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1 Introduction
The Euler gamma function is defined for all positive real numbers x by

�(x) =
∫ ∞

0
tx–1e–t dt.

The logarithmic derivative of �(x) is called the psi or digamma function. That is,

ψ(x) =
d

dx
ln�(x) =

�′(x)
�(x)

= –γ –
1
x

+
∞∑

n=1

x
n(n + x)

,

where γ = 0.5772 . . . is the Euler–Mascheroni constant, and ψ (m)(x) for m ∈ N are known
as the polygamma functions. The gamma, digamma and polygamma functions play an im-
portant role in the theory of special functions, and have many applications in other many
branches, such as statistics, fractional differential equations, mathematical physics and
theory of infinite series. The reader may see the references [9–13, 18–20, 24, 45–47, 49].
Some of the work on the complete monotonicity, convexity and concavity, and inequalities
of these special functions can be found in [1–6, 8, 14–17, 21, 22, 27–30, 37–42] and the
references therein.

In 2007, Diaz and Pariguan [11] defined the k-analogue of the gamma function for k > 0
and x > 0 as

�k(x) =
∫ ∞

0
tx–1e– tk

k dt = lim
n→∞

n!kn(nk)
x
k –1

x(x + k) · · · (x + (n – 1)k)
,
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where limk→1 �k(x) = �(x). Similarly, we may define the k-analogue of the digamma and
polygamma functions as

ψk(x) =
d

dx
ln�k(x) and ψ

(m)
k (x) =

dm

dxm ψk(x).

It is well known that the k-analogues of the digamma and polygamma functions satisfy
the following recursive formula and series identities (see [11]):

�k(x + k) = x�k(x), x > 0, (1.1)

ψk(x) =
ln k – γ

k
–

1
x

+
∞∑

n=1

x
nk(nk + x)

, (1.2)

and

ψ
(m)
k (x) = (–1)m+1m!

∞∑
n=0

1
(nk + x)m+1 . (1.3)

Very recently, Nantomah, Prempeh and Twum [35] introduced a (p, k)-analogue of the
gamma and digamma functions defined for p ∈N, k > 0 and x > 0 as

�p,k(x) =
∫ p

0
tx–1

(
1 –

tk

pk

)p

dt =
(p + 1)!kp+1(pk)

x
k –1

x(x + k) · · · (x + pk)
, (1.4)

ψp,k(x) =
d

dx
ln�p,k(x) =

1
k

ln(pk) –
p∑

n=0

1
nk + x

, (1.5)

and

ψ
(m)
p,k (x) = (–1)mm!

p∑
n=0

1
(nk + x)m+1

= (–1)m+1
∫ ∞

0

1 – e–k(p+1)t

1 – e–kt tme–xt dt. (1.6)

It is obvious that limp→+∞ ψp,k(x) = ψk(x). Some important identities and inequalities in-
volving these functions may be found in [30, 34, 35].

In [4], the function φ(x) = ψ(x)+ ln(e 1
x –1) was proved to be strictly increasing on (0,∞).

In [6], it is demonstrated that if a ≤ –γ and b ≥ 0, then

a – ln
(
e

1
x – 1

)
< ψ(x) < b – ln

(
e

1
x – 1

)
. (1.7)

Furthermore, Guo and Qi [14] showed that the function φ(x) is strictly increasing and con-
cave on (0,∞). Attracted by this work, it is natural to look for an extension of (1.7) involv-
ing ψk(x) and ψp,k(x). On the other hand, Nielsen’s β-function has been deeply researched
in the last years. In particular, K. Nantomah gave some results on convexity and mono-
tonicity of the function in [31], and obtained some convexity and monotonicity results
as well as inequalities involving a generalized form of the Wallis’s cosine formula in [32].
The function can be used to calculate some integrals (see [7, 36]). Recently, K. Nantomah
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studied the properties and inequalities of a p-generalization of the Nielsen’s function in
[33]. In this paper, we shall give double inequalities for the k-generalization of the Nielsen
β-function. In addition, it is worth noting that Krasniqi, Mansour, and Shabani presented
some inequalities for q-polygamma functions and q-Riemann Zeta functions by using a
q-analogue of Hölder type inequality in [23].

