣
∣f (y) – f (x)

∣
∣. (20)
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Then we know from the properties of modulus of continuity that for each σ > 0, we have

∣
∣f (y) – f (x)

∣
∣ ≤ w(f ,σ )

( |y – x|
σ

+ 1
)

, x, y ∈ [0, 1]. (21)

And also, for f ∈ C[0, s + 1] we have limσ→0+ w(f ,σ ) = 0. First of all, we begin by giving the
rate of convergence of the operators K (p,q)

m,s (f ; x) by using the modulus of continuity.

Theorem 2 Let the sequences p := (pm) and q := (qm), 0 < qm < pm ≤ 1, satisfy the condi-
tions pm → 1, qm → 1, pm

m → 1 and qm
m → 1 as m → ∞. Then for each f ∈ C[0, s + 1],

∥
∥K (p,q)

m,s f – f
∥
∥

C[0,s+1] ≤ 2ω
(
f ;σm(x)

)
,

where

σm(x) =
√

K (p,q)
m,s

(
(t – x)2; x

)
(22)

and K (p,q)
m,s ((t – x)2; x) is as given by (19).

Proof By the positivity and linearity of the operators K (p,q)
m,s (f ; x), we get

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣ =

∣
∣K (p,q)

m,s
(
f (t) – f (x); x

)∣
∣

≤ K (p,q)
m,s

(∣
∣f (t) – f (x)

∣
∣; q; x

)
.

After that we apply (21) and obtain

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣ ≤ K (p,q)

m,s

(

w(f ,σm)
( |t – x|

σm
+ 1

)

; x
)

=
w(f ,σm)

σm

√

K (p,q)
m,s

(
(t – x)2; x

)
+ w(f ,σm)

= w(f ,σm)
(

1 +
1
σm

√

K (p,q)
m,s

(
(t – x)2; x

)
)

. (23)

Then, taking supremum of the last equation, we have

∥
∥K (p,q)

m,s f – f
∥
∥ = sup

x∈[0,1]

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣

≤ w(f ,σm)
(

1 +
1
σm

√

K (p,q)
m,s

(
(t – x)2; x

)
)

.

Choose

σm(x) =
{(

q2[m + l]p,q[m + l – 1]p,q

([m]p,q + β)2(p(1 – x) + qx)
–

2[m + l]p,q

[m]p,q + β
+ 1

)

x2

+
(

–
2α

[m]p,q + β
+

[m + l]p,q(pm+l–1 + 2α)
([m]p,q + β)2

)

x +
(

α

[m]p,q + β

)2}1/2

.
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Thus, we achieve

∥
∥K (p,q)

m,s f – f
∥
∥

C[0,s+1] ≤ 2ω
(
f ;σm(x)

)
.

This result completes the proof of the theorem. �

In what follows, by using Lipschitz functions, we will give the rate of convergence of the
operators K (p,q)

m,s (f ; x). We remember that if the inequality

∣
∣f (y) – f (x)

∣
∣ ≤ M|y – x|α ; ∀x, y ∈ [0, 1] (24)

is satisfied, then f belongs to the class LipM(α).

Theorem 3 Denote p := (pm) and q := (qm) satisfying 0 < qm < pm ≤ 1. Then, for every
f ∈ LipM(α), we have

∥
∥K (p,q)

m,s f – f
∥
∥ ≤ Mσα

m(x),

where σm(x) is the same as in (22).

Proof Let f belong to the class LipM(α) for some 0 < α ≤ 1. Using the monotonicity of the
operators K (p,q)

m,s (f ; x) and (24), we obtain

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣ ≤ K (p,q)

m,s
(∣
∣f (t) – f (x)

∣
∣; x

)

≤ MK (p,q)
m,s

(|t – x|α ; x
)
.

Taking p = 2
α

, q = 2
2–α

and applying Hölder inequality yields

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣ ≤ M

{
K (p,q)

m,s
(
(t – x)2; x

)} α
2

≤ Mσα
m(x).

