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1 Introduction

A lot of work has been added into the theory of variational inequalities since its seed was
planted by Lions et al. [24]. On account of its wide applications in physics and applied
sciences etc., the classical variational inequalities have been extensively studied by many
researchers in different ways [1, 4, 5, 7-10].

A useful and important generalization of variational inequality problem is variational
inclusion problem which was introduced and studied by Hasounni et al. [16]. Further-
more, they proposed a perturbed iterative algorithm for solving the variational inclusion
problem.

Fang et al. [12] introduced and studied H-monotone operators, which was used to de-
sign a resolvent operator and to prove its Lipschitz continuity. Furthermore, they also
introduced a class of variational inclusions in Hilbert space. Fang et al. [13] additionally
presented another class of generalized monotone operators, called (H, n)-monotone op-
erators, which generalize different classes of maximal monotone, maximal #-monotone
and H-monotone operators.

Recently, Lan et al. [17] presented another idea of (A4, n)-accretive mappings, which gen-
eralized the current monotone or accretive operators, and concentrated a few properties
of mappings. They examined a class of variational inclusions using the resolvent operator
related with (A, n)-accretive mappings.

Amann [6] studied the number of fixed points for a continuous operator A : [x, y] — [x,y]
on a bounded order interval [x,y] C &£, an ordered Banach space. The nonlinear mapping
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fixed point theory and applications have been widely studied in ordered Banach spaces
[4, 14, 15]. In this manner, it is essential that summed up nonlinear ordered variational
inclusions (ordered equation) are contemplated.

Plenty of research concerned with the ordered equations and ordered variational in-
equalities in ordered Banach spaces has been done by Li et al.; see [21, 23]. Many problems
concerning ordered variational inclusions are answered by the resolvent technique linked
with RME set-valued mappings [19], (o, A)-NODM set-valued mapping [20], (yg, A)-weak
RRD mapping [2] and (¢, 1)-weak ANODD set-valued map with strongly comparison
mapping A [21] and many more see; e.g., [3, 22, 25, 26, 29] and the references therein.

In this work, we make use of the resolvent operator approach for the approximation
solvability of solutions of implicit system of generalized nonlinear ordered variational in-
clusions in real ordered Hilbert spaces.

2 Preliminaries

In this part, we present some basic notions and results for the building up the manuscript.
Allow & to be a real ordered Hilbert space endowed with a norm || - ||, and an inner

product (-, -), d be a metric induced by the norm || - ||, CB(E) be a collection of all closed

and bounded subsets of £ and D(-, -) be a Hausdorff metric on CB(£) defined as

D(M,N) = max{su{gd(x,N), sugd(M,y)],
xe ye

where M,N € CB(£), d(x,N) = infyen d(x,y) and d(M, y) = infyepr d(x, ).

Definition 2.1 Let € be a nonvoid closed, convex subset of £. Then € is called a cone if
(a) xeCandk >0,kx € C;
(b) xand —x € €, thenx = ©.

Definition 2.2 ([11]) A cone € is said to be normal iff there exists Ax. >0 with0 <x <y

implying [lx]| < Anc |lyll, where Ay, is called a normal constant of €.

Definition 2.3 A relation < defined asx <y iff y—x € € for x,y € £ is known as a partial

order relation expounded by € in &; then (€, <) is called a real ordered Hilbert space.

Definition 2.4 ([27]) Members %,y € £ having the relation x < y (or y < x) are called

comparable with each other.

Definition 2.5 ([27]) For arbitrary elements x,y € £, lub{x, y} and glb{x, y} mean the least
upper bound and the greatest upper bound of the set {x, y}. Suppose lub{x, y} and glb{x, y}
exist; some binary relations are defined as follows:

(@) xVy=lubf{x,y}

(b) x Ay = glblx, y};

©x®y=kx-yVy-x);

d) x0y=@x-y)AG-x).
The operations V, A, @ and © are called OR, AND, XOR and XNOR operations, respec-
tively.
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Proposition 1 ([11]) For any positive integer n, if x x y, and y, — y* (n — 00), then
x oyt

Proposition 2 ([11,20]) Let XOR, XNOR be two operations on E. Then the following hold:

(@ x0x=0,x0y=y0x=—-(xDy) =-(y D x);

(b) (x) @ (Ay) = [A|(x ® y);