The first aim of this paper is to present a new monotonicity theorem for ψk(x), and
give three different proofs. The second aim is to show an inequality for the ratio of the
generalized polygamma functions by generalizing a method of Mehrez and Sitnik. The
classical Mehrez and Sitnik’s method may be found in [25, 26, 43]. Finally, we also give a
new inequality for the inverse of the generalized digamma function.

Our main results read as follows.

Theorem 1.1 For 0 < k ≤ 1, the function φk(x) = ψk(x) + ln(e 1
x – 1) is strictly increasing on

(0,∞). In particular, the inequalities

ln k – γ

k
< ψk(x) + ln

(
e

1
x – 1

)
< 0 (1.8)

hold true for 0 < k ≤ 1 and x ∈ (0,∞) where the constants ln k–γ

k and 0 in (1.8) are the best
possible.

Remark 1.1 Here, we give an application of Theorem 1.1. Define the k-generalization of
the Nielsen’s β-function as

βk(x) =
∫ 1

0

tx–1

1 + tk dt

=
∫ ∞

0

e–xt

1 + e–kt dt

=
∞∑

n=0

(
1

2nk + x
–

1
2nk + k + x

)

=
1
2

{
ψk

(
x + k

2

)
– ψk

(
x
2

)}
.

By using (1.8), we easily obtain double inequalities of the generalized Nielsen’s β-function
for 0 < k ≤ 1 and x ∈ (0,∞):

1
2

ln

(
e2/x – 1

e2/(x+k) – 1

)
+

ln k – γ

2k
< βk(x) <

1
2

ln

(
e2/x – 1

e2/(x+k) – 1

)
–

ln k – γ

2k
.

Theorem 1.2 For 0 < k ≤ 1, the function φk(x) is strictly concave on (0,∞). As a result, for
0 < k ≤ 1 and x, y ∈ (0,∞), we have

2ψk

(
x + y

2

)
– ψk(x) – ψk(y) ≥ ln

(e 1
x – 1)(e

1
y – 1)

(e
2

x+y – 1)2
. (1.9)

Using the Theorems 1.1 and 1.2, we easily obtain the following Corollary 1.1.
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Corollary 1.1 For 0 < k ≤ 1 and x ∈ (0,∞), we have

ψ ′
k(x) >

1
(1 – e– 1

x )x2
(1.10)

and

ψ ′′
k (x) <

e– 1
x – 2x(1 – e– 1

x )
(1 – e– 1

x )2x4
. (1.11)

Theorem 1.3 For x > 0 and k ≥ 1, we have

ln k – γ

k
+ xψ ′

k

(
k +

x
2

)
< ψk(x + k) <

ln k – γ

k
+ xψ ′

k
(√

k(k + x)
)
. (1.12)

Theorem 1.4 For p, k > 0 and every positive integer m ≥ 4, the function

φm,p,k(x) =
[ψ (m)

p,k (x)]4

ψ
(m–3)
p,k (x)ψ (m–1)

p,k (x)ψ (m+1)
p,k (x)ψ (m+3)

p,k (x)

is strictly decreasing on (0,∞) with

lim
x→∞φm,p,k(x) =

(m – 3)(m – 2)(m – 1)2

m2(m + 1)(m + 2)
(1.13)

and

lim
x→0

φm,p,k(x) =
(m – 2)(m – 1)m2

(m + 1)2(m + 2)(m + 3)
. (1.14)

As a result, for p, k, x > 0 and every positive integer m ≥ 4, we have

(m – 3)(m – 2)(m – 1)2

m2(m + 1)(m + 2)
<

[ψ (m)
p,k (x)]4

ψ
(m–3)
p,k (x)ψ (m–1)

p,k (x)ψ (m+1)
p,k (x)ψ (m+3)

p,k (x)

<
(m – 2)(m – 1)m2

(m + 1)2(m + 2)(m + 3)
.