By choosing σm(x) as in Theorem 2, we complete the proof as desired. �

Finally, in the light of Peetre-K functionals, we obtain the rate of convergence of the
constructed operators K (p,q)

m,s (f ; x). We recall the properties of Peetre-K functionals, which
are defined as

K(f , δ) := inf
g∈C2[0,s+1]

{‖f – g‖C[0,s+1] + δ‖g‖C2[0,s+1]
}

.

Here C2[0, s + 1] defines the space of the functions f such that f , f ′, f ′′ ∈ C[0, s + 1]. The
norm in this space is given by

‖f ‖C2[0,s+1] =
∥
∥f ′′∥∥

C[0,s+1] +
∥
∥f ′∥∥

C[0,s+1] + ‖f ‖C[0,s+1].

Also we consider the second modulus of smoothness of f ∈ C[0, s + 1], namely

ω2(f , δ) := sup
0<h<δ

sup
x,x+h∈[0,s+1]

∣
∣f (x + 2h) – 2f (x + h) + f (x)

∣
∣, δ > 0.
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We know from [7] that for M > 0

K(f , δ) ≤ Mω2(f ,
√

σ ).

Before giving the main theorem, we present an auxiliary lemma, which will be used in the
proof of the theorem.

Lemma 4 For any f ∈ C[0, s + 1], we have

∣
∣K (p,q)

m,s (f ; x)
∣
∣ ≤ ‖f ‖. (25)

Proof

∣
∣K (p,q)

m,s (f ; x)
∣
∣ =

∣
∣
∣
∣
∣

m+s∑

l=0

Bp,q
m,l,s(x)

∫ 1

0
f
(

p[l]p,q + qlt
pl–m[m]p,q

)

dp,qt

∣
∣
∣
∣
∣

≤
m+s∑

l=0

Bp,q
m,l,s(x)

∣
∣
∣
∣

∫ 1

0
f
(

p[l]p,q + qlt
pl–m[m]p,q

)

dp,qt
∣
∣
∣
∣

≤
m+s∑

l=0

Bp,q
m,l,s(x)

∫ 1

0

∣
∣
∣
∣f

(
p[l]p,q + qlt
pl–m[m]p,q

)∣
∣
∣
∣dp,qt

≤ ‖f ‖K (p,q)
m,s (1; x)

= ‖f ‖. �

Theorem 4 Let 0 < qm < pm ≤ 1, m ∈ N and f ∈ C[0, s + 1]. There exists a constant M > 0
such that

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣ ≤ Mω2

(
f ,αm(x)

)
+ ω

(
f ,βm(x)

)
,

where

αm(x) =

√

K (p,q)
m,s

(
(t – x)2; x

)
+

1
2

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– x

)2

(26)

and

βm(x) =
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– x. (27)

Proof Define an auxiliary operator K∗
m,s as follows:

K∗
m,s(f ; x) = K (p,q)

m,s (f ; x) – f
(

([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

)

+ f (x). (28)

From Lemma 1, we have

K∗
m,s(1; x) = 1,
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K∗
m,s(t – x; x) = K (p,q)

m,s
(
(t – x); x

)
–

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– x

)

=
(

[m + s]p,q

ps–1[m]p,q
–

pm

[2]p,q[m]p,q
+

qm+s

[2]p,q[m]p,qps – 1
)

x + x

+
pm

[2]p,q[m]p,q
–

([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

= 0. (29)

Taylor’s expansion for a function g ∈ C2[0, s + 1] can be written as follows:

g(t) = g(x) + (t – x)g ′(x) +
∫ t

x
(t – u)g ′′(u) du, t ∈ [0, 1]. (30)

Then applying operator K∗
m,s to both sides of (30), we get

K∗
m,s(g; x) = K∗

m,s

(

g(x) + (t – x)g ′(x) +
∫ t

x
(t – u)g ′′(u) du

)

= g(x) + K∗
m,s

(
(t – x)g ′(x); x

)
+ K∗

m,s

(∫ t

x
(t – u)g ′′(u) du

)

.

