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1 Introduction
Renewal processes are important counting processes and are used in various fields. In this
paper, we investigate a nonstandard renewal counting process with nonindependent inter-
arrival times 71, T5,.... The motivation of this paper comes from web Markov skeleton
processes (WMSPs for short).

Intuitively, a WMSP is a jump process and also a Markov skeleton process such that,
for the given information of its skeleton, the time slots between jumps are conditionally
independent of each other. The dynamics of a WMSP can be described as follows:

T T %,
Xo—> X1 —> - Xp —> -, (1.1)

where {X,,,n > 0} is a Markov chain with state space E, and {T},,n > 0} is the set of time
slots between adjacent jumps (see Liu et al. [21] and Ma et al. [22] for details).

WMSPs were found very useful in various natural and social sciences, such as finance,
queueing theory, insurance and other related fields. For instance, we consider its appli-
cations in insurance. Let E be a collection of insurance policies, X = {X,;,n > 0} describe
the transition behaviors of claims between policies, which forms a Markov chain with state
spaceE, {Y,,n > 1}and T = {T,, n > 1} represent claims sequence and inter-arrive times of
claims, respectively. The inter-arrive time between two claims is a random variable which
may depend on the information of the current policy or claim and some other related
policies or claims. For example, in the automobile insurance and the property insurance,
the previous year’s claim times and claim sizes are important factors which influence the

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, pro-

L]
@ Sprlnger vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and

indicate if changes were made.


https://doi.org/10.1186/s13660-018-1854-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1854-0&domain=pdf
mailto:xcbi@ustc.edu.cn

Li et al. Journal of Inequalities and Applications (2018) 2018:260 Page 2 of 15

insurance purchasing, especially the premium for the next year, in other words, the dis-
tribution of the waiting time for the next large claim depends on the times and sizes of
recent claims (claims during the current year for instance). Let o (Y) = 0 (Y}, n > 1) be the
sigma algebra generated by {Y,,, n > 1}, then the following structure:

Pr(T,, > t|o(Y)) =Pr(T>t|Y,x>%,....,Y,>x), 1<k<n, (1.2)

is a practical dependent structure, and the aggregate amount of claims,

N¢
Se=» Y, t=0, (1.3)
i=1

forms a nonstandard renewal risk process, we called a web renewal risk process, which is
an inevitable factor when measuring the risk, pricing the premium or other related behav-
iors for an insurance company, where

Ny=sup{n>1:T1+---+T,<t}, (1.4)
n

is the renewal counting process, we called a web renewal process.

Suppose that A(t) = EN; — oo as t — oo. If the inter-arrival times T3, T5,... form a
sequence of independent identically distributed (i.i.d.) random variables, then (1.4) is the
standard renewal process which is an important counting process in many applications,
such as renewal risk model in risk theory. Some important limit properties of the standard
renewal process, such as convergence and the limit distribution, have been extensively
investigated in much literature (see Ross [24], Kaas and Tang [10], Ng et al. [23], Tang and
Tsitsiashvili [28], among many others). But there are few results for the corresponding web
renewal process. These are what we are going to study.

The rest of the paper is organized as follows. Section 2 gives the main results for N; and
the proofs after some preliminaries. Section 3 presents some applications in insurance and
derives the results of precise large deviations and moderate deviations for the web renewal
risk process S;. Section 4 concludes this paper. Some proofs are provided in the appendix.

2 Main results and discussions
In this section we will give several limit properties of the counting process N;.

A sequence T),,n > 1 of random variables is M-dependent, where M is a positive integer,
if 1, Ty, ..., T; is independent of T}, Tj,1,... for |j—i| > M. Now we are in a position to state
our main results.

Theorem 2.1 For the web renewal counting process Ny, t > 0, if Ty, n > 1 is a k-dependent
sequence of identically distributed nonnegative random variables with common mean
1/x € (0, 00) and finite variance. Then

N,
7‘ —> A as. (2.1)

and

E[N:]

— A (22)
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In fact, it is not difficult to derive (2.1) and (2.2) from Theorems 4 and 7 in Korchevsky
and Petrov [13], and Ross [24]. We omit it here.

