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Abstract
Inspired by the work of Zegeye (J. Math. Anal. Appl. 343:663–671, 2008) and the
recent papers of Chidume et al. (Fixed Point Theory Appl. 2016:97, 2016; Br. J. Math.
Comput. Sci. 18:1–14, 2016), we devise a viscosity iterative algorithm without
involving the resolvent operator for approximating the zero of a monotone mapping
in the setting of uniformly convex Banach spaces. Under concise parameter
conditions we establish strong convergence of the proposed algorithm. Moreover,
applications to constrained convex minimization problems and solution of
Hammerstein integral equations are included. Finally, the performances and
computational examples and a comparison with related algorithms are presented to
illustrate the efficiency and applicability of our new algorithm.
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1 Introduction
Let H be a real inner product space. A map A : D(A) ⊂ H → 2H is called monotone if, for
each x, y ∈ D(A), the following inequality holds:

〈ξ – η, x – y〉 ≥ 0 for all ξ ∈ Ax,η ∈ Ay. (1.1)

Interest in monotone mappings derives mainly from their significant numerous appli-
cations. For example, the classical convex optimization problem: let h : H → R ∪ {∞} be
a proper convex, lower semicontinuous (l.s.c.) function. The sub-differential of h at x ∈ H
is defined by ∂h : H → 2H

∂h(x) =
{

x∗ ∈ H : h(y) – h(x) ≥ 〈
y – x, x∗〉,∀y ∈ H

}
.

Clearly, ∂h is a monotone operator on H , and 0 ∈ ∂h(x0) if and only if x0 is a minimizer
of h. In the case of setting ∂h ≡ A, solving the inclusion 0 ∈ Au, one obtains a minimizer
of h.
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In addition, the inclusion 0 ∈ Au when A is a monotone map from a real Hilbert space
to itself also appears in several systems, in particular, evolution systems:

du
dt

+ Au = 0,

where A is a monotone map. At an equilibrium state, du
dt = 0, so that Au = 0, the solution

coincides with the equilibrium state of the dynamical system (see, e.g., Zarantonello [4],
Minty [5], Kac̆urovskii [6], Chidume [7], Berinde [8], and others).

For solving the original problem of finding a solution of the inclusion 0 ∈ Au, Martinet
[9] introduced the well-known iteration method as follows: for n ∈ N, ∀λn > 0, x1 ∈ E and

xn+1 = Jλn xn,

where Jλn = (I + λnA)–1 is the well-known Yosida resolvent operator, A is a monotone op-
erator in Hilbert spaces.

This is a successful and powerful algorithm in finding a solution of the equation 0 ∈ Au
and after that, it was extended by many authors (see, e.g., Rockafellar [10], Chidume [11],
Xu [12], Tang [13], Qin et al. [14]).

On the other hand, Browder [15] introduced an operator T : H → H by T = I –A where I
is the identity mapping on a Hilbert space H . The operator T is called pseudo-contractive
and the zeros of monotone operator A, if they exist, correspond to the fixed points of T .
Therefore the approximation of the solutions of Au = 0 reduces to the approximation of
the fixed points of a pseudo-contractive mapping.

Gradually, the notion of monotone mapping has been extended to real normed spaces.
Let E be a real normed space with dual E∗. A map J : E → 2E∗ , defined by

Jx :=
{

x∗ ∈ E∗ :
〈
x, x∗〉 = ‖x‖ · ∥∥x∗∥∥,‖x‖ =

∥∥x∗∥∥}
, (1.2)

is called the normalized duality map on E. Some properties of the normalized duality map
can be obtained from Alber [16] and the references therein.

Since the normalized duality map J is the identity map I in Hilbert spaces, and so, under
the idea of Browder [15], the approximating to solution of 0 ∈ Au has been extended to
normed spaces by numerous authors (see, for instance, Chidume [17, 18], Agarwal et al.
[19], Reich [20], Diop [21], and the references therein), where A is a monotone mapping
from E to itself.

Although the above results have better theoretical properties, such as, but not only, weak
and strong convergence to a solution of the equation 0 ∈ Au, there are still some difficulties
to overcome. For instance, the generalized technique of converting the zero of A into the
fixed point of T in Browder [15] is not applicable since, in this case when A is monotone,
A maps E into E∗. In addition, the resolvent technique in Martinet [9] is not convenient to
use because one has to compute the inverse of (I +λA) at each step of the iteration process.

Hence, it is only natural to ask the following question.

Question 1.1 Can we construct an algorithm without involving the resolvent operator to
approximate a zero point of A in Banach spaces?



Tang Journal of Inequalities and Applications  (2018) 2018:254 Page 3 of 23

Motivated and inspired by the work of Martinet [9], Rockafellar [10], Zegeye [1], and
Chidume et al. [2, 3], as well as Ibaraki and Takahashi [22], we wish to provide an af-
firmative answer to the question. Our contribution in the present work is a new viscos-
ity iterative method for the solutions of the equation 0 ∈ AJu, that is, Ju ∈ A–1(0), where
A : E∗ → E is a monotone operator defined on the dual of a Banach space E and J : E → E∗

is the normalized duality map.
The outline of the paper is as follows. In Sect. 2, we collect definitions and results which

are needed for our further analysis. In Sect. 3, our implicit and explicit algorithms without
involving a resolvent operator are introduced and analyzed, the strong convergence to a
zero of the composed mapping AJ under concise parameters conditions is obtained. In
addition, the main result is applied to the convex optimization problems and the solution
of Hammerstein equation. Finally, some numerical experiments and a comparison with
related algorithms are given to illustrate the performances of our new algorithms.

