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Abstract
Throughout this paper, we mainly consider the parabolic p-Laplacian equation with a
weighted absorption ut – div(|∇u|p–2∇u) = –λ|x|αχ{u>0}u–β in a bounded domain
� ⊆ R

n (n ≥ 1) with Lipschitz continuous boundary subject to homogeneous
Dirichlet boundary condition. Here λ > 0 and α > –n are parameters, and β ∈ (0, 1) is a
given constant. Under the assumptions u0 ∈W1,p

0 (�)∩ L∞(�), u0 ≥ 0 a.e. in�, we can
establish conditions of local and global in time existence of nonnegative solutions,
and show that every global solution completely quenches in finite time a.e. in �.
Moreover, we give some numerical experiments to illustrate the theoretical results.
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1 Introduction
In this paper, we mainly study the following initial-boundary value problem for the p-
Laplacian equation

⎧
⎪⎪⎨

⎪⎪⎩

ut – �pu = –λ|x|αχ{u>0}u–β , x ∈ �, t > 0,

u = 0, x ∈ ∂�, t > 0,

u(x, 0) = u0, x ∈ �,

(1.1)

where � ⊆ R
n (n ≥ 1) is a bounded domain with Lipschitz continuous boundary ∂�,

�pu = div(|∇u|p–2∇u), 1 < p < ∞, and 0 < β < 1, λ > 0, α > –n; χ{u>0} is the characteris-
tic function on {u > 0}, i.e.,

χ{u>0} =

⎧
⎨

⎩

1, u > 0,

0, u ≤ 0.
(1.2)

In the present paper, we suppose that u0 satisfies the following assumptions:

u0 ≥ 0 a.e. in � and u0 ∈ W 1,p
0 (�) ∩ L∞(�). (1.3)
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For convenience, let χ{u>0}u–β = 0 whenever u = 0, and define QT = � × (0, T), 	T = ∂� ×
(0, T).

When p = 2 in (1.1), the semilinear parabolic equations with singular absorptions have
been extensively studied, we refer to [23–25, 31] and the references therein. Guo et al.
[26–28, 38] studied the weighted singular parabolic problem

⎧
⎪⎪⎨

⎪⎪⎩

ut – �u = λf (x)
(1–u)2 , QT ,

u(x, t) = 0, 	T ,

u(x, 0) = u0 ≥ 0, �,

(1.4)

where � ⊆ R
n (n ≥ 1) and λ > 0 is a parameter. When n = 1 or 2, (1.4) models a sim-

ple electrostatic Micro-Electro-Mechanical-System (MEMS) device consisting of a thin
dielectric elastic membrane. In this model, the dynamic solution u characterizes the dy-
namic deflection of the elastic membrane. When a voltage λ is applied to the surface of
the membrane, the membrane deflects towards the ceiling plate and a snap-through may
occur when it exceeds a certain critical value λ∗ (pull-in voltage). This creates a so-called
“pull-in instability,” which greatly affects the design of many devices. In order to achieve
better MEMS designs, the material properties of the membrane can be technologically
fabricated with a spatially varying dielectric permittivity profile f (x). We refer to [17, 38]
and the references therein for more detailed discussions on MEMS devices. Guo et al.
[18, 21] studied the stationary problem (1.4), and gave the existence and some properties
of the pull-in voltage λ = λ∗.

Moreover, Guo [26] studied the problem (1.4) for f (x) = |x|α , α > 0, and � being the unit
ball in R

n (n ≥ 2). Under certain conditions of λ, n and α, Guo showed the stability of the
minimal compact stationary solution and the instability of the singular stationary solu-
tion of (1.4), respectively. Guo and Wei [29] studied the Cauchy problem with a singular
nonlinearity ut = �u – u–ν with ν > 0 and proved that the problem has a global classical
solution, and studied the properties of positive radial solutions of the steady state. More
generally, Castorina et al. [5] studied the p-MEMS equation –�pu = λ/(1 – u)2 in a ball
and proved the uniqueness of semi-stable solutions and stability of minimal solutions for
1 < p ≤ 2.

For the p-Laplacian equation with absorption

ut = �pu – βuq, β , q > 0, (1.5)

we known that near u = 0 the absorption is strong when q < 1, and the absorption is weak
when q ≥ 1. This problem appears in the theory of quasiregular and quasiconformal map-
pings, stochastic control and non-Newtonian fluids, etc. In the non-Newtonian theory,
the quantity p is a characteristic of the medium. Media with p > 2 are called dilatant fluids
while those with p < 2 are called pseudoplastics. If p = 2, they are called Newtonian fluids.
For example, we refer to [6–8, 20].

