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Abstract
For the extended linear complementarity problem (ELCP), by virtue of a new residual
function, we establish a new type of global error bound under weaker conditions.
Based on this, we respectively obtain new global error bounds for the vertical linear
complementarity problem and the mixed linear complementarity problem. The
obtained results presented in this paper supplement some recent corresponding
results in the sense that they can provide some error bounds for a more general ELCP.
Their feasibility is verified by some numerical experiments.
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1 Introduction
Consider the extended linear complementarity problem (ELCP) of finding vector (x, y) ∈
Rn × Rn such that

Mx – Ny ∈K, x ≥ 0, y ≥ 0, x�y = 0,

where M, N ∈ Rm×n and K = {Qz + q|z ∈ Rl} with Q ∈ Rm×l , q ∈ Rm. The solution set of the
ELCP is denoted by X∗ which is assumed to be nonempty throughout this paper.

The ELCP finds applications in various domains, such as engineering, economics, fi-
nance, and robust optimizations [1, 2]. It was first considered by Mangasarian and Pang
[1] and was further considered by Gowda [3] and Xiu et al. [4]. For more details on its
development, see [5] and the references therein. It is well known that the global error
bound plays an important role in theoretical analysis and numerical treatment of opti-
mization problems such as variational inequalities and nonlinear complementarity prob-
lems [5–14]. The global error bound for the classical linear complementarity problems is
well studied (see, e.g.,[6, 15–19]). For a class of generalized linear complementarity prob-
lems, the global error bound was fully analyzed in [20–22]. Zhang and Xiu [4] presented
an error bound for the ELCP with the column monotonicity and for the R0-ELCP. In this
paper, we give a further consideration on this issue by establishing a global error bound
estimation for the ELCP under a milder condition motivated by the work in [4].
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2 Results and discussion
Here we are concerned with the global error bound on the distance between a given point
in R2n and the solution set of the ELCP in terms of some residual functions. This paper
is a follow-up to [4], as in this paper we establish a new global error bound for the ELCP
under weaker conditions than those used in [4].

Some error bounds for the ELCP have been presented in [4], and they hold under some
stringent condition, that is, the underlying matrices M, N satisfy the column monotonic-
ity with respect to K or R0-property. Furthermore, we can only get the error bound of any
points in the set � = {(x, y) ∈ R2n|Mx – Ny ∈ K} by the results in [4]. Then the following
two questions are posed naturally: Can the conditions imposed on the matrices M, N in
[4] be relaxed or removed? How about the global error bound estimation in R2n for the
ELCP? These constitute the main topics of this paper. In this paper, we shall deal with
the two issues. In fact, based on some equivalent reformulation of the ELCP and using a
new type residual function, we present a global error bound for the ELCP in R2n under
a milder condition, and the requirement of the column monotonicity, or R0-property, or
non-degenerate solution, and so on is removed here. Furthermore, the global error bounds
for the vertical linear complementarity problem (VLCP) and the mixed linear complemen-
tarity problem (MLCP) are also discussed in detail.

3 Methods and notations
The aim of this study is to design a new global error bound for the ELCP. More specif-
ically, the ELCP is firstly converted into an equivalent extended complementarity prob-
lem, which eliminates the variable z in the ELCP. Then, we define a residual function of
the transformed problem, based on which we derive some new error bounds for the trans-
formed problem and the original ELCP. Furthermore, we deduce some global error bounds
for the two special cases of the ELCP: VLCP and MLCP. Note that the obtained results can
be viewed as some supplements to the results in [4].

We adopt the following notations throughout the paper. All vectors are column vectors
and the superscript T denotes the transpose. The x+ denotes the orthogonal projection
of vector x ∈ Rn onto Rn

+, that is, (x+)i := max{xi, 0}, 1 ≤ i ≤ n; the norm ‖ · ‖ and ‖ · ‖1

denote the Euclidean 2-norm and 1-norm, respectively. For x, y ∈ Rn, use (x; y) to denote
the column vector (x�, y�)�, and min{x, y} means the componentwise minimum of x and y.
We use Im to denote an identity matrix of order m, use D+ to denote the pseudo-inverse of
matrix D, use diag(a1, a2, . . . , an) to denote the diagonal matrix with elements a1, a2, . . . , an.
For any n×n real matrix A, we denote by A� the transpose of A, by ‖A‖ the matrix norm of
A, that is, ‖A‖ := max(λ(A�A)) 1

2 , where λ(A�A) is an eigenvalue of the matrix A�A, denote
a nonnegative vector x ∈ Rn by x ≥ 0, denote an absolute value of the real number a by |a|,
and use Ck

n to denote the combinatorial number, which is the number of combinations
when k elements are arbitrarily taken from n elements. We denote the empty set by ∅.