2 Preliminaries
In the sequel, we shall need the following definitions and results.

Let E be a uniformly convex Banach space and E∗ be its dual space, let the normalized
duality map J on E be defined as (1.2). Then the following properties of the normalized
duality map hold (see, e.g., Alber [16], Cioranescu [23], Xu and Roach [24], Xu [25], Zăli-
nescu [26]):

(i) J is a monotone operator;
(ii) if E is smooth, then J is single-valued;

(iii) if E is reflexive, then J is onto;
(iv) if E is uniformly smooth, then J is uniformly continuous on bounded subsets of E.
The space E is said to be smooth if ρE(τ ) > 0 for all τ > 0, and the space E is said to be

uniformly smooth if limτ→0+
ρE(τ )

τ
= 0, where ρE(τ ) is defined by

ρE(τ ) = sup

{‖x + y‖ – ‖x – y‖
2

– 1;‖x‖ = 1,‖y‖ = τ

}
.

Let p > 1, the space E is said to be p-uniformly smooth if there exists a constant c > 0
such that ρE(τ ) ≤ cτ p, τ > 0. It is well known that every p-uniformly smooth Banach space
is uniformly smooth. Furthermore, from Alber [16], we can get that if E is 2-uniformly
smooth, then there exists a constant L∗ > 0 such that

‖Jx – Jy‖ ≤ L∗‖x – y‖, ∀x, y ∈ E.

A mapping A : D(A) ⊂ E → E∗ is said to be monotone on a Banach space E if, for each
x, y ∈ D(A), the following inequality holds:

〈x – y, Ax – Ay〉 ≥ 0.

A mapping A : D(A) ⊂ E → E∗ is said to be Lipschitz continuous if there exists L > 0
such that, for each x, y ∈ D(A), the following inequality holds:

‖Ax – Ay‖E∗ ≤ L‖x – y‖E .
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A mapping f : E → E is called contractive if there exists a constant ρ ∈ (0, 1) such that

∥∥f (x) – f (y)
∥∥ ≤ ρ‖x – y‖, ∀x, y ∈ E.

Let C be a nonempty closed convex subset of a uniformly convex Banach space E. A Ba-
nach limit μ is a bounded linear functional on l∞ such that

inf{xn; n ∈ N} ≤ μ(x) ≤ sup{xn; n ∈ N}, ∀x = {xn} ∈ l∞,

and μ(xn) = μ(xn+1) for all {xn} ∈ l∞. Suppose that {xn} is a bounded sequence in E, then
the real valued function ϕ on E defined by

ϕ(y) = μ‖xn – y‖2, ∀y ∈ E, (2.1)

is convex and continuous, and ϕ(y) → ∞ as ‖y‖ → ∞. If E is reflexive, there exists z ∈ C
such that ϕ(z) = miny∈C ϕ(y) (see, e.g., Kamimura and Takahashi [27], Tan and Xu [28]), so
we can define the set Cmin by

Cmin =
{

z ∈ C;ϕ(z) = min
y∈C

ϕ(y)
}

. (2.2)

It is easy to verify that Cmin is a nonempty, bounded, closed, and convex subset of E. The
following lemma was proved in Takahashi [29].

Lemma 2.1 Let α be a real number, and (x0, x1, . . .) ∈ l∞ such that μ(xn) ≤ α for all Banach
limits. If lim supn→∞(xn+1 – xn) ≤ 0, then lim supn→∞ xn ≤ α.

Lemma 2.2 (see, e.g., Tan and Xu [28], Osilike and Aniagbosor [30]) Let {an} be a sequence
of nonnegative real numbers satisfying the following relation:

an+1 ≤ (1 – θn)an + σn, n ≥ 0,

where {θn} and {σn} are real sequences such that
(i) limn→∞ θn = 0,

∑∞
n=1 θn = ∞;

(ii) limn→∞ σn
θn

≤ 0 or
∑∞

n=0 σn < ∞.
Then the sequence {an} converges to 0.

Lemma 2.3 (see, e.g., Xu [12]) Let E be a real Banach space with dual E∗. Let J : E → E∗

be the normalized duality map, then for all x, y ∈ E,

‖x + y‖2 ≤ ‖x‖2 + 2
〈
y, j(x + y)

〉
, ∀j(x + y) ∈ J(x + y).

Lemma 2.4 (Zegeye [1]) Let E be a uniformly convex and uniformly smooth Banach space.
Assume that A : E∗ → E is a maximal monotone mapping such that (AJ)–1(0) �= ∅. Then,
for any u ∈ E and t ∈ (0, 1), the path t → xt ∈ E defined by

xt = tu + (1 – t)(I – AJ)xt , (2.3)

converges strongly to an element z ∈ (AJ)–1(0) as t → 0.
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3 Main results
We now show the strong convergence of our implicit and explicit algorithms.

Theorem 3.1 Let E be a uniformly convex and 2-uniformly smooth Banach space. Assume
that A : E∗ → E is an L-Lipschitz continuous monotone mapping such that (AJ)–1(0) �= ∅
and f : E → E is a contraction with coefficient ρ ∈ (0, 1). Then the path t → xt ∈ E, defined
by

xt = tf (xt) + (1 – t)
(
I – ω(t)AJ

)
xt , (3.1)

converges strongly to an element z ∈ (AJ)–1(0) provided that limt→0
ω(t)

t = 0.