Remark 2.1 The constraint on Ty, n > 1, M-dependent, is for tractability, and is also nat-
ural. Consider the dependent structure (1.2), if Y,,,n > 1, is an i.i.d. or weakly dependent
sequence, then it is easy to ensure that T,,,n > 1, is a sequence of k-dependence under
some conditions.

The following condition is crucial for a counting process in most applications.

Assumption 2.1 For every real number a > 1/E[T], there exists a constant b > 1, such that

tlim b"Pr(N; > n)=0. (2.3)
n>at

Kocetova et al. [12] proved that Assumption 2.1 is satisfied for the standard renewal

counting process.

Proposition 2.1 (Kocetova et al. [12]) Let the renewal counting process N, be defined in
(1.4) with a sequence T, T1, Ts, ... of i.i.d. nonnegative rv.s. Then:

(i) if ET =1/X < 00, then N satisfies Assumption 2.1;

(i) if ET = oo, then, for every a > 0, there exists b > 1 such that Eq. (2.3) holds.

They also considered the applications of their result in insurance mathematics.
In the case of the standard renewal counting process with the finite mean ET = 1/A < 0o,

Assumption 2.1 is equivalent to the following assumption.

Assumption 2.2 (Leipus and Siaulys [14]) For every 8 > 0, there exists € > 0 such that

tl_l)rgo Z (1+€)"Pr(N; =n)=0.
n>(1+8)At

Assumption 2.2 is one of the crucial requirements for the counting process N; in the
paper of Leipus and Siaulys [14]. Furthermore, in this case, Assumption 2.2 implies the
following assumption mentioned by Kliippelberg and Mikosch [11].

Assumption 2.3 (Kliippelberg and Mikosch [11]) There exist positive € and § such that

E((1+ )N Linpsespion) = Z (1+€)"Pr(N; =n) — 0,
n>(1+8)A(¢)

ast— oo.

Assumption 2.3 is an essential condition in their paper.

The importance of the above-mentioned statements can also be found in Kaas and Tang
[10], Ng et al. [23], Tang and Tsitsiashvili [28], Wang and Wang [29], Shen et al. [25] and
others therein.

Fu and Shen [6] proved the following key lemma when they considered moderate devi-
ations for sums of claims in a size-dependent renewal risk model.
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Lemma 2.1 (Fu and Shen [6]) Let N; be the standard renewal process, T, =y -, T,n>1
be the arrival times. Then, for any § > 0 and some ¢ > 0

lim Pr(t, <t)=0, (2.4)
t—00
n>At+8b(t)
where 1/ is the common mean of inter-arrival times and b(t) is a positive function satis-

fying b(¢)/t — 0 as t — oo.

It can be seen that the property of Assumption 2.1 is very important. We will prove that
Egs. (2.3) and (2.4) also hold for the web renewal counting process.

Theorem 2.2 Let T,,n > 1, be a sequence of identically distributed nonnegative random
variables with common mean ET € (0, 00] such that T,,,n > 1 is k-dependent for any posi-
tive integer k > 1. Then
(i) ifET =1/ < 00, then
(i-1)

Jim th Pr(N, > n) =0 (2.5)

holds for every a > (k + 1)\ and some b > 1;
(i-2)

lim "Pr(N;>n)=0 (2.6)

t—00
n>it+8b(t)

holds for any § > 0, some ¢ > 0 and a positive function b(t) satisfying b(t)/t — O
ast— o0.
(i) ifET = oo, then
(ii-1) (2.5) holds for every a > 0 and some b > 1;
(ii-2) (2.6) holds under the same condition.

Theorem 2.2 is an extension to the Lemma 3.3 in Bi and Zhang [2], which is a key lemma
in the proof of their main results.