So,

K∗
m,s(g; x) – g(x) = g ′(x)K∗

m,s
(
(t – x); x

)
+ K∗

m,s

(∫ t

x
(t – u)g ′′(u) du

)

.

Using (29) and (28), we obtain

K∗
m,s(g; x) – g(x)

= K∗
m,s

(∫ t

x
(t – u)g ′′(u) du

)

= K (p,q)
m,s

(∫ t

x
(t – u)g ′′(u) du

)

–
∫ ([2]p,q[m+s]p,qp1–s–pm+p–sqm+s)x+pm

[2]p,q[m]p,q

x

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

– u
)

g ′′(u) du

+
∫ x

x

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– u

)

g ′′(u) du. (31)

Moreover,

∣
∣
∣
∣

∫ t

x
(t – u)g ′′(u) du

∣
∣
∣
∣ ≤

∫ t

x
|t – u|∣∣g ′′(u)

∣
∣du ≤ ∥

∥g ′′∥∥
∫ t

x
|t – u|du ≤ (t – x)2∥∥g ′′∥∥ (32)
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and

∣
∣
∣
∣

∫ ([2]p,q[m+s]p,qp1–s–pm+p–sqm+s)x+pm
[2]p,q[m]p,q

x

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

– u
)

g ′′(u) du
∣
∣
∣
∣

≤ ∥
∥g ′′∥∥

∫ ([2]p,q[m+s]p,qp1–s–pm+p–sqm+s)x+pm
[2]p,q[m]p,q

x

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

– u
)

du

=
‖g ′′‖

2

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– x

)2

. (33)

Let us employ (32) and (33) when taking the absolute value of (31). We obtain

∣
∣K∗

m,s(g; x) – g(x)
∣
∣ ≤ ∥

∥g ′′∥∥K (p,q)
m,s

(
(t – x)2; x

)

+
‖g ′′‖

2

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– x

)2

=
∥
∥g ′′∥∥α2

m(x),

where

αm(x)

=

√

K (p,q)
m,s

(
(t – x)2; x

)
+

1
2

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– x

)2

. (34)

We now give an upper bound for the auxiliary operator K∗
m,l,p,q(f ; x). From Lemma 4 we

get

∣
∣K∗

m,s(f ; x)
∣
∣ =

∣
∣
∣
∣K

(p,q)
m,s (f ; x) – f

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

)

+ f (x)
∣
∣
∣
∣

≤ ∣
∣K (p,q)

m,s (f ; x)
∣
∣ +

∣
∣
∣
∣f

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

)∣
∣
∣
∣ +

∣
∣f (x)

∣
∣

≤ 3‖f ‖.

Accordingly,

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣

=
∣
∣
∣
∣K

∗
m,s(f ; x) – f (x) + f

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

)

– f (x)

∓ g(x) ∓ K∗
m,s(g; x)

∣
∣
∣
∣,
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∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣

≤ ∣
∣K∗

m,s(f – g; x) – (f – g)(x)
∣
∣ +

∣
∣K∗

m,s(g; x) – g(x)
∣
∣

+
∣
∣
∣
∣f

(
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q

)

– f (x)
∣
∣
∣
∣

≤ 4‖f – g‖ +
∥
∥g ′′∥∥α2

m(x) + ω
(
f ,βm(x)

)
( ( ([2]p,q[m+s]p,qp1–s–pm+p–sqm+s)x+pm

[2]p,q[m]p,q
– x)

βm(x)
+ 1

)

= 4‖f – g‖ +
∥
∥g ′′∥∥α2

m(x)

+ 2ω

(

f ,
(

([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– x

))