Proof Since E is 2-uniformly smooth, from Alber [16, 31], we have that J is L∗-Lipschitz
continuous, noticing that A is L-Lipschitz continuous, therefore I – AJ is Lipschitz con-
tinuous with constant 1 + LL∗.

First, we show that xt is well-defined. Since limt→0
ω(t)

t = 0, for ∀ε > 0, there exists δ > 0
such that, for all t ∈ (0, δ), the inequality |ω(t)

t | < ε holds.
Without loss of generality, we take ε > 0 such that ρ + εLL∗ = b < 1, where b is a positive

constant. Define an operator Tt as Ttx = f (x) – (1 – t) ω(t)
t AJx, for ∀x, y ∈ E, we can get

‖Ttx – Tty‖ =
∥∥∥∥f (x) – (1 – t)

ω(t)
t

AJx – f (y) + (1 – t)
ω(t)

t
AJy

∥∥∥∥

=
∥∥∥∥f (x) – f (y) – (1 – t)

ω(t)
t

(AJx – AJy)
∥∥∥∥

≤ ∥∥f (x) – f (y)
∥∥ +

∣∣∣∣(1 – t)
ω(t)

t

∣∣∣∣‖AJx – AJy‖

≤ (ρ + εLL∗)‖x – y‖
= b‖x – y‖,

which means that Tt is a contraction. Therefore, by the Banach contraction principle, there
exists a unique fixed point of Tt denoted by xt . That is, xt = tf (xt) + (1 – t)(I – ω(t)AJ)xt ,
so xt is well-defined.

Next we shall show that xt is bounded as limt→0
ω(t)

t = 0. For x∗ ∈ (AJ)–1(0), we have the
following estimation:

∥∥xt – x∗∥∥ =
∥∥∥∥f (xt) – x∗ – (1 – t)

ω(t)
t

(
AJxt – AJx∗)

∥∥∥∥

≤ ∥∥f (xt) – f
(
x∗)∥∥ +

∥∥f
(
x∗) – x∗∥∥ + (1 – t)

ω(t)
t

LL∗
∥∥xt – x∗∥∥

≤ (ρ + εLL∗)
∥∥xt – x∗∥∥ +

∥∥f
(
x∗) – x∗∥∥,

hence,

∥∥xt – x∗∥∥ ≤ 1
1 – b

∥∥f
(
x∗) – x∗∥∥, t ∈ (0, δ),

which means that xt is bounded as t → 0, therefore is f (xt).
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On the other hand, for arbitrary u ∈ E, (3.1) can be rewritten as

xt = tu + (1 – t)(I – AJ)xt + t
(
f (xt) – u

)
+ (1 – t)

(
1 – ω(t)

)
AJxt ,

hence,

(1 – t)
(
1 – ω(t)

)
AJxt = xt – tu – (1 – t)(I – AJ)xt – t

(
f (xt) – u

)
,

which means that xt converges strongly to an element z ∈ (AJ)–1(0) as limt→0
ω(t)

t = 0 ac-
cording to Lemma 2.4. The proof is complete. �

For the rest of the paper, {αn} and {ωn} are real sequences in (0, 1) satisfying the following
conditions:

(C1) limn→∞ αn = 0,
∑∞

n=1 αn = ∞; limn→∞ ωn
αn

= 0 and
∑∞

n=0 ωn < ∞;
(C2) f is a piecewise function: f (x∗) = x∗ if x∗ ∈ (AJ)–1(0); otherwise f (x∗) is a contractive

function with coefficient ρ .

Theorem 3.2 Let E be a uniformly convex and 2-uniformly smooth Banach space. As-
sume that A : E∗ → E is an L-Lipschitz continuous monotone mapping such that Cmin ∩
(AJ)–1(0) �= ∅ and f : E → E is a piecewise function defined as (C2). Then, for any x0 ∈ E,
the sequence {xn}, defined by

xn+1 = αnf (xn) + (1 – αn)(I – ωnAJ)xn, (3.2)

converges strongly to an element z ∈ (AJ)–1(0).

Proof According to the definition of f , it is obvious that if xn ∈ (AJ)–1(0) then we stop the
iteration. Otherwise, we set n := n + 1 and return to iterative step (3.2).

The proof includes three steps.
Step 1: First we prove that {xn} is bounded. Since αn → 0 and limn→∞ ωn

αn
= 0 as n → ∞,

there exists N0 > 0 such that αn ≤ 1
6 , ωn

αn
≤ 1

6LL∗ , ∀n > N0. We take x∗ ∈ (AJ)–1(0) or Jx∗ ∈
A–1(0). Let r > 0 be sufficiently large such that xN0 ∈ Br(x∗) and f (xN0 ) ∈ B r

6
(x∗).

We show that {xn} belongs to B := Br(x∗) for all integers n ≥ N0. First, it is clear by con-
struction that xN0 ∈ B. Assuming now that, for an arbitrary n > N0, xn ∈ B, we prove that
xn+1 ∈ B.

If xn+1 does not belong to B, then we have ‖xn+1 – x∗‖ > r. From the recurrence (3.2) we
obtain that

xn+1 – xn = αnf (xn) + (1 – αn)(I – ωnAJ)xn – xn.