Galaktionov and Vazquez [20] systematically studied the properties of several equations,
such as complete or incomplete blowup and extinction. Firstly, they studied the problem
ut = �um + uq, with m > 1, q > 1. Assuming that p > 1, m > (n – 2)/n, and n ≥ 2, they
proved that when p + m ≤ 2 incomplete blowup always occurs; when p + m > 2, the radially
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symmetric solutions always blow up completely. Secondly, they studied the equation

ut = �pu + uq, p > 1, q > 1,

and showed that blowup is always incomplete if q ≤ 1/(p – 1), and complete if 1/(p – 1) <
q ≤ qs(p, n) = [n(p – 1) + p]/(n – p)+. Lastly, assumed that the initial function u0 = u0(r) is
strictly positive, bounded away from zero and has an inverse bell-shaped form. Then they
studied another kind of singularity of the equation ut = �um – u–q, with m > 1, q > 0, and
proved that extinction is complete if and only if q + m ≤ 0. They also studied equation with
the p-Laplacian operator

ut = �pu – u–q, p > 1, q > 0.

Under the given assumptions on u0(r), they showed that extinction is complete if and only
if q ≥ 1.

There are some recent works on local and global existence, gradient estimates, blowup
and extinction of the p-Laplacian equations. We refer to [32, 35, 44, 45] for the nonlin-
ear absorption and source, nonlinear gradient absorption or source, and [9, 10, 22] for
singular absorptions. Also, we refer to [46, 47] for the semilinear equations with an expo-
nential source. When α = 0, equation (1.1) is known as a limit model of a class of prob-
lems arising in Chemical Engineering corresponding to enzymatic kinetics and heterge-
neous catalyst of Langmuir–Hinshelwood type, see [3, 9, 12, 15, 22, 39, 43] and references
therein. Under the Dirichlet boundary condition, problem (1.1) of p = 2 has been studied
by many authors, we refer to [14, 19, 30] and the references therein. The Cauchy prob-
lem for equation (1.1) was studied by Phillips [39]. Winkler [42] studied the nondivergent
parabolic equations with singular absorption. Under certain conditions, Giacomoni et al.
[22] showed that problem (1.1) has a global in time bounded weak solution. Moreover,
every weak solution u completely quenches in a finite time T∗, i.e., u(·, t) = 0 a.e. in � for
all t beyond T∗.

Due to the singular absorption, the solution u of (1.1) may quench in finite time on one
set with nonzero measure, even if the initial datum is strictly positive (see [11–13, 37]).
Davila and Montenegro [11–13] have studied the semilinear problem (1.1) with p = 2 and
α = 0 under the assumptions u0 ≥ 0 a.e. in � and u0 ∈ L∞(�) ∩ C(�). Moreover, under
certain stronger conditions on u0, Montenegro [37] showed that the solution u of (1.1)
with p = 2 and α = 0 may quench completely.

Motivated by the above analytic results and observations, our interest is to study the
weighted problem (1.1) with 1 < p < ∞ and α 
= 0. We first show that the weak solution
exists in an arbitrary time interval under the conditions α > max{–n(p + β – 1)/p, –n/2},
λ < λ1p/(1 – β), where λ1 is the first eigenvalue of the Dirichlet problem for the p-Laplace
operator (see [36]):

λ1 := inf

{∫

�

|∇v|p dx : v ∈ W 1,p
0 (�),

∫

�

|v|p dx = 1
}

. (1.6)

Next, we show that the global solution completely quenches in the finite time T∗, and then
estimate T∗ through ‖u0‖∞,�, ‖u0‖2,�, n, p, α, λ and λ1.
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To prove the main results, we organized the paper as follows: We give the definition of
weak solutions and main results in Sect. 2. In Sect. 3, using Faedo–Galerkin method, we
prove that weak solutions exist globally in time. Finally, we prove that the solution is uni-
formly bounded under conditions (1.3). In Sect. 4, we show that the global solution com-
pletely quenches in finite time, which is based on the analysis of an ordinary differential
inequality satisfied by the function ‖u(x, t)‖2,�. In this section, we make use of Gagliardo–
Nirenberg interpolation inequality with weights (see Lemma 4.1 below or [33])

∥
∥|x|γ Dju

∥
∥

Lr ≤ c
∥
∥|x|αDmu

∥
∥a

Lp

∥
∥|x|βu

∥
∥1–a

Lq ,

where the constants γ , j, r, α, m, a, p, β and q are restricted to certain ranges. In Sect. 5,
we verify the correctness of theoretic results through numerical examples.