Proof We next give the proof of Theorem 2.2.
(i) For ET = 1/X < oo, we have Pr(T < t) < &”’E[e?T] for any ¢ > 0,y > 0. Let m(y) =
Ee?T €(0,1), we derive

Pap(t): = Zhn Pr(z, <t) < Zb" Pr< Z T1iren)i < t)

n>at n>at 1<1+(k+1)i<n
e

<" Zb”(m(y))% = W Z(bk+lm()’)) B

n>at

for all real a > (k + 1)A,b > 1, and ¢ > 0. b**'m(y) < 1 for b**! € [1, %0(1 + mi(y))], hence we
find that, for such b

k+1
Qap(t) < ! ! exp{yt(l + alnb + alnm(y))}' (2.7)
(m(y))Y D) 1 — bk+Lm(y) (k+1)y (k+1)y
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Taking the inequality |e™ — 1| < v,v > 0, and the Lebesgue dominated convergence theo-

rem into consideration, we get

1 In(1 -1 -1
lim 70, A emG) =) (mG) =)
y—0+ _y y—0+ _y y—0+ y

y—0+

o e 1
= f lim dPr(T <u)=-ET =——. (2.8)
0 v A

Hence, there exists y* > 0, for which

alnm(y*) <_(k+ 1) ~ i.
Yy 2 21

For such y*, ¢ > 0, and b**! € (1, ;5 (1 + #)], we get

o) < 1 1 . - alnb*' a—(k+1)A

X - .
ot = Gnl )& 1= gty PV v 1y~ 20+ DA
There also exists b = Za(az, y*) such that

alnb*!  a—(k+ 1)
< )
y* 4k + 1)

Hence, for some special positive constant y* and ¢ > 0, we have

o ()< 10 { a—(k+1)A
b TR

1
- “t 0, ¢ .
= Gl T o) PP ak s }_) o

We obtain (2.5). Equation (2.6) can be proved similarly.
(ii) Let ET = co. From estimate (2.7) it follows, for all positive ¢,4 and all 5**! € [1, % 1+
mi(y))], that

k+
Qap(t) < ! 10 exp{yt(l + alnb™ + alnm(y)) } (2.9)
(m(y))Y 1) 1 — bk+Lim(y) (k+1)y  (k+1)y

The r.v. min {7, r} has finite mean for every real positive number r. According to (2.8),

we can get
— Inm — InEeymin{T.r}
im ) < lim ————— = -Emin{T,r}.
y—=0+ Yy y—0+ y
Hence
In
lim m) = —00,
y—0+ y

and there exists a positive y* = y*(a) such that, for 0 < y < y*, we have

alnm(y) <-3(k + 1)y.
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Estimate (2.9) implies that

o < 1 10 - aln bkl ) (2.10)
$abt®) = )0 1= peim(y) e"p{y <(k+1>y*‘ )} ‘

fora>0,1<b< %(1 + ),t > 0, and some positive constant y* = y*(a). Now after a

9
*
suitable choice of b = b = b(a, y*), the first statement follows from the last estimate. The
second statement can be obtained through the similar method. O

Remark 2.2 In fact, the above proof implies that Theorem 1(i) in Kocetova et al. [12] and
Lemma 3.3 in Bi and Zhang [2] are direct corollaries of Theorem 2.2.

3 Applications in insurance

In this section, we consider some applications of the main results in insurance. We inves-
tigate the precise large deviations and moderate deviations formulas for the web renewal
risk process (1.3), where the claims {Y},,n > 1} are identically distributed and nonnega-
tive random variables (r.v.s) with the common distribution function (d.f.) F(x) = Pr(Y <x)
and the finite mean EY = u, and the inter-arrival times 7,,# > 1 depended on {Y,,n > 1}
through dependent structure (1.2)

We restrict our interest to the case of heavy-tailed distribution. A nonnegative r.v. ¥’
or its distribution function F(x) on [0, 00) is said to be heavy-tailed, if its moment gener-
ating function satisfies E[e‘Y] = oo for all s > 0. One of the useful classes of heavy-tailed
distributions is the class C of consistent variation distributions. By definition of class C, a
distribution F on [0, 00) is said to be a consistent variation if F(x) > 0, for all x > 0, and the
relation

F(xy)

limlim sup — =
ML x—o00 F(x)

holds.