Thus,

xn+1 – xn = αn
(
f (xn) – xn

)
– (1 – αn)ωnAJxn. (3.3)

Therefore, from (3.3) and Lemma 2.3 and the fact that xn+1 – x∗ = xn+1 – xn + xn – x∗,

∥∥xn+1 – x∗∥∥2 =
∥∥xn+1 – xn + xn – x∗∥∥2

≤ ∥∥xn – x∗∥∥2 + 2
〈
xn+1 – xn, j

(
xn+1 – x∗)〉
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=
∥∥xn – x∗∥∥2 + 2

〈
αn

(
f (xn) – xn

)
– (1 – αn)ωnAJxn, j

(
xn+1 – x∗)〉

=
∥∥xn – x∗∥∥2 + 2

〈
αn

(
f (xn) – xn

)
– (1 – αn)ωnAJxn

+ αn
(
xn+1 – x∗) – αn

(
xn+1 – x∗), j

(
xn+1 – x∗)〉

=
∥∥xn – x∗∥∥2 – 2αn

∥∥xn+1 – x∗∥∥2 + 2
〈
αn

(
f (xn) – xn

)

– (1 – αn)ωnAJxn + αn
(
xn+1 – x∗), j

(
xn+1 – x∗)〉

=
∥∥xn – x∗∥∥2 – 2αn

∥∥xn+1 – x∗∥∥2 + 2
〈
αn

(
f (xn) – x∗) + αn(xn+1 – xn)

– (1 – αn)ωnAJxn, j
(
xn+1 – x∗)〉,

that is,

∥∥xn+1 – x∗∥∥2 ≤ ∥∥xn – x∗∥∥2 – 2αn
∥∥xn+1 – x∗∥∥2 + 2

〈
αn

(
f (xn) – x∗) + α2

n
(
f (xn) – xn

)

– αn(1 – αn)ωnAJxn – (1 – αn)ωnAJxn, j
(
xn+1 – x∗)〉

≤ ∥∥xn – x∗∥∥2 – 2αn
∥∥xn+1 – x∗∥∥2 + 2

〈
αn

(
f (xn) – x∗) + α2

n
(
f (xn) – x∗)

– α2
n
(
xn – x∗) –

(
1 – α2

n
)
ωnAJxn, j

(
xn+1 – x∗)〉

≤ ∥∥xn – x∗∥∥2 – 2αn
∥∥xn+1 – x∗∥∥2 + 2

[
2αn

∥∥f (xn) – x∗∥∥ + α2
n
∥∥xn – x∗∥∥

+
(
1 – α2

n
)
ωn

∥∥AJxn – AJx∗∥∥]∥∥xn+1 – x∗∥∥.

Since ‖xn+1 – x∗‖ > ‖xn – x∗‖ and A is L-Lipschitz and J is L∗-Lipschitz continuous re-
spectively, thus we get

αn
∥∥xn+1 – x∗∥∥ ≤ 2αn

∥∥f (xn) – x∗∥∥ + α2
n
∥∥xn – x∗∥∥ + 2(1 – αn)ωnLL∗

∥∥xn – x∗∥∥.

Furthermore,

∥∥xn+1 – x∗∥∥ ≤ 2
∥∥f (xn) – x∗∥∥ + αn

∥∥xn – x∗∥∥ + 2(1 – αn)
ωn

αn
LL∗

∥∥xn – x∗∥∥

≤ 2 ∗ r
6

+
r
3

+ 2 ∗ 1
6LL∗

LL∗r ≤ r.

This is contradiction. Consequently, we can get that {xn} belongs to B for all integers
n ≥ N0, which implies that the sequence {xn} is bounded, so are the sequences {f (xn)} and
{AJxn}.

Moreover, it is easy to see that ‖xn+1 – xn‖ → 0 because αn → 0 and ωn = o(αn),

‖xn+1 – xn‖ ≤ αn
∥∥f (xn) – xn

∥∥ + (1 – αn)ωn‖AJxn‖ → 0.

Step 2: We show that limn→∞ sup〈z – f (xn), j(z – xn+1)〉 ≤ 0, where z ∈ Cmin ∩ (AJ)–1(0).
Since the sequences {xn} and {f (xn)} are bounded, there exists R > 0 sufficiently large

such that f (xn), xn ∈ B1 := BR(z), ∀n ∈ N. Furthermore, the set B1 is a bounded closed and
convex nonempty subset of E. By the convexity of B1, we have that (1 – t)z + tf (xn) ∈ B1.
Then it follows from the definition of ϕ that ϕ(z) ≤ ϕ((1 – t)z + tf (xn)). Using Lemma 2.3,
we have that

∥∥xn – z – t
(
f (xn) – z

)∥∥2 ≤ ‖xn – z‖2 – 2t
〈
f (xn) – z, j

(
xn – z – t

(
f (xn) – z

))〉
,
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thus taking Banach limit over n ≥ 1,

μ
∥∥xn – z – t

(
f (xn) – z

)∥∥2 ≤ μ‖xn – z‖2 – 2tμ
〈
f (xn) – z, j

(
xn – z – t

(
f (xn) – z

))〉
,

which means that

2tμ
〈
f (xn) – z, j

(
xn – z – t

(
f (xn) – z

))〉 ≤ μ‖xn – z‖2 – μ
∥∥xn – z – t

(
f (xn) – z

)∥∥2

= ϕ(z) – ϕ
(
z + t

(
f (xn) – z

)) ≤ 0,

that is,

μ
〈
f (xn) – z, j

(
xn – z – t

(
f (xn) – z

))〉 ≤ 0.

By using the weak lower semi-continuity of the norm on E, we get the following as t → 0:

〈
f (xn) – z, j(xn – z)

〉
–

〈
f (xn) – z, j

(
xn – z – t

(
f (xn) – z

))〉 → 0.