() x©0=<0,ifxx0;

(d) O0<x®y, ifx xy;

(e) ifxoxy, thenx®y =0 ifand only ifx = y;

) @+ O +v)=x0u)+(yov);

(@ @+ +v)=x0OVv)+(yOu);

(h) (ax® Bx) = |a — Blx, if x x 0, Vx,y,u,v € £ and o, B, 1 € R.
Proposition 3 ([11]) Let € be a normal cone in € with normal constant Ay, then, for each
x,y € &, the following hold:

@) lo+o0l =0l =

bB) lle vyl < llxll v Iyl < llxll + 11yll;

© lx®yl <llx=yll < Ainclx @ yl;

(d) ifxocy, then ||x @ yll = [lx - yll.

Definition 2.6 ([20]) Let A: & — & to be a single-valued map.
(a) A is called a §-order non-extended map, if there is a positive constant § > 0 such that

Sxdy)<Ax) ®A(y) forallx,yef;

(b) A is called a strongly comparison map, if it is a comparison map and A(x) o< A(y) iff
xoxy, forallx,yef.

Definition 2.7 ([2]) A single-valued map A : £ — & is termed a B-ordered compression,
if it is comparison map and

AX)DA@Y) <Bxdy), for0O<B<l.

Definition 2.8 ([18]) Amap A: & x & — & is called (o, ap)-restricted-accretive map, if
it is a comparison and 3 constants 0 < «, oy < 1 such that

(A, ) +1(x) @ (A(y, ) +1(y)) < a1 (Al ) B Ay, - )+a2x®y) forallx,ye &
where [ is the identity map on £.

Lemma 2.1 ([28]) Let 6 € (0,1) be a constant. Then the function f(A) =1 — A + A6 for
A € [0,1] is nonnegative and strictly decreases and f () € [0, 1]. Furthermore, if > #0, then

S()€(0,1).

Lemma 2.2 ([30]) Assume that{a,}and{b,} betwo sequences of nonnegative real numbers
such that

ap < Oa, + by,

where 6 € (0,1) and lim,,_, o, b,, = 0. Then lim,_, , a,, = 0.
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3 Ordered weak-ARD mapping in ordered Hilbert spaces
Definition 3.1 Let A : £ — £ be a strong comparison and S-ordered compression map-
ping and M : £ — CB(E) be a set-valued mapping. Then
(a) M is said to be a comparison mapping, if for any v, € M(x), x o< v, and if x o< y, then,
for any v, € M(x) and any v, € M(y), v, &< v, for all x,y € &;
(b) a comparison mapping M is said to be ordered rectangular, if for each x,y € &,
vy € M(x) and vy, € M(y) such that

(ve O vy —(x D y)) = 0;

(c) a comparison mapping M is said to be a y-ordered rectangular with respect to A, if
there exists a constant y4 > 0 for any «,y € £, there exist v, € M(A(x)) and
vy € M(A(y)) such that

2
’

(ve © vy, —(AX) @ AWD))) = ya|Alx) D A®Y)

holds, where v, and v, are said to be y4-elements, respectively;

(d) M is said to be a weak comparison mapping with respect to 4, if, for any x,y € £,

x oy, there exist v, € M(A(x)) and v, € M(A(y)) such that x oc vy, y o< vy, where v,
and v, are said to be weak comparison elements, respectively;

(e) M is said to be a A-weak ordered different comparison mapping with respect to A, if
there exists a constant A > 0 such that, for any x,y € &, there exist v, € M(A(x)) and
vy € M(A(y)), M(vx — vy) o (x — y) holds, where v, and v, are said to be A-elements,
respectively;

(f) a weak comparison mapping M is said to be a (y4, A)-weak ARD mapping with
respect to A, if M is a y4-ordered rectangular and A-weak ordered different
comparison mapping with respect to A and (A + AM)(E) = &, for A > 0 and there
exist v, € M(A(x)) and v, € M(A(y)) such that v, and v, are (y4,A)-elements,
respectively.

Definition 3.2 A set-valued mapping A : £ — CB(E) is said to be §4-Lipschitz continu-
ous, if for each x,y € £,x o y, there exists a constant §4 such that

D(A(x),A(y)) <ésllx®yll, Vxyef.