4 List of abbreviations
In this section, we give the following tabular for abbreviations used in this paper (see Ta-
ble 1).
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Table 1 Abbreviations in this paper

Abbreviations Description

ELCP The extended linear complementarity problem
VLCP The vertical linear complementarity problem
MLCP The mixed linear complementarity problem

5 Global error bound for ELCP
In this section, we first present an equivalent reformulation of the ELCP in which param-
eter z is not involved and then establish a global error bound for the ELCP under weaker
conditions.

From the definition of the ELCP, the following result is straightforward.

Proposition 5.1 Vector (x∗; y∗) is a solution of the ELCP if and only if there exists z∗ ∈ Rl

such that

x∗ ≥ 0, y∗ ≥ 0,
(
x∗)�y∗ = 0, Mx∗ – Ny∗ – Qz∗ – q = 0.

Let w = (x; y) and U = QQ+ – Im. Using the fact that x = A+b is a solution to the linear
equation Ax = b if it is consistent, we conclude that the last equation in Proposition 5.1 is
equivalent to

U(M, –N)w – Uq = 0. (5.1)

Define block matrices A = (In, 0n), B = (0n, In). Then the ELCP can be equivalently refor-
mulated as the following extended complementarity problem w.r.t. w:

⎧
⎪⎪⎨

⎪⎪⎩

Aw ≥ 0, Bw ≥ 0,

(Aw)�Bw = 0,

U(M, –N)w – Uq = 0.

(5.2)

We denote its solution set by W ∗, and let

f (w) =
∥
∥(–w)+

∥
∥2 +

[
sgn
(
w�M̂w

)]
w�M̂w +

∥
∥U(M, –N)w – Uq

∥
∥2, (5.3)

where

M̂ =

(
0 I
I 0

)

, sgn
(
w�M̂w

)
=

⎧
⎪⎪⎨

⎪⎪⎩

1 if w�M̂w > 0,

0 if w�M̂w = 0,

–1 if w�M̂w < 0.

Then it holds that {w ∈ R2n|f (w) = 0} = W ∗.
From the definition of f (w), a direct computation yields that

f (w) =
∥∥(–w)+

∥∥2 + w�[sgn
(
w�M̂w

)]
M̂w +

∥∥U(M, –N)w – Uq
∥∥2

= w� diag(σ1,σ2, . . . ,σ2n)w + w�[sgn
(
w�M̂w

)]
M̂w
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+ w�(M, –N)�U�U(M, –N)w – 2q�U�U(M, –N)w + q�U�Uq

= w�{diag(σ1,σ2, . . . ,σ2n) +
[
sgn
(
w�M̂w

)]
M̂ + (M, –N)�U�U(M, –N)

}
w

– 2q�U�U(M, –N)w + q�U�Uq

= w�Q̂w – 2q�U�U(M, –N)w + q�U�Uq,

where

Q̂ := M1 + M2. (5.4)

Set

M1 =
[
sgn
(
w�M̂w

)]
M̂ + (M, –N)�U�U(M, –N), M2 = diag(σ1,σ2, . . . ,σ2n), (5.5)

with

σi =

⎧
⎨

⎩
1 if wi > 0,

0 if wi ≤ 0

and H = {M2 ∈ R2n×2n|M2 = diag(σ1,σ2, . . . ,σ2n)}. Then, by the definition of σi, we can get
that the cardinality of the set H is

C0
2n + C1

2n + C2
2n + · · · + C2n–1

2n + C2n
2n = 22n.

Applying the related theory of linear algebra and (5.4), we give the following result for
our analysis.

Lemma 5.1 For f (w) defined in (5.3), there exists an affine transformation w = C1v + p1

with an orthogonal matrix C1 ∈ R2n×2n and vector p1 ∈ R2n such that

f (w) = g(v) :=
∑

i∈I+

aiv2
i –
∑

i∈I–

aiv2
i –
∑

j∈J

cjvj + τ ,

where ai, cj, τ ∈ R, ai > 0, i ∈ I+ ∪ I–, j ∈ J ,

I+ =
{

i ∈ {1, 2, . . . , 2n}|λi > 0
}

,

I– =
{

i ∈ {1, 2, . . . , 2n}|λi < 0
}

,

J =
{

j ∈ {1, 2, . . . , 2n}|λj = 0
}

,

and λ1,λ2, . . . ,λ2n are real eigenvalues of the matrix Q̂.

Proof Since the matrix Q̂ is symmetric, there exists an orthogonal matrix C1 ∈ R2n×2n such
that

C�
1 Q̂C1 = diag(λ1,λ2, . . . ,λ2n). (5.6)
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Let w = C1ξ and

2q�U�U(M, –N)C1 = (c1, c2, . . . , c2n). (5.7)

Then

f (w) = ξ�C�
1 Q̂C1ξ – 2q�U�U(M, –N)C1ξ + q�U�Uq

=
2n∑

i=1

λiξ
2
i –

2n∑

i=1

ciξi + q�U�Uq

=
∑

i∈I+∪I–

λi

(
ξi –

ci

2λi

)2

–
∑

j∈J

cjξj –
∑

i∈I+∪I–

c2
i

4λi
+ q�U�Uq. (5.8)

Let

vi =

⎧
⎨

⎩
ξi – ci

2λi
, if i ∈ I+ ∪ I–,

ξi, if i ∈ J .