2 Definition of weak solutions and main results
Define

U :=
{

v ∈ L∞(
0, T ; W 1,p

0 (�)
) ∩ L∞(�)|vt ∈ L2(QT )

}
.

For convenience, we denote u(t) := u(x, t) a.e. in �, and use z = (x, t) for the points of QT .
First, we give the definition of weak solutions of problem (1.1).

Definition 2.1 The function u(x, t) is called a weak solution of (1.1) if it satisfies
1. u ∈ U ∩ C([0, T]; L2(�)), u ≥ 0 a.e. in QT ;
2. |x|αχ{u>0}u–βϕ ∈ L1(QT ) holds for every test function ϕ ∈ U , and

∫

QT

∂tu · ϕ dz +
∫

QT

|∇u|p–2∇u · ∇ϕ dz + λ

∫

QT

|x|αχ{u>0}u–βϕ dz = 0;

3. u(x, 0) = u0 a.e. in �.

Next, we give the main results of this paper.

Theorem 2.1 If u0 satisfies conditions (1.3), then there exists a T∗ > 0 such that for every
T < T∗ equation (1.1) has at least one weak solution, which satisfies the following energy
relations:

1
2
∥
∥u(t2)

∥
∥2

2,� –
1
2
∥
∥u(t1)

∥
∥2

2,� +
∫ t2

t1

∫

�

|∇u|p dz + λ

∫ t2

t1

∫

�

|x|αu1–β dz = 0 (2.1)

for every t1, t2 ∈ [0, T], and

‖∂tu‖2
2,� +

1
p
∥
∥∇u(t)

∥
∥p

p,� +
λ

1 – β

∫

�

|x|αu1–β (t) dx

≤ 1
p
‖∇u0‖p

p,� +
λ

1 – β

∫

�

|x|αu1–β
0 dx (2.2)

for almost every t ∈ (0, T).
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Theorem 2.2 Let the assumptions of Theorem 2.1 be satisfied. Problem (1.1) has a
bounded global weak solution u ∈ U provided that

α > max

{

–
n(p + β – 1)

p
, –

n
2

}

, λ <
λ1p

1 – β
.

Moreover, every weak solution u completely quenches in finite time, i.e., there exists a
T∗ > 0, depending on p, n, |�|, λ, λ1 (defined as (1.6)), ‖u0‖2,�, ‖u‖∞,�, such that

∀t > T∗, u(t) = 0 a.e. in �.

3 Global weak solutions
For problem (1.1) with α = 0, the existence of local in time weak solutions can be obtained
by studying the regularization equation and proving the uniform gradient estimates, and
then passing the parameter to a limit. We refer to [9, 10, 22] for the details of proof, and
Theorem 2.1 can be derived in a similar manner to [22, Theorem 2.1] (see also [10, The-
orem 2] for the degenerate case of p > 2 and n = 1).

Here we are mainly interested in the asymptotic behavior of nonnegative and global
solutions of the weighted problem (1.1). However, the equation is singular at x = 0 for
–n < α < 0. In fact, the solutions can be approximated, if necessary, by those satisfying
the regularized equation ut – �pu = –λ(|x| + ε)αχ{u>0}u–β with the same initial-boundary
value conditions and taking the limit ε → 0+.

To prove Theorem 2.2, under weaker assumptions on the data, we first consider the
weaker regularity on the solutions and define the function space

W :=
{

v ∈ Lp(0, T ; W 1,p
0 (�)

)|vt ∈ Lp′(
0, T ; W –1,p′

(�)
)
, 1/p + 1/p′ = 1

}
.

Theorem 3.1 Assume u0 ∈ L2(�), then (1.1) has a global in time weak solution if α >
max{– n(p+β–1)

p , – n
2 }, λ < λ1p

1–β
.

Proof We use the classical Faedo–Galerkin method for the parabolic equations (see [2,
34]) to prove this theorem. Here we just give a brief proof.