Thus, for ∀ε > 0, there exists δ > 0 such that t ∈ (0, δ), n ≥ 1

〈
f (xn) – z, j(xn – z)

〉
<

〈
f (xn) – z, j

(
xn – z – t

(
f (xn) – z

))〉
+ ε,

therefore,

μ
〈
f (xn) – z, j(xn – z)

〉
< μ

〈
f (xn) – z, j

(
xn – z – t

(
f (xn) – z

))〉
+ ε.

In view of the arbitrariness of ε, we have that

μ
〈
f (xn) – z, j(xn – z)

〉 ≤ 0.

From the norm-to-weak* uniform continuity of J on each bounded subset of E, we have
that

lim
n→∞

(〈
f (xn) – z, j(xn+1 – z)

〉
–

〈
f (xn) – z, j(xn – z)

〉)
= 0.

Thus, the sequence {〈f (xn) – z, j(xn – z)〉} satisfies the condition of Lemma 2.1, so we have
that

lim sup
n→∞

〈
f (xn) – z, j(xn+1 – z)

〉 ≤ 0. (3.4)

Step 3: Next we show that ‖xn+1 – z‖ → 0.
From (3.2), (3.3) and Lemma 2.3 we have that

‖xn+1 – z‖2 = ‖xn+1 – xn + xn – z‖2

=
∥∥xn – z + αn

(
f (xn) – xn

)
– (1 – αn)ωnAJxn

∥∥2
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=
∥∥(1 – αn)(xn – z) + αn

(
f (xn) – z

)
– (1 – αn)ωnAJxn

∥∥2

≤ (1 – αn)2‖xn – z‖2 + 2
〈
αn

(
f (xn) – z

)
– (1 – αn)ωnAJxn, j(xn+1 – z)

〉
.

In view of the fact that the sequence {xn} is bounded, without loss of generality, we
assume that M := sup{‖xn – z‖}, therefore,

‖xn+1 – z‖2 ≤ (1 – αn)2‖xn – z‖2 + 2
〈
αn

(
f (xn) – z

)
– (1 – αn)ωnAJxn, j(xn+1 – z)

〉

= (1 – αn)‖xn – z‖2 + 2
〈
αn

(
f (xn) – z

)
, j(xn+1 – z)

〉

+ 2(1 – αn)ωn‖AJz – AJxn‖‖xn+1 – z‖
≤ (1 – αn)‖xn – z‖2 + σn,

where σn = 2αn〈(f (xn) – z), j(xn+1 – z)〉 + 2ωnLL∗M2.
From Lemma 2.2 and (3.4) we shall obtain that

lim
n→∞‖xn – z‖ = 0,

which means that the consequence {xn} converges strongly to z. The proof is complete. �

Theorem 3.3 Let E be a uniformly convex and 2-uniformly smooth Banach space. As-
sume that A : E∗ → E is an L-Lipschitz continuous monotone mapping such that Cmin ∩
(AJ)–1(0) �= ∅. Then, for any x0 ∈ E, the sequence {xn} defined by

xn+1 = αnxn + (1 – αn)(I – ωnAJ)xn (3.5)

converges strongly to an element z ∈ (AJ)–1(0).

Proof Similar to the proof in Theorem 3.2, we can obtain that the sequences {xn} and
{AJxn} are bounded. Furthermore, we have that limn→∞ sup〈xn – z, j(xn+1 – z)〉 ≤ 0, where
z ∈ Cmin ∩ (AJ)–1(0).

In addition, the recurrence (3.5) can be rewritten as

xn+1 = xn – (1 – αn)ωnAJxn.

It is easy to see that ‖xn+1 – xn‖ = (1 – αn)ωn‖AJxn‖ → 0 as αn → 0.
From the recursion (3.5) and Lemma 2.4 we have that

‖xn+1 – z‖2 =
∥∥(1 – αn)(xn – z) + αn(xn – z) – (1 – αn)ωnAJxn

∥∥2

≤ (1 – αn)2‖xn – z‖2 + 2αn
〈
xn – z, j(xn+1 – z)

〉

– 2(1 – αn)ωn
〈
AJxn, j(xn+1 – z)

〉

≤ (1 – αn)‖xn – z‖2 + 2αn
〈
xn – z, j(xn+1 – z)

〉
+ 2(1 – αn)ωnLL∗M2

≤ (1 – αn)‖xn – z‖2 + 2αn
〈
xn – z, j(xn+1 – z)

〉
+ 2ωnLL∗M2,
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where M := sup{‖xn – z‖}. It follows from Lemma 2.2 that limn→∞ ‖xn – z‖ = 0, which
means that the sequence {xn} converges strongly to an element z ∈ (AJ)–1(0). The proof is
complete. �

According to Zegeye [1] and Liu [32], for a mapping T : E → E∗, a point x∗ ∈ E is called a
J-fixed point of T if and only if Tx∗ = Jx∗ and T is called semi-pseudo if and only if A := J –T
is monotone. We can observe that a zero point of A is the J-fixed point of a semi-pseudo
mapping. If E is a Hilbert space, the semi-pseudo mapping and the J-fixed point coincide
with a pseudo-contractive mapping and a fixed point of pseudo-contraction, respectively.
In the case that the semi-pseudo mapping T is from E∗ to E, we have that AJ := (J–1 – T)J
is monotone and the J-fixed point set is denoted by FJ (T) = {x ∈ E, x = TJx}. We have the
following corollaries for semi-pseudo mappings from E∗ to E.