Definition 3.3 Let M : £ — CB(€) be a set-valued mapping, A : £ — £ be a single-valued
mapping and [ : £ — £ be an identity mapping. Then a weak comparison mapping M
is said to be a (y’,A)-weak-ARD mapping with respect to (I — A), if M is a y'-ordered
rectangular and A-weak ordered different comparison mapping with respect to (- A) and
[ —-A) + AM](E) = &, for A > 0 and there exist v, € M((I — A)(x)) and v, € M((I — A)(y))
such that v, and v, are called (y’, 1)-elements, respectively.

Definition 3.4 Let € be a normal cone with normal constant Ay, and M : £ — CB(E) be
a weak-ARD set-valued mapping. Let I : £ — & be the identity mapping and A : £ — & be
a set-valued mapping and A : £ — £ be a single-valued mapping. The relaxed resolvent
operator Rx[_’f) : & — & associated with I, A and M is defined by

Rﬁ@‘,f)(x) =[U-A)+ )xM]_l(x), Vxe&and A >0. 1)
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The relaxed resolvent operator defined by (1) is single-valued, a comparison mapping and
Lipschitz continuous.

Proposition 4 ([2]) Let A : £ — & be a B-ordered compression mapping and M : £ —
CB(E) be the set-valued ordered rectangular mapping. Then the resolvent Rx[ff) E—=Eis
single-valued, for all 1 > 0.

Proposition 5 ([2]) Let M : £ — CB(E) be a (ya, A)-weak-ARD set-valued mapping with
respect to REI\,IT;U. Let A : & — & be a strongly comparison mapping with respect to Rwaf)
and I : £ — & be the identity mapping. Then the resolvent operator Rx[ff) :E—>Eisa

comparison mapping.

Proposition 6 ([2]) Let M : £ — CB(E) be a (ya, A)-weak-ARD set-valued mapping with
respect to Rﬁ\l/gf). Let A : & — & be a strongly comparison and B-ordered compression map-

ping with respect to Ry\,gf) with condition Ly, > B + 1. Then the following condition survives:

_ _ 1
”RE\I/[,?)(x) S R%[,f)()’)” = (m) llx & yll.

4 Formulation of the problems
LetFi: &1 xE X+ xEy— E A1 & — & and g : £ — &; to be single-valued mappings,
for i,j =1,2,3,...,m. Let Uj; : & — CB(E)) be a set-valued map and M; : & — CB(E;) be
set-valued weak-ARD mapping. Then we have the problem:

Find (x3,%5,...,4%5) € & x & x -+ x €, and u;‘; € U,j(x;‘), fori,j=1,2,3,...m, such that

0e p,-Fi(uj‘l,ufz,...,ufm) @AlMl(gl(xj‘)), (2)

where p; and A; are given positive constants. Problem (2) is called a generalized set-valued
system of nonlinear ordered variational inclusions problem for weak-ARD mappings.

If U;; = T} is a single-valued mapping, then problem (2) becomes:

Find x; € &, such that

0 € piFi(Taxy, Toxs, ..., Timxl,) @ MM (gi(xF))- (3)

This problem is known as a generalized system of nonlinear ordered variational inclusions

problem involving weak-ARD mappings.

Remark Here, we discuss special cases for our problem (2), which was encountered by Li
et al.
Case 1. Fori,j=1, p; =1, ;= 1and Uj; = g = I, then problem (2) is reduced to finding
x € &1 such that

0 EFI(X) @Ml(x) (4')
This problem was considered by Li et al. [23] and coined a general nonlinear

mixed-order quasi-variational inclusion (GNMOQVI) involving the & operator

in an ordered Banach space.
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Case 2. If F = 0 (zero mapping), then problem (4) is reduced to finding x € £ such that
0 € M(x). (5)

This problem were considered by Li for ordered RME set-valued mappings [19]
and (&, A)-NODM set-valued mappings [20].

Lemma 4.1 Let (x7,%5,...,x5) €& x Ey X - X &y and uj; € L[,j(x;-‘)for ,j=1,2,3,...,m.