Assume that {ψk} is an orthonormal basis of L2(�), which is composed of the eigenfunc-
tions of the operator

(ψk , w)Hs
0(�) = λk(ψk , w)2,�, ∀w ∈ Hs

0(�), s ≥ 1 + n
(

1
2

–
1
p

)

.

Then the solutions of (1.1) can be written as

u(m)(z) =
m∑

k=1

c(m)
k (t)ψk(x), (3.1)

where c(m)
k (t) are defined by the following equality:

(
∂tu(m),ψk

)

2,� = –
(∣
∣∇u(m)∣∣p–2∇u(m),∇ψk

)

2,� –
(
λ|x|α(

u(m))–β ,ψk
)

2,�, (3.2)
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k = 1, . . . , m. From the above relations we obtain

1
2
∥
∥u(m)∥∥2

2,�

∣
∣
∣
∣

t=τ

t=0
+

∫

QT

[∣
∣∇u(m)∣∣p + λ|x|α(

u(m))1–β]
dz = 0.

So we can derive the following inequality, by using Young’s inequality:

1
2
∥
∥u(m)∥∥2

2,�

∣
∣
∣
∣

t=τ

t=0
+

∫

QT

∣
∣∇u(m)∣∣p dz

≤
∣
∣
∣
∣
1
2
∥
∥u(m)∥∥2

2,�

∣
∣
∣
∣

t=τ

t=0
+

∫

QT

∣
∣∇u(m)∣∣p dz

∣
∣
∣
∣ =

∫

QT

λ|x|α(
u(m))1–β dz

≤ λ

2

∫

QT

|x|2α dz +
λ

2

∫

QT

(
u(m))2(1–β) dz

≤ λ

2

∫

QT

|x|2α dz +
λ

2
(1 – β)

∫

QT

(
u(m))2 dz +

λβ

2
|�|. (3.3)

We can now use Gronwall’s inequality to estimate the function ‖u(m)(·, t)‖2
2,�, if α satisfies

the condition α > – n
2 .

On the other hand, we can obtain the following inequality, by using Hölder’s and Young’s
inequalities and the definition of λ1:

∫

QT

λ|x|α(
u(m))1–β dz

≤
∫

QT

λ(p + β – 1)
p

|x| αp
p+β–1 dz +

∫

QT

λ(1 – β)
p

(
u(m))p dz

≤ λ(p + β – 1)
p

∫

QT

|x| αp
p+β–1 dz +

λ(1 – β)
λ1p

∫

QT

(∇u(m))p dz. (3.4)

Using Gronwall’s inequality again, we obtain a priori estimates of ‖∇u(m)(·, t)‖p
p,�, if α, λ

satisfy the conditions αp
p+β–1 > –n, λ(1–β)

λ1p < 1. So α and λ need to satisfy the conditions of
α > max{– n(p+β–1)

p , – n
2 }, λ < λ1p

1–β
.

Since the sequence of functions {u(m)} is uniformly bounded about a priori estimates,
applying the compactness results of [40], we can extract a subsequence which converges
to a weak solution u of the problem (1.1):

u(m) ⇀ u in Lp(0, T ; W 1,p
0 (�)

)
, u(m) → u a.e. in QT ,

∂tu(m) ⇀ ∂tu in Lp′(0, T ; W –1,p′ (�)
)
,

∣
∣∇u(m)∣∣p–2∇u(m) ⇀ |∇u|p–2∇u in Lp′ (QT ),

as m → ∞. Here we refer to Barbu [4, Lemma 4.1 and Theorem 4.2] (or [34]) for the
continuous embedding W ↪→ C([0, T]; L2(�)). Also, for v1, v2 ∈ W , t1, t2 ∈ [0, T], we get

∫

�

v1(t2)v2(t2) dx –
∫

�

v1(t1)v2(t1) dx =
∫ t2

t1

∫

�

(v2∂tv1 + v1∂tv2) dz.
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In particular, when v1 = v2, we have

1
2
∥
∥v1(t2)

∥
∥2

2,� –
1
2
∥
∥v1(t1)

∥
∥2

2,� =
∫ t2

t1

∫

�

v1∂tv1 dz. �

Theorem 3.2 Assume that u0 ∈ L∞, u0 ≥ 0 a.e. in �, then there exist M > 0 and T∗ > 0
such that a solution v of (1.1) satisfies 0 ≤ v ≤ M a.e. in QT for T < T∗.