Then there exists vector p2 such that v = ξ – p2. This and w = C1ξ imply w = C1v + p1 with
p1 = C1p2. By (5.8), letting

ai = λi, i ∈ I+, ai = –λi, i ∈ I–, τ = –
∑

i∈I+∪I–

c2
i

4λi
+ q�U�Uq (5.9)

yields the desired result as follows. �

In the following, we present our main error bound result for the ELCP.

Theorem 5.1 Suppose that W ∗ = {w ∈ R2n|f (w) = 0} is nonempty. Then there exists a con-
stant ρ0 > 0 such that, for any w ∈ R2n, there exists w̄ ∈ W ∗ satisfying

‖w – w̄‖ ≤ ρ0
(∣∣f (w)

∣
∣ +
∣
∣f (w)

∣
∣

1
2
)
.

Proof Applying Lemma 5.1, there exists an affine transformation w = C1v + p1 such that

f (w) = g(v) :=
∑

i∈I+

aiv2
i –
∑

i∈I–

aiv2
i –
∑

j∈J

cjvj + τ , (5.10)

where ai > 0, cj, τ ∈ R, i ∈ I+ ∪ I–, j ∈ J are defined in (5.9), I+, I–, and J are respectively
non-overlapping subsets of {1, 2, . . . , 2n}, and C1 is an orthogonal matrix. Therefore, given
w = (w1, w2, . . . , w2n)� ∈ R2n, one has

v = C�
1 (w – p1) := (v1, v2, . . . , v2n)�.

Now, we break the discussion into three cases.
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Case 1. If J 
= ∅, we take an index j ∈ J such that |cj| = max{|ci||i ∈ J} > 0, and let v̄ with
entries

v̄i =

⎧
⎨

⎩
vi, if i 
= j,

vj + 1
cj

g(v), if i = j.

Then ‖v – v̄‖ = 1
|cj| |g(v)| and

g(v̄) =
∑

i∈I+

aiv̄2
i –
∑

i∈I–

aiv̄2
i –
∑

i∈J

civ̄i + τ

=
∑

i∈I+

aiv2
i –
∑

i∈I–

aiv2
i –
(∑

i∈J

civi + g(v)
)

+ τ

=
[∑

i∈I+

aiv2
i –
∑

i∈I–

aiv2
i –
∑

i∈J

civi + τ

]
– g(v)

= g(v) – g(v) = 0.

From w = C1v + p1, we get w̄ = C1v̄ + p1 and f (w̄) = g(v̄) = 0. Thus, w̄ ∈ W ∗. Furthermore,

‖w – w̄‖ =
∥∥(C1v + p1) – (C1v̄ + p1)

∥∥

=
∥
∥C1(v – v̄)

∥
∥

= ‖v – v̄‖
=

1
|cj|
∣
∣g(v)

∣
∣

=
1

|cj|
∣
∣f (w)

∣
∣

≤ 1
|cmin|

∣∣f (w)
∣∣,

where the second equality follows from the fact that C1 is an orthogonal matrix. Since the
cardinality of the set H is 22n, then |cmin| = min{|cj||j = 1, 2, . . . , 22n}, so |cmin| is independent
of selection of the matrix M2, i.e., |cmin| is independent of selection of vector w. Thus, the
last inequality holds. The desired result is proved for this case.

Case 2. If J = ∅ and τ ≤ 0 where τ is defined by (5.9). Let v2n+1 =
√

–τ and Ĩ– = I– ∪ {2n +
1}. Then

g(v) = ḡ(v, v2n+1) :=
∑

i∈I+

aiv2
i –
∑

i∈Ĩ–

aiv2
i , (5.11)

where ai ∈ R, ai > 0, i ∈ I+ ∪ I–, a2n+1 = 1, and I+, Ĩ– are respectively non-overlapping sub-
sets of {1, 2, . . . , 2n, 2n + 1}. Let

zi =

⎧
⎨

⎩

√aivi, i ∈ I+ ∪ I–,

vi otherwise.
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Then one has

z :=

(
z2n

z2n+1

)

=

(
C2 0
0 1

)(
v

v2n+1

)

, (5.12)

where

C2 = diag(�1,�2, . . . ,�2n), (5.13)

and

�i =

⎧
⎨

⎩

√ai if i ∈ I+ ∪ I–,

1 if i /∈ I+ ∪ I–.