*

Then (X,%5, ..., X U1 Ulgs ooy Ul oo s Uiy Uigs + + s Unnyyy) 1S @ SOlution of problem (2) if

and only if it satisfies

&(x7) =Tl = A (g (D) + piFi(ay w16, ©)
where ]i’lj{j[j () = [(I; = A;) + MM, 7Y (x) and pi, 4 >0 fori=1,2,...,m.
Proof The proof follows from the definition of the relaxed resolvent operator. O
5 Design of the algorithms

Remark If we choose A = 1 and Uj; = Tj for i,j = 1,2,...,m, is single-valued operator, then
Algorithm 1 reduces to Algorithm 2 for problem (3).

Algorithm 1 for the problem (2):
For i,j =1,2,...,m, choose (x?,xg,...,xgn) €& xEx - x &, and ug € L[i,'(x;)). For n =
0,1,2,3,..., set:

A= (1=l + A [ — gi(x) +/§§j;};‘ [ - A) (g (=)

+ pifi(ufy s uy,) ] @

From Nadler’s result, choose u;}*l € Lllj(x;‘“) such that

1
[ @il = (1 + m)DJ(Uii(x;M)' Uy(x}))-

Algorithm 2 for the problem (3):

Forn=0,1,2,...,i=1,2,...,m,choose (x9,x9,...,40) € & x & x - - - x &, »! is computed

as follows:

A= ol - g () + T [ - A (g(+)

+ piFi(Tax, Ty, .., Tiomy,) | + W, (8)

where w € &; is the error to take into account a possible inexact computation of the re-
solvent operator point satisfying condition lim,_, . [|W/]| = 0.
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6 Main results

Theorem 6.1 Let A;: & — &, 8: & —> Eand Fi: &y x & X --- X &, — &; be the single-
valued mappings such that A; be \4,-ordered compression mapping, g; be Ay -ordered com-
pression, (at,ab)-ordered restricted-accretive mapping and F; be Ajj-ordered compression
mapping with respect to the jth argument. Let U;; : & — CB(E)) be a D;-6;;-ordered Lips-
chitz continuous set-valued mapping. Let M; : £ — CB(E;) be a (ya,, L;)-weak rectangular
different compression mapping with respect to A; and if x; X y;, ]i’l_ﬁj () ];{l,_z\lj}i (y;) and for
all A;, p; > 0, then the following condition holds:

m
0= J o) + &hhg + Lilg + hahg) + Y LipidrySp; ¢ <1, )
i#,i=1

forallj=1,2,3,...,m, which in turn, implies that problem (2) admits a solution (x},%5,...,
Ky U1 U s o oos Ulygs oo s Uy oo Uyyy), WheTE (X7,%5,..5%,) € E1 X Ey X+ X &y and uj; €
Uj(x7). Moreover, iterative sequences {x;'} and {u;} generated by Algorithm 1, converge
strongly to x; and uj, for i,j=1,2,...,m, respectzvely.

Proof Using Algorithm 1 and Proposition 2, for i = 1,2,...,m, we have

A @l = (-0 + AL — g () + T [ - A (g (+))
+ piFi(ul, ulhy ol )]]) @ (1= A
[ - @) + T [ - A (@ ()
+oiFi (o )]])
S@-2) @) +a[(+ ~gilaf)) @ (7 - ))]
s T [ =A) (@ (7)) + piF, (umulz, o Upy)]
® it [0 - A) (@) + (™))
<@-2)( @A) + Mol (+f Dl 1)+a2(,( o g))
s M= A (@ () + iy 1. 1)
® Sl [ = A)(&(x™)) + oiF, (ull,u,z, )]}
<@ - @) + A +odhg) (6 D AP
+K{]ii;af[(1i—Ai)(gi(x?))+Pz iy, iy, ui) |
® Ll [ = AD (& (x™)) + oiF, (ull,ulz, )]} (10)

Using Definition 2.2, Proposition 6 and Eq. (10), we get

ot @ 7 | < Anie [(L = 1) + A(e + Agrs) |2 @ 227
e Li| [@ - A) (i (%2)) + pifFi (sl uly .. ult)]
& [ - A (&™) + piFi (e,
<ane[1-2(1~ (@) +2g)) ][} @47
e Ll | (I = A) (& () @ (Ui - A) (g (x 7)) ]

Page 7 of 16
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+ e Lipi | Fiuiy, s o) @ Fiui iy o) |
< e [1=2(1= (o1 + 2g03)) ] |47 @ 27|