Proof Suppose v is a solution of the problem (1.1). First, we prove v is nonnegative. Define
the test function ϕ– = min{0, v} and substitute in the integral formula of Definition 2.1. We
can obtain

1
2
∥
∥ϕ–(t)

∥
∥2

2,� ≤ –
∫

Qt

(|∇ϕ–|p + λ|x|αχ{ϕ–>0}ϕ–
1–β

)
dz ≤ 0

in Qt = (0, t) × � for every t < T∗, through the definition of gε,η and ϕ–. Then v ≥ 0 a.e. in
Qt for every t < T∗.

Next, we prove v ≤ M. By Theorem 3.1, problem (1.1) has a local in time solution v, then
∂tv – �pv ≤ 0 in Lp′ (0, T ; W –1,p′ (�)). Define the function �(t) = Ket , where K = ‖u0‖∞,�.
It’s easy to see that

⎧
⎨

⎩

∂t� – �p� = Ket ≥ 0 in (0, T] × �,

� ≥ ‖u0‖∞,� in �, � > 0 on 	.
(3.5)

For every ϕ ∈ Lp(0, T ; W 1,p
0 (�)), we have

∫

QT

{
∂t(v – �)ϕ +

(|∇v|p–2∇v – |∇�|p–2∇�
) · ∇ϕ

}
dz ≤ 0.

Letting ϕ+ := max{0, v – �} ∈ Lp(0, T ; W 1,p
0 (�)) and using the inequality

(|ξ |p–2ξ – |η|p–2η
) · (ξ – η) ≥ 0,

we derive

1
2
∥
∥ϕ+(t)

∥
∥2

2,� ≤ 0,

so ϕ+ = 0 a.e. in QT . Choosing L = 1 + ‖u0‖∞,�, and fixing T by the relation

L ≥ �(T) ⇔ T = ln

(

1 +
1

‖u0‖∞,�

)

,

we have 0 ≤ v(x, t) ≤ L a.e. in � for every t ∈ [0, T]. Then, taking v(x, t) for the initial datum
and repeating the comparison procedure with the new function

�(t) =
∥
∥v(T)

∥
∥∞,�e(t–T), L′ = 1 +

∥
∥v(T)

∥
∥∞,�,

we extend v(x, t) to � × [T , T ′], where T ′ and L′ can be obtained by the above arguments,
and conclude that 0 ≤ v(x, t) ≤ L′ for a.e. x ∈ � and t ∈ [T , T ′]. We continue this process
until (0, T∗) is exhausted. This completes the proof of Theorem 3.2. �
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Theorem 3.3 Let the conditions of Theorem 3.2 be satisfied. Then the solution v of (1.1)
is global in time. Moreover, for every T > 0, v satisfies 0 ≤ v ≤ M a.e. in QT , where M =
M(p,‖u0‖∞,�,λ1) > 0.

By Theorem 3.2, we easily conclude that Theorem 3.3 can be established. Also, by the
regularization arguments as when proving Theorem 3.4 in [22], we can derive the follow-
ing theorem of higher regularity of solutions to problem (1.1). Here we state these results
and omit the details (cf. [22]).

Theorem 3.4 Let the conditions of Theorem 3.2 be fulfilled. If we add the hypothesis u0 ∈
W 1,p

0 (�), then u ∈ U . Moreover, for a.e. t ∈ (0, T∗), we have

‖∂tu‖2
2,Qt +

1
p
∥
∥∇u(t)

∥
∥p

p,� + λ

∫

�

∫ u(t)

0
|x|αχ{s>0}s–β ds dx

≤ 1
p
‖∇u0‖p

p,� + λ

∫

�

∫ u0

0
|x|αχ{s>0}s–β ds dx. (3.6)

4 Complete quenching in finite time
In this section, following the idea of [16, 22] (see also the book [1]), we discuss the com-
plete quenching phenomenon by using the energy methods and give the proof of The-
orem 2.2. We here note that Díaz [16] has extended the energy method to the study of
the free boundary generated by the solutions of more general semilinear or quasilinear
parabolic problems of quenching type, which involve a negative power of the unknown in
an equation like (1.1).