Corollary 3.4 Let E be a uniformly convex and 2-uniformly smooth Banach space. Assume
that T : E∗ → E is an L-Lipschitz continuous semi-pseudo mapping such that Cmin ∩FJ (T) �=
∅ and f : E → E is a piecewise function defined as (C2). Then, for any x0 ∈ E, the sequence
{xn} defined by

xn+1 = αnf (xn) + (1 – αn)
(
(1 – ωn)I + ωnTJ

)
xn

converges strongly to an element z ∈ FJ (T).

Corollary 3.5 (Zegeye [1]) Let E be a uniformly convex and 2-uniformly smooth Banach
space. Assume that A : E∗ → E is an L-Lipschitz continuous monotone mapping such that
Cmin ∩ (AJ)–1(0) �= ∅. Then, for any u ∈ E, the sequence xn defined by

xn+1 = αnu + (1 – αn)(I – ωnAJ)xn

converges strongly to an element z ∈ (AJ)–1(0).

Proof Take f (x) ≡ u in Theorem 3.2, the result is obtained. �

If we change the role of E and E∗, then we shall obtain the following results.

Theorem 3.6 Let E be a uniformly convex and 2-uniformly smooth Banach space. As-
sume that A : E → E∗ is an L-Lipschitz continuous monotone mapping such that Cmin ∩
(AJ–1)–1(0) �= ∅. Then, for any x0 ∈ E, the sequence {xn} defined by

xn+1 = J–1(αnJxn + (1 – αn)(J – ωnA)xn
)
, n ≥ 1,

converges strongly to an element z ∈ (AJ–1)–1(0).

Theorem 3.7 (Zegeye [1]) Let E be a uniformly convex and 2-uniformly smooth Banach
space. Assume that A : E → E∗ is an L-Lipschitz continuous monotone mapping such that
Cmin ∩ (AJ–1)–1(0) �= ∅. Then, for any u ∈ E, the sequence {xn} defined by

xn+1 = J–1(αnJu + (1 – αn)(J – ωnA)xn
)
, n ≥ 1,

converges strongly to an element z ∈ (AJ–1)–1(0).
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We give below two examples in order to show that the conditions of explicit iterative
Algorithm (3.2) are easily satisfied.

Example 1 We take the parameters as follows:

αn =
1

(n + 1)p , ωn =
1

n(n + 1)p , (0 < p ≤ 1).

It is easy to verify that
(1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(2) limn→∞ ωn
αn

= 0 and
∑∞

n=1 ωn < ∞.

Example 2 We take the parameters as follows:

αn =
1

lnp(n + 1)
, ωn =

1
n lnp(n + 1)

, (0 < p ≤ 1).

It is easy to verify that
(1) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(2) limn→∞ ωn
αn

= 0 and
∑∞

n=1 ωn < ∞.

4 Applications
In this section, we consider the constrained convex minimization problems and the so-
lution of Hammerstein integral equations as the applications of our main result which is
proposed in Sect. 3.

4.1 Application to constrained convex minimization problems
In this subsection, we will consider the following minimization problem:

min
x∈C

h(x), (4.1)

where C is a nonempty closed convex subset of E, and h : C → R is a real-valued con-
vex function. Assume that problem (4.1) is consistent (i.e., its solution set is nonempty).
According to Diop et al. [21], x ∈ E is a minimizer of h if and only if 0 ∈ ∂h(x).

Lemma 4.1 Let E be a real normed smooth space and h : E → R be a differential convex
function. Assume that the function h is bounded, then the sub-differential map ∂h : E →R

is bounded and the following inequality holds:

〈
∂h(x) – ∂h(y), x – y

〉 ≥ 〈Jx – Jy, x – y〉, ∀x, y ∈ E.

Proof Define g := h – 1
2‖ · ‖2, then h = g + 1

2‖ · ‖2. Since h and ‖ · ‖2 are differential, so g
is differential and the sub-differential of g is denoted by ∂g = ∂h – J . Let x ∈ E, we can get
from the definition of ∂g that

g(y) – g(x) ≥ 〈
y – x, ∂g(x)

〉
, ∀y ∈ E,
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which means that

h(y) –
1
2
‖y‖2 – h(x) +

1
2
‖x‖2 ≥ 〈

y – x, ∂h(x) – Jx
〉
, ∀y ∈ E. (4.2)

Exchanging x and y in the above inequality (4.2), we have that

h(x) –
1
2
‖x‖2 – h(y) +

1
2
‖y‖2 ≥ 〈

x – y, ∂h(y) – Jy
〉
, ∀x ∈ E. (4.3)

Adding the above inequalities (4.2) and (4.3), we get that

〈
∂h(x) – ∂h(y), x – y

〉 ≥ 〈x – y, Jx – Jy〉.

This completes the proof. �

Remark 4.2 From Lemma 4.1, the sub-differential ∂h is monotone, we can also get that
T = J – ∂h is a semi-pseudo mapping from E to E∗.

Consequently, the following theorems are obtained.

Theorem 4.3 Let E be a uniformly convex and 2-uniformly smooth real Banach space.
Assume that h : E →R is a proper, convex, bounded, and coercive function such that Cmin ∩
(∂hJ)–1(0) �= ∅ and f : E → E is a piecewise function defined as (C2). Then, for any x0 ∈ E,
the sequence {xn} defined by

xn+1 = αnf (xn) + (1 – αn)(I – ωn∂hJ)xn, n ≥ 1,

converges strongly to an element x∗ ∈ (∂hJ)–1(0), that is, Jx∗ ∈ (∂h)–1(0). Then function h
has a unique minimizer Jx∗ ∈ E∗ and the sequence {xn}.