Theorem 1.5 For p, k, x > 0, the inequalities

k
ln( B+2k

B+k )
< ψ–1

p,k(x) <
k(p + 1)ekx

pk – ekx +
k
2

(1.15)

hold where B = k(p+1)ekx

pk–ekx .

2 Lemmas
Lemma 2.1 [42] If f is a function defined in an infinite interval I such that

f (x) – f (x + ε) > 0 and lim
x→∞ f (x) = δ

for some ε > 0, then f (x) > δ on I .



Yin et al. Journal of Inequalities and Applications  (2018) 2018:249 Page 5 of 13

Remark 2.1 Lemma 2.1 was first proposed by Professor Feng Qi. It is simple, but has been
validated in [15, 41, 42] to be especially effective in proving monotonicity and complete
monotonicity of functions involving the gamma, psi and polygamma functions. The reader
may refer to [40] and the references therein.

Lemma 2.2 For k > 0, the function α(x) = [ψ ′
k(x)]2 + ψ ′′

k (x) is positive on (0,∞) if and only
if k ≤ 1.

Proof Direct computation yields

α(x) – α(x + k) =
[
ψ ′

k(x) – ψ ′
k(x + k)

][
ψ ′

k(x) + ψ ′
k(x + k)

]
+ ψ ′′

k (x) – ψ ′′
k (x + k)

=
2
x2

[
ψ ′

k(x) –
1

2x2 –
1
x

]

� 2
x2 β(x),

and

β(x + k) – β(x) = ψ ′
k(x + k) –

1
2(x + k)2 –

1
x + k

– ψ ′
k(x) +

1
2x2 +

1
x

=
1
x

–
1

2x2 –
1

x + k
–

1
2(x + k)2

=
2(k – 1)x2 + 2k(k – 1)x – k2

2x2(x + k)2 .

It is easily observed that β(x + k) – β(x) < 0 if and only if k ≤ 1. We complete the proof by
using Lemma 2.1. �

Lemma 2.3 The following limit identity holds true:

lim
x→0+

[
ln

(
e

1
x – 1

)
–

1
x

]
= 0. (2.1)

Proof By applying twice l’Hôspital rule, we easily complete the proof. �

Lemma 2.4 For k > 0, the inequalities

1
kx

≤ ψ ′
k(x) ≤ 1

kx
+

1
x2 (2.2)

hold true for any x ∈ (0,∞).

Proof Using the inequalities in [34], namely

1
k

(
1
x

–
1

x + pk + k

)
≤ ψ ′

p,k(x) ≤ 1
k

(
1
x

–
1

x + pk + k

)
+

1
x2 –

1
(x + pk + k)2 , (2.3)

we easily obtain (2.2) as p → +∞. �
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Lemma 2.5 ([25, 26, 43, 48]) Let {an} and {bn} (n = 0, 1, 2, . . .) be real numbers such that
bn > 0 and { an

bn
}n≥0 be increasing (resp., decreasing), then { a0+a1+···+an

b0+b1+···+bn
} is increasing (resp.,

decreasing).

Lemma 2.6 For p, k, x > 0 and every positive integer m ≥ 2, the following limit identity
holds true:

lim
x→0+

xm+1ψ
(m)
p,k (x) =

(–1)m(m – 1)!
k

.

Proof Considering the inequalities (see [34, Theorem 2.7])

1
k

(
1
x

–
1

x + pk + k

)
≤ ψ ′

p,k(x) ≤ 1
k

(
1
x

–
1

x + pk + k

)
+

1
x2 –

1
(x + pk + k)2

and differentiating them m – 1 times, we easily complete the proof. �

3 Proofs of theorems
First proof of Theorem 1.1 A simple calculation gives

eφk (x) = eψk (x)(e
1
x – 1

)
= eψk (x)+ 1

x – eψk (x)

= eψk (x+k) – eψk (x)

� δk(x)

and

δ′
k(x) = eψk (x+k)ψ ′

k(x) – eψk (x)ψ ′
k(x)

� μk(x + k) – μk(x).