Following Tang and Tsitsiashvili [28], we recall the useful functional index J;, which is
the upper Matuszewska index of F. Let F be a distribution function on (—00, +00) and set
f= 1/F. Let J} be the infimum of those J for which there exists a constant C = C(J) such
that, for each y, > 1, the relation

fo)
T = C(1+0(1)y

holds uniformly in y € [1,y0]. The quantity J; defines the upper Matuszewska index of the
function f, and by Theorem 2.1.5 and Corollary 2.1.6 in Bingham et al. [3], it coincides
with

F(xy)

cy>1 with F,(y) = liminf ——=.
y1) )= timinr

logF
Jr = inf{—gg <0)

logy
From Proposition 2.2.1 in Bingham et al. [3], we see that, for every p > J{, there are two
positive constants C and x( such that

;(52) <Oy, forxy>x=> x. (3.1)
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Then one can easily derive the relation

holds for all p > J};. See also Lemma 3.5 in Tang and Tsitsiashvili [28].
For convenience, we introduce the following notations throughout this paper.

« For two positive functions f(x) and g(x), we write

G ~gle) i lim % -1,
flx) <glx) if lim sup'@ <1
xoo gX)

« For two positive bivariate functions f(-,-) and g(-, -), we say that f(x, t) < g(x, t), as
t — 00, holds uniformly in x € A, # 9, if

, L
lim sup sup AGL)

<1.
t—>00 xeA; g(x1 t)

« For a distribution function F(x) with finite mean u > 0, set F(x) = 1 — F() as the

corresponding survival function of it.

3.1 Precise large deviations

The precise large deviation of random sums has been extensively investigated in much

literature since it was initiated by Kliippelberg and Mikosch [11], for example, Kaas and
Tang [10], Tang [27], Lin [17], Baltrnas et al. [1], Chen and Zhang [5], Liu [18], Li et al.
[15], Chen and Yuen [4], Bi and Zhang [2], Shen et al. [25], Yang and Sha [30], Guo et al.

[8], Hua et al. [9] and Liu et al. [20], among many others.
In order to formulate the precise large deviations results that, for any given § > 0,

Pr(S; — uit > x) ~ AtF(x), t— oo,

holds uniformly for all x > §¢, i.e.,

. Pr(S; — uAt > x)
limsup | ————— = - 1| =0,
t—oox>48t AtF(x)

one needs some constraint conditions on the dependent structure for our model.

Assumption 3.1 For n > 1, T,, was dependent on Y, 4,...,Y,_1,Y,, and independent of
Y1,Y2,..., Yy_k-1, Yui1, ... such that the sequence T),,n > 1 is k-dependent, k > 1. There is
anrv. T* > 0 s.t. T,, conditional on (Y, > %,..., Y, > x) is stochastically bounded by T*

for all x > 0 large enough, i.e. there is a constant x; > 0 such that
Pr(T, >t Yyt >%,...., Y, >x) < Pr(T* > t), 1<k<n,

for all x > xy and ¢ > 0.
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Then we have the following result for the web renewal risk process.

Theorem 3.1 Counsider the web renewal risk process (1.3) with i.i.d. claims. In addition to
Assumption 3.1, suppose that F € C,E[T] = 1/1 € (0,00) and Var[T] < co. Then, for any
given § > 0, (3.3) holds uniformly for all x > 5t.

If we select k = 1 in Assumption 3.1, then we get the result of Theorem 2.1 in Bi and
Zhang [2]. We restate it as a corollary of Theorem 3.1.

Corollary 3.1 (Bi and Zhang [2]) Consider the aggregate amount of claims (1.3) with i.i.d.
claims sequence. In addition to Assumption 3.2, suppose that F € C,E[T] = 1/ € (0, 00)
and Var|T] < co. Then, for any given § > 0, (3.3) holds uniformly for all x > §¢.

Assumption 3.2 (Bi and Zhang [2]) (3.4) holds when k = 1 in Assumption 3.1.