Combining (5.11) with (5.12) yields

ḡ(v, v2n+1) = h(z) :=
∑

i∈I+

z2
i –
∑

i∈Ĩ–

z2
i . (5.14)

Without loss of generality, suppose that h(z) > 0. Let

θ =
( ∑

i∈Ĩ– z2
i

h(z) +
∑

i∈Ĩ– z2
i

) 1
2

=
(∑

i∈Ĩ– z2
i∑

i∈I+ z2
i

) 1
2

,

then 0 ≤ θ < 1. Let

z̄i =

⎧
⎨

⎩
θzi, i ∈ I+,

zi, otherwise.

This together with the definition of θ implies that

h(z̄) = θ2
∑

i∈I+

z2
i –
∑

i∈Ĩ–

z2
i

=
(∑

i∈Ĩ– z2
i∑

i∈I+ z2
i

)∑

i∈I+

z2
i –
∑

i∈Ĩ–

z2
i

=
∑

i∈Ĩ–

z2
i –
∑

i∈Ĩ–

z2
i

= 0. (5.15)

Using w = C1v + p1 and v = C–1
2 z2n, one has w = C1C–1

2 z2n + p1,

w̄ = C1C–1
2 z̄2n + p1, (5.16)

and v̄ = C–1
2 z̄2n. Applying (5.15), combining (5.10),(5.11) with (5.14) yields

f (w̄) = g(v̄) = ḡ(v̄, v2n+1) = h(z̄) = 0.

Thus, w̄ ∈ W ∗.
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In addition, based on the definition of z̄ and θ , we get

‖z – z̄‖ =
(∑

i∈I+

(zi – z̄i)2
) 1

2

=
(∑

i∈I+

(zi – θzi)2
) 1

2

=
(1 – θ2)

1 + θ

(∑

i∈I+

z2
i

) 1
2

=
1

1 + θ

(
1 –

∑
i∈Ĩ– z2

i

h(z) +
∑

i∈Ĩ– z2
i

)(∑

i∈I+

z2
i

) 1
2

=
h(z)

(1 + θ )(
∑

i∈I+ z2
i )

(∑

i∈I+

z2
i

) 1
2

=
h(z)

(1 + θ )(
∑

i∈I+ z2
i ) 1

2

=
h(z)

(
∑

i∈I+ z2
i ) 1

2 + θ (
∑

i∈I+ z2
i ) 1

2

=
h(z)

(
∑

i∈I+ z2
i ) 1

2 + (
∑

i∈Ĩ– z2
i∑

i∈I+ z2
i

) 1
2 (
∑

i∈I+ z2
i ) 1

2

=
h(z)

(
∑

i∈I+ z2
i ) 1

2 + (
∑

i∈Ĩ– z2
i ) 1

2

≤ h(z)
(
∑

i∈I+ z2
i +
∑

i∈Ĩ– z2
i ) 1

2

≤ h(z)
h(z) 1

2
=
∣∣h(z)

∣∣
1
2 , (5.17)

where the first inequality comes from the fact that a 1
2 + b 1

2 ≥ (a + b) 1
2 , ∀a, b ∈ R+, the

second inequality uses assumption h(z) > 0 and the fact that h(z) ≤∑i∈I+ z2
i +
∑

i∈Ĩ– z2
i .

Using (5.12), (5.16), and (5.17), one has

‖w – w̄‖ =
∥
∥(C1C–1

2 z2n + p1
)

–
(
C1C–1

2 z̄2n + p1
)∥∥

≤ ∥∥C1C–1
2
∥∥‖z2n – z̄2n‖

≤ ∥∥C1C–1
2
∥∥‖z – z̄‖

≤ ∥∥C1C–1
2
∥
∥
∣
∣h(z)

∣
∣

1
2

=
∥∥C1C–1

2
∥∥∣∣f (w)

∣∣
1
2

=
√

λmax
((

C1C–1
2
)�(C1C–1

2
))∣∣f (w)

∣∣
1
2

=
√

λmax
((

C–1
2
)�(C–1

2
))∣∣f (w)

∣∣
1
2
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≤ ∥∥C–1
2
∥∥∣∣f (w)

∣∣
1
2

≤ max

{
1,

1√
σ̃

}∣
∣f (w)

∣
∣

1
2 , (5.18)

where the fourth equality comes from the fact that C1 is an orthogonal matrix, the last
inequality uses the fact that ‖C–1

2 ‖ ≤ max{1, 1√
σ̃
}, and σ̃ > 0 is a constant.

In fact, using the related theory of linear algebra, by the definition of the matrix Q̂, one
has λi = λ

M1
i + 1 or λ

M1
i (i = 1, 2, . . . , 2n), where λ

M1
i (i = 1, 2, . . . , 2n) is a real eigenvalue of

the matrix M1. Set

σ̃ = min
{∣∣λM1

i
∣∣,
∣∣λM1

i + 1
∣∣|λM1

i 
= 0 or λ
M1
i + 1 
= 0, i = 1, 2, . . . , 2n

}
> 0.

