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Abstract
To be the best of our knowledge, the convergence theorem for the DC program and
split DC program are proposed in finite-dimensional real Hilbert spaces or Euclidean
spaces. In this paper, to study the split DC program, we give a hybrid proximal
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1 Introduction
Let H be a real Hilbert space, and let f : H → R be a proper lower semicontinuous and
convex function. Define a sequence {xn}n∈N by taking x1 ∈ H arbitrarily and

xn+1 = arg min
y∈H

{
f (y) +

1
2βn

‖y – xn‖2
}

, n ∈N. (1.1)

Then {xn}n∈N converges weakly to a minimizer of f under suitable conditions, and this is
called the proximal point algorithm (PPA). This algorithm is useful, however, only for con-
vex problems, because the idea for this algorithm is based on the monotonicity of subdif-
ferential operators of convex functions. So, it is important to consider the relation between
nonconvex functions and proximal point algorithm.

The DC program is the well-known nonconvex problem of the form

(DCP) Find x̄ ∈ arg min
x∈Rn

{
f (x) = g(x) – h(x)

}
,

where g, h : Rn → R are proper lower semicontinuous convex functions. Here, the func-
tion f is called a DC function, and the functions g and h are called the DC components of
f . (In the DC program, the convention (+∞) – (+∞) = +∞ is adopted to avoid the ambi-
guity (+∞) – (+∞) that does not present any interest.) It is well known that a necessary
condition for x ∈ dom(f ) := {x ∈R

n : (x) < ∞} to be a local minimizer of f is ∂h(x) ⊆ ∂g(x).
However, this condition is hard to be reached. So, many researchers focus their attentions
on finding points such that ∂h(x) ∩ ∂g(x) �= ∅, where x is called a critical point of f [1].
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It is worth mentioning the richness of the class of DC functions that is a subspace con-
taining the class of lower-C2 functions. In particular, DC(Rn) contains the space C1,1 of
functions with locally Lipschitz continuous gradients. Further, DC(Rn) is closed under
the operations usually considered in optimization. For example, a linear combination, a
finite supremum, or the product of two DC functions remain DC. It is also known that the
set of DC functions defined on a compact convex set of Rn is dense in the set of continuous
functions on this set.

The interest in the theory of DC functions has much increased in the last years. Some in-
teresting optimality conditions and duality theorems related to the DC program are given.
For more details, we refer to [2–9].

In 2003, Sun, Sampaio, and Candido [10] proposed a proximal point algorithm to study
problem (DCP).

Algorithm 1.1 (Proximal point algorithm for (DCP) [10]) Let {βn}n∈N be a sequence in
(0,∞), and let g, h : Rk → R be proper lower semicontinuous and convex functions. Let
{xn}n∈N be generated as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 ∈ H1 is chosen arbitrarily,

Compute wn ∈ ∂h(xn) and set yn = xn + βnwn,

xn+1 := (I + βn∂g)–1(yn), n ∈N.

Stop criteria: xn+1 = xn.

In 2016, Souza, Oliveira, and Soubeyran [11] proposed a proximal linearized algorithm
to study the DC program.

Algorithm 1.2 (Proximal linearized algorithm [11]) Let {βn}n∈N be a sequence in (0,∞),
and let g, h : Rk → R be proper lower semicontinuous and convex functions. Let {xn}n∈N
be generated as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 ∈ H1 is chosen arbitrarily,

Compute wn ∈ ∂h(xn),

xn+1 := arg minu∈H1{g(u) + 1
2βn

‖u – xn‖2 – 〈wn, u – xn〉}, n ∈N.

Stop criteria: xn+1 = xn.

Besides, some algorithms for the DC program are proposed to analyze and solve a variety
of highly structured and practical problems (see, for example, [12]).