Define the energy function J(t) = ‖u(t)‖2
2,�. In the following, we first derive the energy

equality and ordinary differential inequality satisfied by J(t).
From (2.1), we have the following equality for t1, t2 ∈ [0, T]:

1
2
∥
∥u(t2)

∥
∥2

2,� –
1
2
∥
∥u(t1)

∥
∥2

2,� +
∫ t2

t1

∫

�

(|∇u|p + λ|x|αu1–β
)

dz = 0. (4.1)

Letting t1 = t, t2 = t + h with t, t + h ∈ [0, T], we can rewrite (4.1) as

1
2h

∥
∥u(t + h)

∥
∥2

2,� –
1

2h
∥
∥u(t)

∥
∥2

2,� +
1
h

∫ t+h

t

∫

�

(|∇u|p + λ|x|αu1–β
)

dz = 0.

Since u ∈ U and it satisfies (2.1), we know that

∫

�

(|∇u|p + λ|x|αu1–β
)

dx ∈ L1(0, T).

Applying the Lebesgue differentiation theorem for a.e. t ∈ (0, T), we have

lim
h→0

1
h

∫ t+h

t

∫

�

(|∇u|p + λ|x|αu1–β
)

dz =
∫

�

(∣
∣∇u(t)

∣
∣p + λ|x|αu1–β (t)

)
dx.

Using (4.1), we get the following energy equality for a.e. t ∈ (0, T):

1
2

d
dt

(∥
∥u(t)

∥
∥2

2,�

)
+

∫

�

(∣
∣∇u(t)

∣
∣p + λ|x|αu1–β (t)

)
dx = 0. (4.2)
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By the definition of J(t), we rewrite (4.2) in the following form for a.e. t ∈ (0, T):

1
2

J ′(t) +
∫

�

(∣
∣∇u(t)

∣
∣p + λ|x|αu1–β (t)

)
dx = 0.

Setting D = 2 min{1,λ}, we get the ordinary differential inequality

J ′(t) + D
∫

�

(∣
∣∇u(t)

∣
∣p + |x|αu1–β (t)

)
dx ≤ 0. (4.3)

To prove the differential inequality satisfied by J(t) in Lemma 4.2, we will make use of the
interpolation inequality with weights of Gagliardo–Nirenberg type (see [33]) as follows.

Lemma 4.1 Assume p, q, r, α, β , γ , a are real numbers, satisfying 0 < a < 1, p, q ≥ 1, 1
p + α

n ,
1
q + β

n , 1
r + γ

n > 0, r 
= 0, then

∥
∥|x|γ Dju

∥
∥

Lr ≤ c
∥
∥|x|αDmu

∥
∥a

Lp

∥
∥|x|βu

∥
∥1–a

Lq ,

where j ≥ 0, m > 0 are integers, j/m ≤ a ≤ 1, and m – j – n/p is not a nonnegative integer.

Lemma 4.2 Assume that u ∈ U is a weak solution of problem (1.1) satisfying (2.1). Then
the function J(t) satisfies the differential inequality

⎧
⎨

⎩

J ′(t) + KJd(t) ≤ 0, a.e. t ∈ (0, T),

J(0) = ‖u0‖2
2,�,

(4.4)

with the constants K = (c–1D
a
p (DM–β )1–a)2d , d = 1

2( a
p +1–a) ∈ (0, 1), M = ‖u‖∞,QT .

Proof Set m = 1, j = α = γ = 0, r = 2, q = 1. Then applying Lemma 4.1 we can derive that
for a.e. t ∈ (0, T),

D
a
p
(
DM–β

)1–a∥∥u(t)
∥
∥

2,�

≤ D
a
p
(
DM–β

)1–ac
∥
∥∇u(t)

∥
∥a

Lp

∥
∥|x|αu

∥
∥1–a

L1

= c
(

D
∫

�

|∇u|p dx
) a

p
(

D
∫

�

|x|αuM–β dx
)1–a

≤ c
(

D
∫

�

|∇u|p dx + D
∫

�

|x|αuM–β dx
) a

p +1–a

. (4.5)

Since
∫

�

u(t)1–β dx ≥ M–β

∫

�

u(t) dx,

we obtain

(
c–1D

a
p
(
DM–β

)1–a)2J(t) ≤
(

D
∫

�

∣
∣∇u(t)

∣
∣p dx +

∫

�

|x|αu1–β (t) dx
)2( a

p +1–a)

.

We complete the proof by plugging this inequality into (4.3). �
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Proof of Theorem 2.2 Now we will complete the proof of Theorem 2.2, which can be
proved by the following lemma. �

Lemma 4.3 Assume J(t) is a nonnegative function satisfying inequality (4.4) with d ∈ (0, 1).
Then

J(t) = 0, ∀t ≥ T∗, (4.6)

where T∗ = J1–d
0 [K(1 – d)]–1 with J0 = J(0) and K being defined in Lemma 4.2.