Combining (5.13) with (5.9), one has

�i =

⎧
⎨

⎩

√|λi| if i ∈ I+ ∪ I–,

1 if i /∈ I+ ∪ I–

and C–1
2 = diag(�–1

1 ,�–1
2 , . . . ,�–1

2n ), and thus we obtain

∥
∥C–1

2
∥
∥ = max

{
�–1

i |i = 1, 2, . . . , 2n
}

≤ max

{
1,

1√
σ̃

}
.

On the other hand, the matrix

M1 =

⎧
⎪⎪⎨

⎪⎪⎩

(M, –N)�U�U(M, –N) + M̂ if w�M̂w > 0,

(M, –N)�U�U(M, –N) if w�M̂w = 0,

(M, –N)�U�U(M, –N) – M̂ if w�M̂w < 0.

Thus, we deduce that σ̃ is independent of selection of the matrix M1. The desired result
follows for this case.

Case 3. If J = ∅ and τ > 0. Then it follows from

{
w ∈ R2n|f (w) = 0

}
=
{

w ∈ R2n| – f (w) = 0
}

(5.19)

and (5.10) that

–f (w) = –g(v) = –
∑

i∈I+

aiv2
i +
∑

i∈I–

aiv2
i + (–τ ).

Let f̂ (w) = –f (w), ĝ(v) = –g(v), Î+ = I–, Î– = I+, τ̂ = –τ < 0. Then

f̂ (w) = ĝ(v) =
∑

i∈Î+

aiv2
i –
∑

i∈Î–

aiv2
i + τ̂ .
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Considering this together with (5.19), using a similar argument to that of Case 2 above,
there exist constant σ̂ > 0 and w̄ ∈ W ∗ such that

‖w – w̄‖ ≤ σ̂
∣
∣f̂ (w)

∣
∣

1
2 = σ̂

∣
∣–f (w)

∣
∣

1
2 = σ̂

∣
∣f (w)

∣
∣

1
2 .

The desired result follows for this case. �

Now, we give another error bound for the ELCP.

Theorem 5.2 Suppose that X∗ is nonempty. Then, for any (x; y) ∈ R2n, there exists a con-
stant ρ1 > 0 such that

∥∥(x; y) – (x̄; ȳ)
∥∥ ≤ ρ1

{(∥∥min{x, y}∥∥2 +
∥∥U(M, –N)(x; y) – Uq

∥∥2 +
∣∣x�y

∣∣)

+
(∥∥min{x, y}∥∥ +

∥∥U(M, –N)(x; y) – Uq
∥∥ +
∣∣x�y

∣∣
1
2
)}

.

Proof By Theorem 5.1, one has

‖w – w̄‖ ≤ ρ0
(∣∣f (w)

∣∣ +
∣∣f (w)

∣∣
1
2
)

= ρ0
{(∥∥(–w)+

∥∥2 + w�[sgn
(
w�M̂w

)]
M̂w +

∥∥U(M, –N)w – Uq
∥∥2)

+
(∥∥(–w)+

∥∥2 + w�[sgn
(
w�M̂w

)]
M̂w +

∥∥U(M, –N)w – Uq
∥∥2) 1

2
}

≤ ρ0
{(∥∥(–w)+

∥∥2 +
∣∣w�[sgn

(
w�M̂w

)]
M̂w

∣∣ +
∥∥U(M, –N)w – Uq

∥∥2)

+
(∥∥(–w)+

∥
∥ +
∣
∣w�[sgn

(
w�M̂w

)]
M̂w

∣
∣

1
2 +
∥
∥U(M, –N)w – Uq

∥
∥)}

≤ ρ0
{(∥∥(–Aw)+

∥∥2 +
∥∥(–Bw)+

∥∥2 + 2
∣∣x�y

∣∣ +
∥∥U(M, –N)w – Uq

∥∥2)

+
(∥∥(–Aw)+

∥
∥ +
∥
∥(–Bw)+

∥
∥ +

√
2
∣
∣x�y

∣
∣

1
2 +
∥
∥U(M, –N)w – Uq

∥
∥)}

≤ ρ0
{(

2
∥∥min{Aw, Bw}∥∥2 + 2

∣∣x�y
∣∣ +
∥∥U(M, –N)w – Uq

∥∥2)

+
(
2
∥
∥min{Aw, Bw}∥∥ +

√
2
∣
∣x�y

∣
∣

1
2 +
∥
∥U(M, –N)w – Uq

∥
∥)},

where the first equality is by (5.3), the second and third inequalities follow from the fact
that

√
a + b + c ≤ √

a +
√

b +
√

c for any a, b, c ∈ R+,

and the fourth inequality is obtained by the fact (–a)+ ≤ |min{a, b}| for any a, b ∈ R. By the
definitions of A, B, w, and setting ρ1 = 2ρ0, we obtain the desired result. �

Remark 5.1 Obviously, the condition needed in Theorem 5.2 in this paper is strictly
weaker than that needed in [4]. The requirements of column monotonicity, R0-property,
and rank Q = l are removed here. In addition, we establish this global error bound in R2n

rather than that in � which is defined in [4]. On the other hand, we also present the fol-
lowing examples to compare.
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For the ease of description, denote the function used in Theorem 5.2 by

ϕ1(x, y) =
∥∥min{x, y}∥∥2 +

∥∥U(M, –N)(x; y) – Uq
∥∥2 +

∥∥x�y
∥∥,

ϕ2(x, y) =
∥
∥min{x, y}∥∥ +

∥
∥U(M, –N)(x; y) – Uq

∥
∥ +
∥
∥x�y

∥
∥

1
2 ,

and denote the function used in Theorem 6 of [4] by

s(x, y) =
∥
∥(–x)+

∥
∥ +
∥
∥(–y)+

∥
∥ +
(
x�y
)

+. (5.20)

Example 5.1 Consider the ELCP such that

M =

⎛

⎜
⎝

0 1 0
0 0 0
0 0 1

⎞

⎟
⎠ , N =

⎛

⎜
⎝

1 0 0
0 1 0
0 0 1

⎞

⎟
⎠ , K =

⎧
⎪⎨

⎪⎩

⎛

⎜
⎝

0
0
0

⎞

⎟
⎠

⎫
⎪⎬

⎪⎭
.

Its solution set is

W ∗ =
{

(x; y) ∈ R6 ‖ x ≥ 0, y ≥ 0, x�y = 0, Mx = y
}

=

{

(x; y) ∈ R6
∣∣
∣∣
x1 = x3 = 0, x2 ≥ 0,
y1 = x2, y2 = 0, y3 = x3 = 0

}

∪
{

(x; y) ∈ R6
∣
∣∣
∣
x2 = x3 = 0, x1 ≥ 0,
y1 = x2 = 0, y2 = 0, y3 = x3 = 0

}

.

Furthermore, it has no non-degenerate solution [4].
Take xk = (–k–4; k2; k–1), yk = (k2; 0; k–1) with k is a positive integer. Denote the clos-

est point in W ∗ by (x̄k ; ȳk). A direct computation gives that ‖Mxk – yk‖ = 0, (x̄k ; ȳk) =
(0; k2; 0; k2; 0; 0) as k is sufficiently large, and

∥∥(xk ; yk) – (x̄k ; ȳk)
∥∥ =

[(
–k–4)2 + 0 +

(
k–1)2 + 0 + 0 +

(
k–1)2] 1

2

=
(
k–8 + 2k–2) 1

2 . (5.21)

Then

‖(xk ; yk) – (x̄k ; ȳk)‖
ϕ1(xk ; yk) + ϕ2(xk ; yk)

=
(k–8 + 2k–2) 1

2

(k–8 + k–2) + (k–8 + k–2) 1
2

→ √
2

as k → ∞. Therefore the function ϕ1(xk ; yk) + ϕ2(xk ; yk) provides an error bound for the
point (xk ; yk).

On the other hand, from (5.20), we see that s(xk , yk) = k–4 for the point (xk ; yk). Then
from (5.21), it follows that

‖(xk ; yk) – (x̄k ; ȳk)‖
s(xk , yk) + s 1

2 (xk , yk)
=

(k–8 + 2k–2) 1
2

k–4 + k–2 =
√

1 + 2k6

1 + k2 → +∞
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and

‖(xk ; yk) – (x̄k ; ȳk)‖
s(xk , yk)

=
(k–8 + 2k–2) 1

2

k–4 =
√

1 + 2k6 → +∞

as k → ∞. Thus, the function s(x, y) + s 1
2 (x, y) and s(x, y) cannot provide an error bound

for the point (xk ; yk).

6 Global error bound for special cases of ELCP
In this section, we respectively establish the global error bound of the VLCP and the MLCP
based on Theorem 5.2.

6.1 Global error bound for VLCP
Consider the VLCP of finding vector x ∈ Rn such that

Ax + a ≥ 0, Bx + b ≥ 0, (Ax + a)�(Bx + b) = 0.

Denote its solution set by X̂∗. Certainly, the VLCP is a special case of the ELCP with

M =

(
I
0

)

, N =

(
0

–I

)

, Q =

(
A
B

)

, q =

(
a
b

)

, (6.1)

where A, B ∈ Rm×n, a, b ∈ Rm, and A 
= 0 or B 
= 0.
Applying Theorem 5.2 to the VLCP, we have the following conclusion.

Theorem 6.1 For the VLCP, suppose that X̂∗ is nonempty. Then, for any x ∈ Rn, there exists
a constant ρ̃2 > 0 such that

dist
(
x, X̂∗) ≤ ρ̃2

(∥∥min{Ax + a, Bx + b}∥∥2 +
∥
∥min{Ax + a, Bx + b}∥∥

+
∥∥(Ax + a)�(Bx + b)

∥∥ +
∥∥(Ax + a)�(Bx + b)

∥∥
1
2
)
.