The proof of Theorem 3.1 is similar to that of Corollary 3.1. We omit it here. Pay atten-
tion that Theorem 2.2 is one of the key conditions for the proof and Theorem 3.1 really
extends Corollary 3.1.

Remark 3.1 For the mutually independent claims {Y},n > 1}, it is easy to construct an
example that T, n > 1 is k-dependent under the Assumption 3.1. But if {Y},, n > 1} are not
mutually independent, it is hard to construct such sequence of k-dependence only under
the Assumption 3.1.

Note that extended negatively dependence is a kind of weakly dependent structure and
covers a wide range of dependence structures (see Liu [19] for more details). A sequence
of random variables {Xj; k € N} is said to be extended negatively dependent (END) if for

each n and all x,,...,x,, there exists a constant M > 0, independent of #, such that

n
P(Xy <100, Xn < %) <M [ PO < 20) (35)
k=1
and
n
PXy > %1, X > 20) < M [ PG> x0). (3.6)
k=1

Ifboth (3.5) and (3.6) hold with M = 1, then the random variables are negatively dependent
(ND); if both (3.5) and (3.6) hold in the reverse direction with M = 1, then the random
variables are positively dependent (PD).

If the risks form an extended negative dependent (END) sequence, we need additional
conditions to obtain the results of precise large deviations, which will be considered in the
next subsection.

3.2 Moderate deviations
Moderate deviations extend precise large deviations through extend x-region. Note that
the x-region in Theorem 3.1 is taken as [§¢, 00). It is natural to ask whether (3.3) can still
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hold for x € [y b(¢), 00) with b(t)/t — 0 as t — oo, and if it can, what conditions are ap-
propriate. Similar problems were partly studied by Shen and Zhang [26] for a risk model
based on the customer-arrival process, by Gao [7] and Liu [19] for the standard renewal
risk model with independent and dependent claims, respectively and by Fu and Shen [6]
for the sums of consistently varying tailed claims in a size-dependent renewal risk model.

Taking Theorem 2.2 into consideration, we obtain the following result for the web re-

newal risk process proposed above.

Theorem 3.2 Consider the web renewal risk process (1.3) with END claims. In addition
to Assumption 3.2 with ET* < 0o, suppose that F € C, ET = 1/ < 0o, E|Y|# < oo for some
B >a>1and Var[T] < oco. If

N — At

P
) ) .7
0 —0, t—> o0 (3.7)

then, for any given y > 0, the result
Pr(S; — At > x) ~ AMFE(x), t— 00, (3.8)

holds uniformly for all x > y b(t), where b(t) = a(\t), and a(t) is a positive function satisfying
the conditions in Remark 3.2.

Proof See the Appendix. d

Remark 3.2 Throughout, we suppose that a(¢), £ > 0 is a positive function satisfying the
following conditions:

+ a(t) < Ct for ¢t large enough and a positive constant C;
alt) _ 1.
a(fe)) —

o lims oo "g‘;g)’;’“ =0,1<a <min{2,J;},

where J} is the upper Matuszewska index of a distribution F on [0, c0) (Tang and Tsitsi-
ashvili [28] and Bingham et al. [3]).

¢ hmt—>oo

Taking a(n) = n'/%(log n)?, then a(n) satisfies the conditions in Remark 3.2 and b(¢)/t — 0
ast— oo.

Theorem 3.2 is an extension to Theorem 2.1 in Fu and Shen [6]. Furthermore, we have

Theorem 3.3 Counsider the renewal risk process (1.3) with END risk sequence. In addition
to Assumption 3.1 with ET* < 0o, suppose that F € C, ET = 1/ < o0, E|Y|? < 0o for some
B >a > 1 and Var[T] < oco. If (3.7) holds, then, for any given y > 0, (3.8) holds uniformly
for all x > yb(t), where b(t) = a(At) is a positive function satisfying the conditions in Theo-
rem 3.2.

Then we get the following result for precise large deviations.