Using Lemma 2.2, we easily obtain

μ′
k(x) = eψk (x)[(ψ ′

k(x)
)2 + ψ ′′

k (x)
]

> 0.

This implies that the function μk(x) is strictly increasing, and so δ′
k(x) > 0 on (0,∞). As a

result, the function eφk (x) is also strictly increasing on (0,∞). Considering Lemma 2.3, we
have

lim
x→0+

φk(x) =
ln k – γ

k
and lim

x→∞φk(x) = 0.

The proof of Theorem 1.1 is completed. �

Second proof of Theorem 1.1 It is easily observed that δ′
k(x) > 0 is equivalent to

e
1
x ψ ′

k(x + k) – ψ ′
k(x) > 0. (3.1)

Considering Lemma 2.4, we only need to prove

e
1
x

1
k(x + k)

>
1
kx

+
1
x2 . (3.2)
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Taking the logarithm to both sides of (3.2), we prove

1
x

+ ln
1
k

+ ln
1

x + k
> ln

x + k
kx2 . (3.3)

So, we only need to prove

λk(x) =
1
x

– ln k – ln (x + k) – ln
x + k
kx2 > 0. (3.4)

Since k ≤ 1, we easily get

λ′
k(x) =

–2kx2 + (1 – k)x + k(1 – k)
kx2(x + k)

< 0. (3.5)

This implies that the function λk(x) is strictly decreasing on (0,∞) with limx→∞ λk(x) = 0.
Hence, we have λk(x) > 0. The proof is completed. �

Third proof of Theorem 1.1 Direct calculation results in

φ′
k(x) = ψ ′

k(x) –
e 1

x

(e 1
x – 1)2x2

(3.6)

and

φ′
k(x) – φ′

k(x + k) =
1
x2 –

e 1
x

(e 1
x – 1)x2

+
e

1
x+k

(e
1

x+k – 1)(x + k)2
(3.7)

with limx→+∞ φ′
k(x) = 0.

In order to prove φ′
k(x) – φ′

k(x + k) > 0 for x > 0, it suffices to show

x2(e
1
x – 1

)
> (x + k)2(1 – e– 1

x+k
)
. (3.8)

So, we only need to prove

1 – k +
∞∑

n=3

1
n!

(
1

xn–2 +
(–1)n

(x + k)n–2

)
> 0, (3.9)

which is valid. By using Lemma 2.1, we can conclude that φ′
k(x) > 0. Hence, the function

φk(x) is strictly increasing on (0,∞). �

Proof of Theorem 1.2 Using formula (3.7), we have

φ′′
k (x) – φ′′

k (x + k) =
(
φ′

k(x) – φ′
k(x + k)

)′

=
e

1
x+k [1 + 2k + 2x – 2(x + k)e

1
x+k ]

(e
1

x+k – 1)2(x + k)4
–

(1 – 2x)e 1
x + 2x

(e 1
x – 1)2x4

.

For x > 0, the fact φ′′
k (x) – φ′′

k (x + k) < 0 is equivalent to

(e 1
x – 1)2

(e
1

x+k – 1)2
>

(x + k)4

x4
(1 – 2x)e 1

x + 2x

e
1

x+k [1 + 2k + 2x – 2(x + k)e
1

x+k ]
. (3.10)
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Applying inequality (3.8), we need to prove

�k(x) = 2k + 1 + 2x – 2ke
1

x+k – (1 + 2x)e
1
x + 1

x+k < 0. (3.11)

An easy calculation yields

�′
k(x) =

[4(1 – k)x3 + (2 + 4k – 2k2)x2 + (2k + 2k2)x – 2x4 + k2]e
1
x + 1

x+k

x2(x + k)2

+
2ke

1
x+k

(x + k)2 + 2

and

�′′
k (x) =

qn(x)e
1

x+k + rn(x)e
1
x + 1

x+k

x4(x + k)4

with limx→∞ �′
k(x) = 0, where

qn(x) = –4kx5 – 2k(1 + 2k)x4

and

rn(x) = 4(k – 3)x5 + 2
(
2k2 – 13k – 2

)
x4 – 4k(2 + 7k)x3

– 8k2(1 + 2k)x2 – 4k3(1 + k)x – k4.