Proof For any x ∈ Rn, let x̂ = Ax + a, ŷ = Bx + b. Then

Mx̂ – Nŷ = Qx + q, (6.2)

where M, N , Q are defined in (6.1). Using the fact that x = A+b is a solution to the linear
equation Ax = b if it is consistent, one has

Ũ1(M, –N)(x̂; ŷ) – Ũ1q = 0,

where Ũ1 = QQ+ – I2m =
(A

B
)(A

B
)+

– I2m. Let ŵ = (x̂; ŷ). Then the VLCP can be equivalently
reformulated as the following ELCP w.r.t. (x̂; ŷ):

⎧
⎪⎪⎨

⎪⎪⎩

(I, 0)(x̂; ŷ) ≥ 0, (0, I)(x̂; ŷ) ≥ 0,

((I, 0)(x̂; ŷ))�((0, I)(x̂; ŷ)) = 0,

Ũ1(M, –N)(x̂; ŷ) – Ũ1q = 0,

(6.3)
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and we denote its solution set by Ŵ ∗. Apply Theorem 5.2 to system (6.3) for (x̂; ŷ). Then
there exists (x̂∗; ŷ∗) ∈ Ŵ ∗ such that

∥
∥(x̂; ŷ) –

(
x̂∗; ŷ∗)∥∥ ≤ ρ2

{(∥∥min{x̂, ŷ}∥∥2 +
∥
∥Ũ1(M, –N)(x̂; ŷ) – Ũ1q

∥
∥2 +

∣
∣x̂�ŷ

∣
∣)

+
(∥∥min{x̂, ŷ}∥∥ +

∥∥Ũ1(M, –N)(x̂; ŷ) – Ũ1q
∥∥ +
∣∣x̂�ŷ

∣∣
1
2
)}

= ρ2
{∥∥min{Ax + a, Bx + b}∥∥2 +

∥
∥min{Ax + a, Bx + b}∥∥

+
∥∥(Ax + a)�(Bx + b)

∥∥ +
∥∥(Ax + a)�(Bx + b)

∥∥
1
2
}

, (6.4)

where ρ2 > 0 is a constant, the first equality follows from (6.2).
For (6.2), using the fact that x = A+b is a solution to the linear equation Ax = b if it is

consistent, one has x = Q+[(M, –N)(x̂; ŷ) – q], x∗ = Q+[(M, –N)(x̂∗; ŷ∗) – q], and a straight-
forward computation gives

dist
(
x, X̂∗) ≤ ∥∥x – x∗∥∥

=
∥∥Q+[(M, –N)(x̂; ŷ) – q

]
– Q+[(M, –N)

(
x̂∗; ŷ∗) – q

]
)
∥∥

≤ ∥∥Q+(M, –N)
∥
∥
∥
∥(x̂; ŷ) –

(
x̂∗; ŷ∗)∥∥.

Combining this with (6.4) and letting ρ̃2 = ρ2‖Q+(M, –N)‖ yield the desired result. �

Compared with the error bounds established in [4, 20–23], we remove the assumptions
such as monotonicity, positive semidefiniteness, and so on.

6.2 Global error bound for MLCP
Consider the MLCP of finding vector (x, z) ∈ Rn × Rm such that

x ≥ 0, Cx + Dz + b ≥ 0, x�(Cx + Dz + b) = 0, Ax + Bz + a = 0, (6.5)

where A ∈ Rl×n, B ∈ Rl×m, C ∈ Rn×n, D ∈ Rn×m, a ∈ Rl , b ∈ Rn. Denote the solution set
by X̄∗. Let y = Cx + Dz + b. Then system (6.5) can be rewritten as

x ≥ 0, y ≥ 0, x�y = 0, Cx – y = –Dz – b, Ax – 0y = –Bz – a. (6.6)

Certainly, the MLCP is a special case of the ELCP with

M =

(
A
C

)

, N =

(
0
I

)

, Q =

(
–B
–D

)

, q =

(
–a
–b

)

.

From Theorem 5.2, we have the following conclusion.

Theorem 6.2 For the MLCP, suppose that X̄∗ is nonempty. Then, for any x ∈ Rn, z ∈ Rm,
there exists a constant ρ̃3 > 0 such that

dist
(
(x; z), X̄∗) ≤ ρ̃3

{∥∥min{x, Cx + Dz + b}∥∥2 + ‖Ax + Bz + a‖2 +
∣∣x�(Cx + Dz + b)

∣∣

+
∥
∥min{x, Cx + Dz + b}∥∥ + ‖Ax + Bz + a‖ +

∣
∣x�(Cx + Dz + b)

∣
∣

1
2
}

.