+ e Lil [ (e (+7) @2 (7)) | + [Ailei () @ Ai(ei (™)) []

+ M Lipil | Fiudy, iy, o) @ Fi (i iy o) [
< Ane[1=2(1 = (] +hges)) ][} @77

*ox]

+ AMNeLi[ (hg, + Aaghg,)

+)‘-)‘-NcLipi[||Fi(M:‘l1ru?2: lm)@F( 11 ,uﬂ 3. Z;l)”] (11)

Now, from Eq. (11), we compute

||Ff(u:l1’u?2’ ,M” l’ull’ull+1’ lm) 69F( ll ’M:IZ 1’ ’MZ %’MZ I’MZJ’ uflr;l)”
= ”Fi(u?l’ug’ ’uu l’ull’ull+1’ ’u:qm)
GBF( ll ’ul2’ ’Mu l’uzz’uu+1’ MZ’VI) ||
+ ”Fi(u:‘ql_ ’M?Z""’uzr’; l’uu’ uu+1’ ’u:lm)
69F( Ui ’ul2 ’e ’Mzz 1’”11 ’ull+l’ Zf;l)” tee
”F( il gyl )
@ Fy(uyupy oy g (12)

By the definition of F; as a A, -ordered compression map with respect to the jth argument,

we have

”Fi(u?l’uznZ’ ’uzz l’uu’ull+1’ ’utm) GBF( Uy ’uznZ 1’ ’“Z i’uzy; I’MZJ""’M?;I)”

< Ap, |4} ®uly IH +Af, ”ulz @uly H bt AE, Hu,nm ® ul"y;l ”
Z )LFL/ Lt @un 1
i#j=1
S W
i#j=1
1 m o
=0 (n+1) Z My ) @6 (13)
i#,j=1

Using Proposition 6 and Eq. (13) in Eq. (11), we obtain

EANEA N

< A [1=2(1 = (e +2ges)) ] =%
+ AaneLi (g + Aaghg) |2} a7 ]

+)u)\NCLl',0i<1+ 1)) Z )\F BD ||x —x” 1||

i#yj=1
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< {Ane[1=A(1 = (on + o3hg))] + AhncLilhg + Aahg)} o) - 277 |

+)\.)\NCL”OI'(1+ 1)) Z )\p 8D ||x _x -1

i#,j=1

’

which implies that

m
St -]
j=1
m
=Dl -t
i=1
m
S|Pl -0 e ] it sl -
i=1
1 m
i1 i) 3 bndnle 4

Z)»NC 1 )» ot1+k a2)+L()»gl +Aa;hg) }]”x -l 1”

+)‘.}\NC( (n+1)>z Z L}pl)‘F 8D ||x _xn 1“

i=1 i#j,j=1

m
- ZANC [1-4{1 - (c] +ohhg) + Lilhg + 2ajhg)}] ) =27 |

+ ANt (1+ (n+1)>z Z Lipjrr,dp, ] — /7|

j=1 i#i=1

Zch[l A+ A io/ +azxg, + Li(Ag + hajhg)

1 n—
(1+ (71+1)) Z L’p’AFuaDu}:|”x —%; 1”

i#,i=1

m
= ZXNC(I —A+ )»9]-”) ”x]” — x}“l H
j=1

= dnch®) D[l -2 (14)

j=1

where

0" =1 + o/é)\g/ + Lj(Ag + Aajhg) + <

) Z Lllol)"F'j(SDl'/] <1

i#,i=1

and

fu(X) = max {1 - +A9/”},

1<j<m
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From Eq. (14), we know that the sequence {6/"} is monotonic decreasing and 0" — 0,

as n — o0. Thus, f(1) = lim,_, o f,(1) = max;<j<,{1 — A + 16;}. Since 0 < §; < 1 for j =
1,2,...,m. We get 0 = maxi<j<,(6;} € (0,1). By Lemma 2.1, we have f(A) =1 -1 + 10 €
(0,1), from Eq. (14), it follows that {x;’} is a Cauchy sequence and there exists x;.‘ € & such

that xI” — x;" asn — ooforj=1,2,...,m. Next, we show that uZ — u;; € L[,j(x;‘) asn — 00

fori,j=1,2,...,m.It follows from Eq. (13) that the {u;;} are also Cauchy sequences. Hence,

there exists u}; € &; such that uj; — uj; as n — oo for i,j = 1,2,..., m. Furthermore,

d(u, Uy(x7)) = inf{ [uj @t : £ € Uy (%)}
< ||uj; f23) uZ” + d(ug, L[,j(xf))
< |uj @ uj]| + (U (), Ui (7))

= ”u;; ©® uZ” + 8Di/

5 o]

k
%

§||u;;_ug||+6Dii x;lH_>0 (n — 00).