Corollary 3.2 Consider the renewal risk process (1.3) with END risk sequence. In addition
to Assumption 3.1 with ET* < 0o, suppose that F € C, ET = 1/ < 0o, E|Y|? < 0o for some
B > 1 and Var[T] < oc. then, for any given y > 0, (3.8) holds uniformly for all x > yt.
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The proof of Theorem 3.3 is similar to that of Theorem 3.2.

Remark 3.3 For the END claims {Y},,# > 1}, in addition to Assumption 3.1, one needs

additional conditions to ensure the sequence {7, n > 1} to be k-dependent.

4 Conclusions
Motivated by Ma et al. [22], this paper investigates a nonstandard renewal counting pro-
cess with k-dependent inter-arrival times, and obtains some important limit properties.
We obtained the tail of the exponential moment of the counting process, which is crucial
in many situations. We considered the applications of the main results in risk theory, and
derived the formulas of precise large deviations and moderate deviations of the web re-
newal risk process. These results allow applications in various natural and social sciences.
Many topics based on the web renewal risk process shall be investigated. For example,
Li et al. [16] studied a stochastic interest model based on compound Poisson process, and
it is of interest to study the problem based on the web renewal risk process.

5 Methods/experimental
Not applicable.

Appendix A
First we will give some lemmas needed for proving Theorem 3.2.

Lemma A.1 Let {Y,,n >0} be an END sequence with a common distribution function F €
C and finite mean jv. If there exists some B > o > 1 such that E|Y, | < oo, then, for any y >0,
we have uniformly for x > y a(n)

Pr(S, — np >x) ~ nF(x), asmn— oo,
where S, is the partial sum of { Yy, k > 0}.

Lemma A.1 is the moderate deviations for partial sums of END random variables, and
one can see Theorem 2.1 of Liu [19] for more details.

Lemma A.2 Let {Y,,n > 1} be an END sequence with common d.f. F and upper Ma-
tuszewska index J} < 0o, and T, be dependent on Y, | and Y, and independent of
Y1,Y2, ..., Yu-2, Yus1,.... Then, for every p > i, there is some constant C > 0 such that, uni-
formly for all x > 0,t > 0 and n > 2,

n
Pr(Z Yi>x, 1, < t) < CrP*'F(x) Pr(t,_p < t). (A1)
k=1
Proof From the nonnegativity of T and the independence between T, and Y3,...,Y, 2,
Y,i1,..., we can get

Pr(Xn:Yk>x,7:n §t> SXH:Pr<Yk> 2 Z T, st)

k=1 k=1 i=1ik,ik+1
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- nPr(Y > ;—C> Pr(t, 5 < ). (A.2)

Inequality (3.1) implies that, for any fixed p > J}}, there are some large positive constants C;
and x such that the inequality Pr(Y > x/n) < C;#”F(x) holds for all x > nxy. This, together
with (3.2), gives

» _ _
Pr(Y > f) < (n;c;)) + CinPF(x) < Cn’F(x), C>C;. (A.3)
n
Substituting (A.3) into (A.2) yields the desired inequality (A.1). O

Based on Assumption 3.2, we construct a special generalized double-delayed renewal
counting process. Set

n
rj:T{‘+T;‘+ZTk, n>1,
k=3

where the nonnegative random variables T and T3, which are stochastically bounded by
the above-mentioned r.v. T*, are independent of all sources of randomness and have the
same distributions as T'. We note that T} and T are not necessarily independent. Define

the counting process
N; :sup{n:t,;k ft}, t>0. (A.4)
The following lemma establishes the law of large numbers for {N}, ¢ > 0}.

Lemma A.3 We assume that T, n > 1 are 1-dependent and identically distributed with
mean ) < 0o and finite variation. We suppose that T, is stochastically bounded by the
random variable T*, Var[T*] € (0,00). If (3.7) holds, then, for every function c(¢) : [0, 00) —
[0, 00) with c(t) — o0 as t — oo, the result

N:_M—P>0 t— oo
b(t) i ’

holds uniformly for all x > c(¢t), i.e., forany 0 < € < A,

N;‘—At _0 (A.5)
b(0) ‘”)‘ ‘ '

lim sup Pr<

t—00 x>c(t)