Theorem 4.4 Let E be a uniformly convex and 2-uniformly smooth real Banach space.
Assume that h : E →R is a proper, convex, bounded, and coercive function such that Cmin ∩
(∂hJ)–1(0) �= ∅. Then, for any x0 ∈ E, the sequence {xn} defined by

xn+1 = αnxn + (1 – αn)(I – ωn∂hJ), n ≥ 1,

converges strongly to an element x∗ ∈ (∂hJ)–1(0), that is, Jx∗ ∈ (∂h)–1(0).

4.2 Application to solution of Hammerstein integral equations
An integral equation (generally nonlinear) of Hammerstein type has the form

u(x) +
∫

�

k(x, y)f
(
y, u(y)

)
= w(x), (4.4)

where the unknown function u and the inhomogeneous function w lie in a Banach space
E of measurable real-valued functions.

By simple transformation, (4.4) shall be written as

u + KFu = w,
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which can be illustrated, without loss of generality, as

u + KFu = 0. (4.5)

For the case of a real Hilbert space H , for F , K : H → H , Chidume and Zegeye [33]
defined an auxiliary map on the Cartesian product E := H × H , T : E → E by

T[u, v] = [Fu – v, Kv + u].

It is known that

T[u, v] = 0 ⇔ u is the solution of (4.5) and v = Fu.

They obtained strong convergence of an iterative algorithm defined in the Cartesian prod-
uct space E to a solution of Hammerstein Eq. (4.5).

In a Banach space more general than a Hilbert space, Zegeye [34], Chidume and Idu [35]
introduced the operator T : E × E∗ → E∗ × E:

T[u, v] = [Ju – Fu + v, J∗v – Kv – u],

where F : E → E∗ and K : E∗ → E are monotone mappings and J∗ is the normalized du-
ality map from E∗ to E. They proved that the mapping A := J – T defined by A[u, v] :=
[Fu – v, Kv + u] is monotone and u∗ is a solution (when they exist) of the Hammerstein
equation u + KFu = 0 if and only if (u∗, v∗) is a zero point of A, where v∗ = Fu∗. Applying
our Theorem 3.2, the following theorems shall be obtained.

Theorem 4.5 Let E be a uniformly convex and 2-uniformly smooth Banach space. As-
sume that F : E → E∗, K : E∗ → E are Lipschitz continuous monotone mappings such that
Hammerstein Eq. (4.5) is solvable and f1 : E → E, f2 : E∗ → E∗ are two piecewise functions
defined as (C2). Then, for (u0, v0) ∈ E × E∗, the sequences {un} and {vn} defined by

un+1 = αnf1(un) + (1 – αn)
(
un – ωnJ∗(Fun – vn)

)
,

vn+1 = αnf2(vn) + (1 – αn)
(
vn – ωnJ(Kvn + un)

)
,

converge strongly to u∗ and v∗, respectively, where u∗ is a solution of u + KFu = 0 with v∗ =
Fu∗.

Theorem 4.6 Let E be a uniformly convex and 2-uniformly smooth Banach space. As-
sume that F : E → E∗, K : E∗ → E are Lipschitz continuous monotone mappings such that
Hammerstein Eq. (4.5) is solvable. Then, for (u0, v0) ∈ E × E∗, the sequences {un} and {vn},
defined by

un+1 = αnun + (1 – αn)
(
un – ωnJ∗(Fun – vn)

)
,

vn+1 = αnvn + (1 – αn)
(
vn – ωnJ(Kvn + un)

)
,

converge strongly to u∗ and v∗, respectively, where u∗ is a solution of u + KFu = 0 with v∗ =
Fu∗.
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5 Numerical example
In the sequel, we give a numerical example to illustrate the applicability, effectiveness,
efficiency, and stability of our viscosity iterative algorithm (VIA). We have written all the
codes in Matlab R2016b and they are preformed on a LG dual core personal computer.

5.1 Numerical behavior of VIA
Example Let E = R, C = E. Let A, J : R →R be the mappings defined as

Ax = ax, Jx = x,

f : C → C be defined as

f (x) =

⎧
⎨

⎩

x
2 , Ax �= 0,

x, if Ax = 0.

Thus, for x, y ∈ R, we have

‖Ax – Ay‖ = ‖ax – ay‖
≤ |a| ∗ ‖x – y‖,

‖Jx – Jy‖ = ‖x – y‖.

Hence, A is |a|-Lipschitz continuous monotone, J is 1-Lipschitz continuous.
Two groups of consequences of parameters are tested here as follows:
Case I: αn = 1

(n+1)p , ωn = 1
n(n+1)p , p ∈ [1/8, 1/4, 1/3, 1/2, 1];

Case II: αn = 1
lnp(n+1) , ωn = 1

n lnp(n+1) , p ∈ [1/8, 1/4, 1/3, 1/2, 1].
We can see that all these parameters satisfy the conditions:
(i) limn→∞ αn = 0,

∑∞
n=1 αn = ∞;