, (35)

where

βm(x) =
([2]p,q[m + s]p,qp1–s – pm + p–sqm+s)x + pm

[2]p,q[m]p,q
– x. (36)

Finally, for all g ∈ C2[0, s + 1], taking the infimum of (35), we get

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣ ≤ 4K

(
f ,α2

m(x)
)

+ ω
(
f ,βm(x)

)
. (37)

Consequently, using the property of Peetre-K functional, we obtain

∣
∣K (p,q)

m,s (f ; x) – f (x)
∣
∣ ≤ Mω2

(
f ,αm(x)

)
+ ω

(
f ,βm(x)

)
. (38)

This completes the proof. �

4 Graphical illustrations
In this section, we illustrate an approximation of the operators K (p,q)

m,s for a function f (x) by
employing Matlab codes. Let us specially choose

f (x) =
1

96
tan

(
x

16

)(
x
8

)2(

1 –
x
4

)3

,

and take p = 0.8, q = 0.7 and s = 5.

Algorithm 1
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Algorithm 2

Initially, we discuss the error estimates of the Kantorovich type Lupaş–Schurer opera-
tors based on (p, q)-integers for different values of x and m in Table 1 by using Algorithm 1.

And then, we illustrate the convergence of the (p, q)-Lupaş–Schurer–Kantorovich oper-
ators K (p,q)

m,s (f ; x) for the selected function f (x) = 1
96 tan( x

16 )( x
8 )2(1 – x

4 )3 in Fig. 1 for several
values of m by using Algorithm 2. Furthermore, we give the error estimates in Table 2
in order to indicate that the (p, q)-analogue Lupaş–Schurer operators [14] converge and

Table 1 Error estimates for different values of x when s = 5, p = 0.8 and q = 0.7

m Error at x = 0.1 Error at x = 0.5 Error at x = 0.9

5 0.1494 · 10–6 0.0583 · 10–6 0.0441 · 10–6
10 0.0326 · 10–6 0.3298 · 10–6 0.1599 · 10–6
15 0.0135 · 10–6 0.2398 · 10–6 0.0078 · 10–6

Figure 1 Convergence of (p,q)-analogue Lupaş–Schurer–Kantorovich operators K (p,q)m,s (f ; x) for various values
of p, 1 andm with fixed s = 5



Kanat and Sofyalıoğlu Journal of Inequalities and Applications  (2018) 2018:263 Page 16 of 17

Table 2 Error estimates of (p,q)-Lupaş–Schurer operators for various values of x

m Error at x = 0.1 Error at x = 0.5 Error at x = 0.9

5 0.0067 · 10–5 0.3011 · 10–5 0.4464 · 10–5
10 0.0073 · 10–5 0.3821 · 10–5 0.5743 · 10–5
15 0.0075 · 10–5 0.4077 · 10–5 0.6141 · 10–5

Figure 2 Convergence of the (p,q)-analogue Lupaş–Schurer operators Lp,qm,l(f ; x) with fixed l = 5 for various
values of p and q

then plot Fig. 2. It can be clearly seen that the (p, q)-Lupaş–Schurer–Kantorovich opera-
tors converge faster than the (p, q)-analogue Lupaş–Schurer operators.

5 Conclusion
In this paper, we constructed a new kind of Lupaş operators based on (p, q)-integers to
provide a better error estimation. Firstly, we investigated some local approximation re-
sults by the help of the well-known Korovkin theorem. Also, we calculated the rate of
convergence of the constructed operators employing the modulus of continuity, by using
Lipschitz functions and then with the help of Peetre’s K-functional. Additionally, we pre-
sented a table of error estimates of the (p, q)-Lupaş–Schurer–Kantorovich operators for a
certain function. Finally, we compared the convergence of the new operator to that of the
(p, q)-analogue of Lupaş–Schurer operator.
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13. Kanat, K., Sofyalıoğlu, M.: Some approximation results for Stancu type Lupaş–Schurer operators based on
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