Sun et al. Journal of Inequalities and Applications  (2018) 2018:258 Page 14 of 16

Proof By Theorem 5.2, it follows from system (6.6) that, for (x; y) ∈ Rn × Rn, there exists a
constant ρ3 > 0 such that

∥
∥(x; y) – (x̄; ȳ)

∥
∥ ≤ ρ3

{(∥∥min{x, y}∥∥2 +
∥
∥U(M, –N)(x; y) – Uq

∥
∥2 +

∣
∣x�y

∣
∣)

+
(∥∥min{x, y}∥∥ +

∥∥U(M, –N)(x; y) – Uq
∥∥ +
∣∣x�y

∣∣
1
2
)}

, (6.7)

where (x̄; ȳ) is a solution of system (6.6). For (6.6), using the fact that x = A+b is a solution
to the linear equation Ax = b if it is consistent, we know that

Q+[(M, –N)(x; y) – q
]

= z

is equivalent to the last two equalities in (6.6). By U = QQ+ – I , we can get

U(M, –N)(x; y) – Uq = Q
[
Q+(M, –N)(x; y) – q

]
–
[
(M, –N)(x; y) – q

]

= Qz –
[
(M, –N)(x; y) – q

]
.

Combining this with (6.7) and using y = Cx + Dz + b, we further obtain

∥
∥(x; y) – (x̄; ȳ)

∥
∥ ≤ ρ3

{(∥∥min{x, Cx + Dz + b}∥∥2

+
∥
∥Qz –

[
(M, –N)(x; y) – q

]∥∥2 +
∣
∣x�(Cx + Dz + b)

∣
∣)

+
(∥∥min{x, Cx + Dz + b}∥∥

+
∥∥Qz –

[
(M, –N)(x; y) – q

]∥∥ +
∣∣x�(Cx + Dz + b)

∣∣
1
2
)}

≤ ρ3
{(∥∥min{x, Cx + Dz + b}∥∥2

+ ‖Ax + Bz + a‖2 +
∣
∣x�(Cx + Dz + b)

∣
∣)

+
(∥∥min{x, Cx + Dz + b}∥∥

+ ‖Ax + Bz + a‖ +
∣
∣x�(Cx + Dz + b)

∣
∣

1
2
)}

. (6.8)

For any x ∈ Rn, z ∈ Rm, from y = Cx + Dz + b, and using the fact that x = A+b is a solution
to the linear equation Ax = b if it is consistent, we obtain that z = D+(–Cx + y – b), z̄ =
D+(–Cx̄ + ȳ – b). Combining this with (6.8), one has

∥∥(x; z) – (x̄; z̄)
∥∥ ≤ ∥∥(x; z) – (x̄; z̄)

∥∥
1

= ‖x – x̄‖1 + ‖z – z̄‖1

= ‖x – x̄‖1 +
∥
∥D+(y – Cx – b) – D+(ȳ – Cx̄ – b)

∥
∥

1

≤ ‖x – x̄‖1 +
∥∥D+∥∥∥∥(y – Cx – b) – (ȳ – Cx̄ – b)

∥∥
1

≤ ‖x – x̄‖1 +
∥∥D+∥∥(‖(y – ȳ‖1 + ‖C‖‖x – x̄‖1

)

=
(
1 +
∥
∥D+∥∥‖C‖)(‖x – x̄‖1 + ‖(y – ȳ‖1

)

≤ (1 +
∥
∥D+∥∥‖C‖)√2n

∥
∥(x; y) – (x̄; ȳ)

∥
∥

≤ ρ3
(
1 +
∥∥D+∥∥‖C‖)√2n

{(∥∥min{x, Cx + Dz + b}∥∥2



Sun et al. Journal of Inequalities and Applications  (2018) 2018:258 Page 15 of 16

+ ‖Ax + Bz + a‖2 +
∣∣x�(Cx + Dz + b)

∣∣)

+
(∥∥min{x, Cx + Dz + b}∥∥

+ ‖Ax + Bz + a‖ +
∣∣x�(Cx + Dz + b)

∣∣
1
2
)}

, (6.9)

where the first and fourth inequalities follow from the fact that ‖x‖ ≤ ‖x‖1 ≤ √
n‖x‖ for

any x ∈ Rn. Let ρ̃3 = ρ3(1 + ‖D+‖‖C‖)
√

2n. Then the desired result follows. �

7 Conclusions and remarks
In this paper, we established some new global error bounds for the VLCP and the MLCP
based on the global error bound for the ELCP. These global error bounds extend some
known results in the literature, which is verified by a numerical comparison.

As the error bound analysis has important applications in the sensitivity analysis and
error bound estimation for optimization methods, it would be interesting to investigate
whether our new error bound results will give effective global error estimates for some
particular methods in solving a non-monotone ELCP (VLCP and MLCP) that does not re-
quire any non-degeneracy assumption, such as the Newton-type with quick convergence
rate. These will be further considered in the future research.
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