(ii) ωn = o(αn),
∑∞

n=1 ωn < ∞.
We will use the sequence Dn = 108 ×‖xn+1 –xn‖2 to study the convergence of our explicit

viscosity iterative algorithm (VIA). The convergence of Dn to 0 implies that the sequence
{xn} converges to x∗ ∈ (AJ)–1(0). To illustrate the behavior of the algorithm, we have per-
formed experiments for both number of iterations (iter.) and elapsed execution time (CPU
time—in the second). Figures 1–18 and Table 1 describe the behavior of Dn generated by
VIA for the aforementioned groups of parameters. It is obvious that if xn ∈ (AJ)–1(0), then
the process stops and xn is the solution of problem 0 ∈ AJu; otherwise, we shall compute
the following viscosity algorithm:

xn+1 =
αnxn

2
+ (1 – αn)(xn – aωnxn),

where a is different choices from [ 1
100 , 1

2 , 2].
In these figures, x-axes represent the number of iterations while y-axes represent the

value of Dn. We can summarize the following observations from these figures:
(a) The rate of Dn = 1010 × ‖xn+1 – xn‖2 generated by our algorithm (VIA) depends

strictly on the convergence rate of parameter {αn} and the Lipschitz coefficient of a
continuous monotone operator.
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Figure 1 Case I, a = 1
100 , p =

1
2

Figure 2 Case I, a = 1
100 , p =

1
3

Figure 3 Case I, a = 1
2 , p =

1
2
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Figure 4 Case I, a = 1
2 , p =

1
4

Figure 5 Case I, a = 1
2 , p =

1
8

Figure 6 Case I, a = 2, p = 1
3
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Figure 7 Case I, a = 2, p = 1
4

Figure 8 Case I, a = 2, p = 2

Figure 9 Case I, a = 1
100 , p = 2
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Figure 10 Case I, a = 1
100 , p =

1
4

Figure 11 Case II, a = 1
100 , p =

1
3

Figure 12 Case II, a = 2, p = 1
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Figure 13 Case II, a = 1
2 , p =

1
4

Figure 14 Case II, a = 2, p = 1
8

Figure 15 Case II, a = 1
2 , p = 1
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Figure 16 Case II, a = 1
100 , p =

1
2

Figure 17 Case II, a = 2, p = 1
3

Figure 18 Case II, a = 1
100 , p =

1
8
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Table 1 Algorithm (VIA) with different group of parameters

a 0.01 0.5 0.99

p = 1
Case I No. Iterations 10 10 12

CPU (time) 0.047 0.047 0.055
Case II No. Iterations 10 10 12

CPU (time) 0.044 0.048 0.045
p = 2
Case I No. of Iterations 10 10 12

CPU (time) 0.056 0.058 0.062
Case II No. Iterations 10 10 12

CPU (time) 0.068 0.055 0.052

Table 2 Comparison between VIA and other algorithms with x0 = 1

a TOL VIA RM (u = 1) GMIM

Iter CPU (s) Iter CPU (s) Iter CPU (s)

1/4 10–8 278 0.094 85 0.055 559 0.097
10–10 1290 0.14 325 0.070 3529 0.28

1/3 10–8 266 0.076 100 0.044 473 0.078
10–10 1233 0.14 380 0.088 2663 0.21

1/2 10–8 243 0.070 126 0.052 317 0.065
10–10 1123 0.13 472 0.077 1471 0.13

3/2 10–8 128 0.061 221 0.059 37 0.043
10–10 587 0.10 823 0.098 94 0.049

(b) Our viscosity iterative algorithm (VIA) works well for parameter sequences of {αn}
being fast convergent to 0 as n → ∞. In general, if Dn = ‖xn+1 – xn‖2, then the error
of Dn can be obtained approximately equal to 10–16. When Dn obtains to this error,
then it becomes unstable. The best error of Dn can be obtained approximately equal
to 10–30 when a = 2.

(c) For the second group parameter {αn} being slowly convergent to 0 as n → ∞, then
Dn is slightly increasing in the early iterations, and after that, it is seen to be almost
stable.

5.2 Comparison of VIA with other algorithms
In this part, we present several experiments in comparison with other algorithms.
Two methods used in comparison are the generalized Mann iteration method (GMIM)
(Chidume et al. [35], Algorithm 1) and the regularization method (RM) (Zegeye [1],
Algorithm 2). The RM requires to previously know a constant u. For experiments, we
choose the same sequences αn = 1

n+1 and ωn = 1
n(n+1) in these algorithms. The condition

‖xn+1 – xn‖2 ≤ TOL is chosen to be as the stopping criterion. The following tables are
comparisons of VIA, RM, GMIM with different choices of a. The numerical results are
showed in Table 2.

From these tables, we can see that the RM is the best. The GMIM is the most time-
consuming, and the reasonable explanation is the fact that at each step the GMIM has
no contractive parameters (coefficients) for obtaining the next step which can take lower
convergence rate, while the convergence rate of the RM depends strictly on the previous
constant u and the initial value x0. In comparing with other two methods, VIA seems
to have competitive advantage. However, the main advantage of VIA is that the viscosity
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iterative algorithm works more stable than other methods and it is done in Banach spaces
much more general than Hilbert spaces.

6 Conclusion
Let E be a nonempty closed uniformly convex and 2-uniformly smooth Banach space
with dual E∗. We construct some implicit and explicit algorithms for solving the equation
0 ∈ AJu in the Banach space E, where A : E∗ → E is a monotone mapping and J : E → E∗ is
the normalized duality map which plays an indispensable role in this research paper. The
advantages of the algorithm are that the resolvent operator is not involved, which makes
the iteration simple for computation; moreover, the zero point problem of monotone map-
pings is extended from Hilbert spaces to Banach spaces. The proposed algorithms con-
verge strongly to a zero of the composed mapping AJ under concise parameter conditions.
In addition, the main result is applied to approximate the minimizer of a proper convex
function and the solution of Hammerstein integral equations. To some extent, our results
extend and unify some results considered in Xu [12], Zegeye [1], Chidume and Idu [2],
Chidume [3, 35], and Ibarakia and Takahashi [22].
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