Proof Observe that, for all sufficiently large ¢,

o (| NE =2
I'< b(t) ’>E>

=Pr(N; < At — eb(t) + Pr(N; > At + €b(2)

[At—eb(t)] [At+eb(t)]
§Pr(2T*+ Tk>t)+Pr< kat).

k=3 k=3
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By the Markov law of large numbers for the partial sums ) ;_; T, both probabilities on
the right-hand side above converge to zero as t — co. Thus, Eq. (A.5) holds. O

Now, it is ready to prove Theorem 3.2. We first prove
Pr(S; — At > x) > AtF(x) (A.6)
and
Pr(S, — uit > x) < AtF(x) (A.7)

separately. The proofs of these two relations will complete the proof of Theorem 3.2.
Throughout this section, unless otherwise stated, every limit relation is understood as
valid uniformly for all x > y b(t) as t — oo.

A.1 Proof of (A.6)
Fixing € € (0,1) and v > 1, we can derive

Pr(S; — uhrt > x)

At+eb(t) n
> Z Pr(S,,—u)\t>x,Nt:n,\/Yk>vx)
)

n=rt—eb(t i=1

At+eb(t) n

Z ZPr(Sn,,- —uAt>(1-v)x,N;=n,Y; > vx)

n=it—eb(t) i=1

v

At+eb(t)

Z Z Pr(N; =n,Y; > vx,Y; > vx)

n=At—eb(t) 1<i<j<n

1L (x, 8) — I(x, 2),

where S,,; =S, - Y;
We deal with I; and I, separately. Firstly, according to Liu [19], for some positive € small

enough so that (1 -v)y +eu<0,0<p<1,
Pr(S,,,i —urt<(1-v)xY;> vx) < o(l_f(x))

holds uniformly for all x > ya(n) and large n. Then we have

At+eb(t) n
L(x,t) = Z ZPr(S,,J —purt> (1 -v)x,N;=n|Y; > vx) Pr(Y; > vx)
n=Art—eb(t) i=1

At+eb(t n
> Z ZPr wi— MAE> (1 —v)x|Y>vx)
n=rt—eb(t)

—Pr(N; # n|Y; > vx)) Pr(Y; > vx)

z(u—eb(t))<F(ux)—o(F(x) ( NF -2t

> e)l_-"(vx)),
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where N} is a generalized double-delayed renewal counting process constructed as in
(A.4). Hence Lemma A.3 and F € C imply

Lixt
liminf inf 2099

t—00 x>yb(t) \tF(x)

— — N*—it —
At —eb(t) F(vx) — o(F(x)) — Pr(| === | > €)F(vx)
> limlim liminf _inf €b®) 0
£l0 V)1 t—>00 x>yb(t) At F(x)
=1. (A.8)

As for I (%, t), by virtue of the END property and Remark 3.2, it is easy to get

I
limsup sup 2 0. (A9)
t—>o0 x>yb(t) AMF(x)

Equation (A.9), together with (A.8), ensures that (A.6) holds.

A.2 Proof of (A.7)
We now consider the case Pr(S, — uit > x) < AtF(x). We can rewrite

Pr(S; —purt>x)=J1 + /5 (A.10)

using

N
Ji(x, t) = Pr(Z Yi— urt>x, Ny < At + eb(t)),

k=1

N
Jo(x,t) = Pr(Z Y — uht>x, Ny > At + eb(t)).

k=1

By Lemma A.1, we get

Ji(x, t) §Pr< Z Yk—ukt>x> < (At+eb(t))f(x(1—e/y)). (A.11)

1<k<it+eb(t)

By Lemma A.2 and Theorem 2.2, we have

R t)= Y Pr(S,—prt>xN, =n) < o(AtF(x)). (A.12)

n>(1+e)At

Substituting (A.11) and (A.12) into (A.10) yields
Pr(S; — pit > x) S (At + €b(0))F (x(1 - €/y)) + o(AtF()).

By the arbitrariness of € and the condition F € C, we obtain (A.7).
The proofs of (A.6) and (A.7) complete the proof of Theorem 3.2.
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