Since Uj(x}) is closed for i,j = 1,2, ..., m, we have uj; € Uj(x7) for i,j = 1,2,...,m. By using

continuity (x7,%3,...,45) € &1 x & x --- x &, and ”:; € L[ij(x;‘) fori,j=1,2,...,m satisfy

Eq. (6) and so by Lemma 4.1, problem (2) has a solution (x7, %3, ...,%%, 5, Uiy, ..., U0+ o)

k * k k ;g k k
Upyis Uz -+ » Upyyy), Where 1z € Uy(x7) for i,j = 1,2,...,m and (6],%3,...,%;,) € & X & X

-+« X &, This completes the proof.

O

Theorem 6.2 Suppose that A;,g; and M; are the same as in Theorem 6.1 fori=1,2,...,m.

Let Ty : & — &; be yy-Lipschitz continuous and F; : £, x Ey x --- x &,y — &; be Apl.},—ordered

compression mapping with respect to the jth argument. Let there be constants A; > 0, for

j=1,2,...,m such that

m
0 = |:ANC{(0/1 +dyhg) + Lilhg + ahg)} +Ane D Lipixﬂ./.y,-,} <1
ij,i=1

Then problem (3) has a unique solution (x7,x3,...,%5) € &1 x & x -+ x &, Moreover, the

iterative sequence {x}'} generated by Algorithm 2 converges strongly to x; for j=1,2,...,m.

Proof Let us define a norm || - || on the product space & x & X - -+ x &, by

m
||(x1,x2,...,xm)||* = Z ||x,||, V(xl,x2,...,xm) € 51 X 52 X +ee X gm
i=1

Then it can easily be seen that (£; x & x -+ X &, || - ||+) is a Banach space.
Setting

Yi =X —gi(xi) +]ill,_1\1:\15[(11 —A;)(gl(xz))

+ piFi(Tx1s ..., Ticaxict, Tixis Tiis1%ists - Tim%m) |-

Define amapping Q: & X & X -+ x &y —> & x Ey x -+ X &y as

Qx1, %0, %) = V1, Y20 - 5 Vm)s VX1, %2, .. %) €EL X E X - X &y

(15)
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For any (x],x3,...,xL), 63, 43,...,4%) € & x & x -+ x &, we have

||Q(xi,xé, . ,xin) (&) Q(xf,x%, . ,xfn) ||*
< ||Q(x},x%,,xin) - Q(xf,x%,...,xfn) ||*

<[ Obyz--0m) = 0155 |,

< lvi-%l- (16)
i-1
First of all, we have to calculate (y} @ y?) as follows:

0} ®92) = (el — i) + 21— 4 (e ()
+ p,»F,»(Tilxl,... Tiiax}y, Tix}, Tiis1%typo- o0 Timy,)])
® (o} —&i(xf) + /5[ = 40 (7))
+ piF(Tnat . Tioaxi g, Tt T oo Timxy)])
= (e} ~&i(x1)) @ (7 —&i(x7))) + Ui [(1 - AN (@i ()
+ 0iF Tk, .., Tiaxly, Tixl, Tl 1oy Timsch) ]
® 7} [ = A4 (@i (7))

2 2 2
+ piFi(Tilxp ceey Tii—lxi,lr Tizx Tu+1xl+1¢ szxm)])

From Definition 2.2 and Proposition 3, we have

lvi @ 5¢| < i =57
< e [{ (7 - gi(i))
® (o} —&i(x7))) + U aii [ - A) (@i ()
+ piFi(Taxy ... Tioaxiy Tix Tiisa%ps - Timxy,) |
® /[ = 40 (g (7))
+ piF(Tpats . Tioaxi g, Tih, Tiisa®tgs o Timig) )}
Al
e | (B[ = An( ,'(x, ) + piFi(Taxy, .o Tioaxp
T}, Tl Tony) | @ 1300 [ = AD (@:(x7))