For 0 < k ≤ 1, we easily obtain

qn(x) < 0, rn(x) < 0.

This implies that �′
k(x) is strictly decreasing and �k(x) is strictly increasing on (0,∞).

Using limx→∞ �k(x) = –4 < 0 and Lemma 2.1, we complete the proof. �

Proof of Theorem 1.3 Using (1.1) and (1.2), we get

ψk(x + k) = ψk(x) +
1
x

=
ln k – γ

k
+

∞∑
n=1

(
1

nk
–

1
nk + x

)
.

By the mean value theorem for differentiation, there exists a number σk,n = σk,n(x) such
that 0 < σk,n < x and

1
nk

–
1

nk + x
=

x
(nk + σk,n)2 .

Hence, we find

σk,n =
√

nk(nk + x) – nk.
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It is well known that the function σk,n is strictly increasing in k on [1, +∞) with

σk,1 =
√

k(k + x) – k,

σk,∞ = lim
n→∞σk,n =

x
2

.

Therefore, we get

x
∞∑

n=1

1
(nk + σk,∞)2 < ψk(x + k) –

ln k – γ

k
< x

∞∑
n=1

1
(nk + σk,1)2 .

This completes the proof. �

Proof of Theorem 1.4 By (1.6) and direct computation, we have

(ψ (m)
p,k (x))4

ψ
(m–3)
p,k (x)ψ (m–1)

p,k (x)ψ (m+1)
p,k (x)ψ (m+3)

p,k (x)

= A

∑p
n=0

∑n
λ=0

∑λ
k=0

∑n–λ
i=0

1
(ik+x)2m+2((n–i)k+x)2m+2∑p

n=0
∑n

λ=0
∑λ

k=0
∑n–λ

i=0
1

(ik+x)2m–2((n–i)k+x)2m+4

,

where A = (m!)4

(m–3)!(m–1)!(m+1)!(m+3)! . Let us define sequences {αm,i}i≥0, {βm,i}i≥0 and {ωm,i}i≥0 by

αm,i =
1

(ik + x)2m+2[(n – i)k + x]2m+2 ,

βm,i =
1

(ik + x)2m–2[(n – i)k + x]2m+4 ,

and

ωm,i =
αm,i

βm,i
=

(
(n – i)k + x

ik + x

)4

.

It follows that

ωm,i+1

ωm,i
=

(
[(n – i – 1)k + x](ik + x)

[(i + 1)k + x][(n – i)k + x]

)4

.

It is not difficult to see that the fact ωm,i+1
ωm,i

< 1 is equivalent to

[
(n – i – 1)k + x

]
(ik + x) <

[
(i + 1)k + x

][
(n – i)k + x

]

⇔ –nk2 – 2kx < 0.

So the sequence {ωm,i}i≥0 is strictly decreasing. This implies that the function φm,p,k(x) is
strictly decreasing on (0,∞) by Lemma 2.5. From the identity

ψ
(m)
p,k (x + k) = (–1)m m!

xm+1 – (–1)m m!
(x + pk + k)m+1 + ψ

(m)
p,k (x),

we easily obtain (1.14). Using Lemma 2.6, we get (1.13). This completes the proof. �
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Proof of Theorem 1.5 Using (1.4) and the functional equation (see [35])

�p,k(x + k) =
pkx

x + pk + k
�p,k(x),

we obtain, after a direct computation, that

ln�p,k(x + k) = ln(p + 1)! + (p + 1) ln k +
(

x + k
k

– 1
)

ln pk –
p∑

i=0

ln
(
x + (i + 1)k

)
, (3.12)

ln�p,k(x) = ln(p + 1)! + (p + 1) ln k +
(

x
k

– 1
)

ln pk –
p∑

i=0

ln(x + ik), (3.13)

and

ln�p,k(x + k) = ln
pkx

x + pk + k
+ ln�p,k(x). (3.14)