Proof Since (4.6) is surely true if J0 = 0, so we just prove it for the case J0 > 0. There exists
an interval (0, τ ) such that J(t) > 0 for all t ∈ [0, τ ) if J0 > 0. For contradiction, we assume

ξ = sup
{
τ > 0 : J(t) > 0,∀t ∈ [0, τ )

}
> T∗.

Dividing both terms of inequality (4.4) by Jd(t), we obtain

1
1 – d

(
J1–d(t)

)′ ≤ –K .

Integrating it from 0 to t with t ∈ (T∗, ξ ), we get

J1–d(t) ≤ J1–d
0 – K(1 – d)t.

Since (4.4) is established, so J ′(t) ≤ 0 for a.e. t and J(t) is a nonincreasing function. On the
other hand, J(t) is nonnegative and t → J1–d

0 – K(1 – d)t is monotone decreasing in t, thus

∀t ≥ T∗, 0 ≤ J(t) ≤ J1–d
0 – K(1 – d)t < 0.

However, this is impossible unless T∗ ≥ ξ . Thus, J(T∗) = 0. �

5 Numerical experiments
In this section, we give some numerical experiments which illustrate our theoretical re-
sults.

We consider the case of one space variable and mimic the numerical scheme in [41],
and by the pdepe solver we convert equation (1.1) to ODEs using a second-order accurate
spatial discretization based on a fixed interval of specified nodes. We refer the interested
readers to [41], where the discretization method is described in detail.

We take � = [0, 5] and 0 = x1 < x2 < · · · < xN = 5 with N = 10. By calling the pdepe func-
tion in Matlab, we can obtain the figures of numerical solution for p = 2 and p = 4, re-
spectively. We know the solution will be quenching completely in finite time, through
Theorem 2.2.

When β = 0.1, λ = 0.2 and u0 = x(5–x), we can get the corresponding figures (see Figs. 1–
8). When p = 2 and α = 0.66, we can get the three-dimensional map, and obtain the corre-
sponding sectional drawings for α = 0.66, 0.6, –0.1 when t ∼ 3.94 (Figs. 1–4). From Fig. 2,
we know that the solution has been completely quenched in a small interval. According
to Fig. 1, the solution will be quenching completely as time t passes. We can also get the
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Figure 1 p = 2, α = 0.66

Figure 2 p = 2, α = 0.66

Figure 3 p = 2, α = 0.6

Figure 4 p = 2, α = –0.1
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Figure 5 p = 4, α = 0.66

Figure 6 p = 4, α = 0.66

Figure 7 p = 4, α = 0.6

Figure 8 p = 4, α = –0.1
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Figure 9 p = 2, α = 0.66

Figure 10 p = 2, α = 0.66

Figure 11 p = 2, α = 0.6

figures when p = 4 (Figs. 5–8). Choosing the same β , λ, α, u0 and a different p, we know
that the complete quenching time is also different. Figures 2–6 show that the complete
quenching time decreases as p increases.

Theorem 2.2 and Lemma 4.3 show that the complete quenching time depends on u0, α,
β , λ, p and |�|. Assuming β and λ remain fixed and choosing u0 = 3x(5 – x), we can also
get the complete quenching time (see Figs. 9–16).

According to Figs. 1–16, we find that, as u0 gets larger, the complete quenching time will
be also longer. Moreover, from the figures of α = –0.1, 0.6, 0.66, we know that the complete
quenching phenomenon will occur when α increases to some critical value, for example,
α ∼ 0.66 in above numerical experiments.
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Figure 12 p = 2, α = –0.1

Figure 13 p = 4, α = 0.66

Figure 14 p = 4, α = 0.66

Remark 5.1 In this section, we only show the complete quenching phenomenon of numer-
ical solutions by choosing some special parameters of λ, β , α, p and certain initial data. In
other words, the global weak solutions obtained in Theorem 2.2 are not unique, in general.
When p = 2, λ = 1 and α = 0 are taken in equation (1.1), Winkler [43] has shown that, for
any n and β , the nonuniqueness holds at least for some nonnegative boundary and initial
data. We suspect that similar results would still hold for the quasilinear equation (1.1). We
leave it to the interested readers as an open question.
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Figure 15 p = 4, α = 0.6

Figure 16 p = 4, α = –0.1
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