+ piF(Tpats .., Tiaxi g, Tt Tiisa®rys - Timiy) ) |
< e (o + @) [ o | + a0 30, [ 1 = A0 (i ()
+ piF(Taxts. ., Tioaxty, T}, Tiis1%iyys- - oo Tim) |

® I} [0~ A (g (7))
+ piF(Tnat .., Tiaxi g, Tt Tisadigs- o Tin¥i) ) |- (17)

< el lal 7| + g [
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Further, we calculate

_Ai[(l' _A)( t(xl)) + lOiFi(Tilx%; Tu lxl 1’ T x Tzz+1xl+1; Timxiy,)]
69])\' M, [(1 - A; )(gz( )) + ,OLFL(TiNCp--u Tiax: |, Tux?, Ty X2y, ..o Ttmxfn)] “

< L [{ - A)(gi(x7)) @ (i - A) (&) }

1 1
+szF( llxlr Tii—lxi_lr T”.X Tu+1x,+1r szxm)

AiM

@ Fi(Ta? .., Tiaadfy, Tiehs Tinadtys o Tamiiy) |
= Ll (gi(i) @ &i(x7)) + (A(gi(i)) @ Aili(7))) |

+ 01| Ei(Tawl, .., Ticaxf g, Tie}, Tivailyys o Timecy,)

® Fi(Taoxt,..., Timaaty, Tihs Tinn®ys o Tny) | ]
< Li[{rg|xi @ 7| + rahg | @ 47|}

+ 01| Fi(Taxls .., Tiaxly, Taxd, Tinrxlygo oo Tkl

@ F(Tud, ..., Turx ), Tix?, Tunn®ss oo Ton)||]
S Li{(hg + Aahg) |5l @ 27|

+ i | Fi(Taxt, -, Tiaaxi oy, Tuxi, Tuﬂxm, ) Timx))

E(Tueh ooy Tiaalyy Tahs Tinynreees Tiny ) | (18)

Now we calculate the inner part estimate of the above expression with the help of the
properties of the F;-operator for i = 1,2,...,m. We have

1 1
”F( llxl’ Tii—lxl’_p Tux TlHlep Tlmxm)
2 2
(&) F( 11x1: Tii—lx,'_l; Tux Tu+1x,+1: szx )”
= || E(T, o Tiiaxty, T}, T E; » Tiiax;
llxlr zz—lxi,lr zzx u+1xl+1r zmx ® lep ii—lxi,p
1 1
Ty x Tu+1x,+1: szx ) @ F; (TllxIY Tii—lxi_p Tiix' )
2
Tii+1xi+1; me ) @F( 1961, Tu lxl 1 Tux, ) TLL+1xl+1’ Timxm) ||
< |Ei(Tuxi,..., Ticaxyy, Taxts Tisa®iys - Tim¥,
i1 - ii—-1%4i_1» ii+14410 - im¥m
1 1
(&) F ( 11x1: Tii—lx,'_l; Tux Tu+1x,+1: szxm) H +--
1 1
+ ||F ( zlxp o Tz’z'flxl;p Tiix‘ ’ Tii+1xi+1; EEy) szxm)
® Fi(Tux3, ..., Tiaxiy, Tixts Tiinr ) Tim,
Ay e Lii—1A 1) ii+1% 10«0 Lim¥Ayy,
1
||F ( 0%, Tiax ), Tk, Tin1 g o Timxm)
2 1 1 1
D F; ( ,1x1, vy Tii_lxl;l, Tiix‘, Tii+1xl‘+1» vy Tlmxm) ”
1
”F ( zlxlr cee Tu lxl 1’ T x Tu+1x,+1; oo Timxm)
@ Fi(Tnxl, ..., Tuoaxly, Tux?, Ty Tl )| + -+
X7 oo es Lji-1%;_ 15, LiiXy, zz+1xi+1:-~~: imXy,
1
”F ( llxl) “ee Tzz lxl 1’ T x Tzz+lxl+1; veey Timxm)

2 2
® Fi(Tux3, ..., Ticaxiy, Tty Tis170s - Timoy ) ||
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Tilx} @ Ttlxl H +AE, ” Tl2x2 @ T,2x2|| +-

hiy | Tiashy  Tioss?, | +ag | Tt @ T2

+ Ay | Tisrdiy @ Tinaxfy | + -+ Apy, || Timp, © Timl |-
By using the Lipschitz continuity of Tjj-operator in Eq. (19), we have