Combining (3.12) and (3.13) with (3.14), we get

ln
pkx

x + pk + k
= ln pk –

p∑
i=0

ln
x + (i + 1)k

x + ik
. (3.15)

By the mean value theorem, we obtain

ln
x + (i + 1)k

x + ik
=

k
ik + ρ(i)

, ρ(i) ∈ (x, x + k). (3.16)

Hence, identity (3.15) changes into

ln
pkx

x + pk + k
= k

(
1
k

ln pk –
p∑

i=0

ln
1

ik + ρ(i)

)
. (3.17)

From identity (3.16), we conclude that

ρ(i) =
k

ln(1 + k
x+ik )

– ik.

Next, we show that ρ is strictly increasing on (1,∞). Differentiating ρ(i), we observe that
ρ ′(i) > 0 if and only if

√
(x + ik)(x + ik + k) <

(x + ik + k) – (x + ik)
ln(x + ik + k) – ln(x + ik)

,

which follows from the geometric–logarithmic mean inequality. A simple computation
yields ρ(1) = k

ln( x+2k
x+k )

– k and ρ(∞) = limi→∞ ρ(i) = x + k
2 . Since ψp,k and ψ–1

p,k are strictly
increasing on (0,∞), we easily obtain that

ψp,k
(
ρ(1)

)
<

1
k

ln
pkx

x + pk + k
< ψp,k

(
ρ(∞)

)
.
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Hence we have

k
ln( x+2k

x+k )
– k < ψ–1

p,k

(
1
k

ln
pkx

x + pk + k

)
< x +

k
2

.

Replacing x by k(p+1)ekx

pk–ekx here completes the proof. �

4 A conjecture
Finally, we give a conjecture.

Conjecture 4.1 For p > 0 and k ≥ 1, the function

φp,k(x) = ψp,k(x) + ln
(
e

1
x – 1

x+pk+k – 1
)

is strictly decreasing from (0,∞) onto (–∞,ψp,k(k)).

Remark 4.1 It is natural to ask whether the monotonicity result of Theorem 1.1 can be
extended to the digamma function ψp,k(x) with two parameters by using the method of
Theorem 1.1. Unfortunately, we failed to prove Conjecture 4.1. Alzer’s work shows that
the function φk(x) = ψk(x) + ln(e 1

x – 1) is useful for studying harmonic numbers. This is
related to the formula (see [35, Remark 2.1])

φp,k(k) =
1
k
[
ln(pk) – H(p + 1)

]
,

where H(n) is the nth harmonic number. So, it would be a meaningful result if anyone can
prove this conjecture.

Remark 4.2 The (p, k)-generalized Nielsen’s β-function can be defined as

βp,k(x) =
∫ 1

0

1 – t2k(p+1)

1 + tk tx–1 dt

=
∫ ∞

0

1 – e–2k(p+1)t

1 + e–kt e–xt dt

=
p∑

n=0

(
1

2nk + x
–

1
2nk + k + x

)

=
1
2

{
ψp,k

(
x + k

2

)
– ψp,k

(
x
2

)}
,

where k ∈ (0, 1], p, x ∈ (0,∞), and limp→∞ βp,k(x) = βk(x). Analogously to Remark 1.1, if
Conjecture 4.1 holds true, we can estimate the upper and lower bounds of this function
βp,k(x).

5 Results and discussion
Some monotonicity and concavity properties of the k and (p, k)-analogues of the digamma
and polygamma functions were deeply studied. In doing so, we established some inequal-
ities involving the generalized digamma and polygamma functions. Theorems 1.1–1.3 are
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extensions of some known results. Theorem 1.4 is not only a completely new result, it’s
even new for ψ(x). In addition, the method of proof is also new. Theorem 1.5 gives an in-
equality for the inverse of the digamma function. At the moment, such results are very few.
In the end, we stated a conjecture involving the (p, k)-analogue of the digamma function.

6 Methods and experiment
Not applicable.
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