1 1 1 1
||F ( zlxlx Tii—lxi,p Tiix" Tii+1xi+1; ceey szxm)

GBP( llxl) Tll lxl 1,T x TzHlep Tlmxfn) ||

m
=Y ruls 0]
i#jj=1

Using Eq. (20) in Eq. (18) and then use it in Eq. (17), we have

lvi @71 < 3 =521

< Ane(of +2 az) o =7 |

m
+ANc |:Li()”gi + )‘Ai)”gi)Hxil _xiz ” +Lip; Z )‘Fiﬂ’l’/”le -

ij=1
Now, Eq. (16) can be rewritten as
|Q(x1 %3 %) — Qa3 %) |,

H% -]

Nk vMs

Il
—_

=

lANC[(al +hgoh) + Lilhg, + Aayhg)] %} — 7|
m
+ AncLipi Z )LFi,'J/z'j”x]'l —xf”
i#,j=1
m
Z ANC ozl + kglozz) +Li(Ag + Ay, )Lgl)]} || |x} —xiz H
i=1

+ZANC 23 hayilat -]

i#,j=1

m
< Z|:ANC{(a’1 +othhg) + Lilhg + Aajhg)}
j=1

m
thne ) Lipikr, Vu} |5 = 7]

i,i=1

m
=20l -]
j=1

xfn}.
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(19)

(20)

(21)
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=03 [ -]
j=1

< 9|| (x},x%,...,xl ) -

1) = (1,43, x2,)

m

where 6 = max; <, 6;. Finally, from Eq. (22), Eq. (16) can be written as

”Q(xi’x%”xin) (xpxz, X ”* _Oznx —x2||

=0 (%1, %3, ..., %) — (x%,x%,,xfn)”* (23)

It follows from the condition (9) that 0 < 6 < 1. This implies that Q: &; x & x -+ - x &, —
&1 x & x --- x &, is a contraction which in turn implies that there exists a unique
(x5,45,...,%5) € & x & x -+ x &, such that Q(x,x3,...,%5) = (*7,%3,...,%5,). Thus,
(x3,%5,...,%},) is the unique solution of problem (3). Now, we prove that x/ — x asn — oo
fori=1,2,...,m.In fact, it follows from Eq. (8) and the Lipschitz continuity of the relaxed
resolvent operator that

it @ o7 | = [aef — &) + T [~ A0 (i (7))
+ piF (T, Tooxl, ..., Tomxlhy) | + W @ [aF — gi ()
L@ - A)(a(x7)
+ piFi(Tuxy, Toxs, ..o Tinxy,) |]] |
= | - &ilof)) @ (7 - &) |
+ 7l - A) (7))
+ piFi(Tux}, Toxh, ..., TimXly) |
® 7} [ (i = A (g (7))

+ piFi (T}, Tinxs, .., Tomy) ||| + | W) @ 0. (24)

From the previous calculations, we have

m m
B EARCEA B Easea
i=1 i=1

< |:ANC{(a’1 +a2k )+ L j(hg + AA,xg,)}

e 3 szzka,m} Sl -t zu

ij,i=1
= 29/\\xf—xf||+2||W?||» (25)
=1 j=1

where a, = Z;Zl lla} — af1l, bu = Z/'Zl [w}ll. Algorithm 2 yields lim,. b, = 0. Now,

Lemma 2.2 implies that lim,,_, o, a,, = 0, and so xl” — xl* asn— oo forj=1,2,...,m. This

completes the proof. d
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7 Conclusion
Two of the most troublesome and imperative issues identified with inclusions are the foun-
dation of generalized inclusions and the improvement of an iterative calculation. In this
article, two systems of variational inclusions were presented and contemplated, which is a
broader aim than the numerous current systems of generalized ordered variational inclu-
sions in the literature. An iterative calculation is performed with a weak ARD mapping to
an inexact solution of our systems, and the convergence criterion is likewise addressed.
We comment that our outcomes are new and valuable for additionally investigations.
Considerably more work is required in every one of these regions to address utilizations of
the system of general ordered variational inclusions in engineering and physical sciences.
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