On the other hand, Chuang [13] introduced the following split DC program (split min-
imization problems for DC functions):

(SDCP) Find x̄ ∈ H1 such that x̄ ∈ arg min
x∈H1

f1(x) and Ax̄ ∈ arg min
y∈H2

f2(y),

where H1 and H2 are real Hilbert spaces, A : H1 → H2 is a linear bounded mapping with ad-
joint A∗, g1, h1 : H1 →R and g2, h2 : H2 → R are proper lower semicontinuous and convex
functions, and f1(x) = g1(x) – h1(x) and f2(y) = g2(y) – h2(y) for all x ∈ H1 and y ∈ H2. Fur-
ther, to study problem (SDCP), Chuang [13] gave the following split proximal linearized
algorithm and related convergence theorem in finite-dimensional real Hilbert spaces.
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Algorithm 1.3 (Split proximal linearized algorithm) Let {xn}n∈N be generated as follows:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x1 ∈ H1 is chosen arbitrarily,

yn := arg minv∈H2{g2(v) + 1
2βn

‖v – Axn‖2 – 〈∇h2(Axn), v – Axn〉},
zn := xn – rnA∗(Axn – yn),

xn+1 := arg minu∈H1{g1(u) + 1
2βn

‖u – zn‖2 – 〈∇h1(zn), u – zn〉}, n ∈N.

Besides, there are also some important algorithms for the related problems in the liter-
ature; see, for example, [14–17].

In this paper, motivated by the works mentioned, we first give an hybrid proxi-
mal linearized algorithm and then propose a related convergence theorem in finite-
dimensional real Hilbert spaces. Next, we propose related convergence theorems in
infinite-dimensional real Hilbert space.

2 Preliminaries
Let H be a real Hilbert space with inner product 〈·, ·〉 and norm ‖ · ‖. We denote the strong
and weak convergence of {xn}n∈N to x ∈ H by xn → x and xn ⇀ x, respectively. For all
x, y, u, v ∈ H and λ ∈R, we have

‖x + y‖2 = ‖x‖2 + 2〈x, y〉 + ‖y‖2, (2.1)
∥∥λx + (1 – λ)y

∥∥2 = λ‖x‖2 + (1 – λ)‖y‖2 – λ(1 – λ)‖x – y‖2, (2.2)

2〈x – y, u – v〉 = ‖x – v‖2 + ‖y – u‖2 – ‖x – u‖2 – ‖y – v‖2. (2.3)

Definition 2.1 Let H be a real Hilbert space, let B : H → H , and let β > 0. Then,
(i) B is monotone if 〈x – y, Bx – By〉 ≥ 0 for all x, y ∈ H .

(ii) B is β-strongly monotone if 〈x – y, Bx – By〉 ≥ β‖x – y‖2 for all x, y ∈ H .

Definition 2.2 Let H be a real Hilbert space, and let B : H � H be a set-valued mapping
with domain D(B) := {x ∈ H : B(x) �= ∅}. Then,

(i) B is monotone if 〈u – v, x – y〉 ≥ 0 for any u ∈ B(x) and v ∈ B(y).
(ii) B is maximal monotone if its graph {(x, y) : x ∈D(B), y ∈ B(x)} is not properly

contained in the graph of any other monotone mapping.
(iii) B is ρ-strongly monotone (ρ > 0) if 〈x – y, u – v〉 ≥ ρ‖x – y‖2 for all x, y ∈ H ,

u ∈ B(x), and v ∈ B(y).

Definition 2.3 Let H be a real Hilbert space, and let f : H →R. Then,
(i) f is proper if dom(f ) = {x ∈ H : f (x) < ∞} �= ∅.

(ii) f is lower semicontinuous if {x ∈ H : f (x) ≤ r} is closed for each r ∈R.
(iii) f is convex if f (tx + (1 – t)y) ≤ tf (x) + (1 – t)f (y) for every x, y ∈ H and t ∈ [0, 1].
(iv) f is ρ-strongly convex (ρ > 0) if

f
(
tx + (1 – t)y

)
+

ρ

2
· t(1 – t)‖x – y‖2 ≤ tf (x) + (1 – t)f (y)

for all x, y ∈ H and t ∈ (0, 1).
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(v) f is Gâteaux differentiable at x ∈ H if there is ∇f (x) ∈ H such that

lim
t→0

f (x + ty) – f (x)
t

=
〈
y,∇f (x)

〉

for each y ∈ H .
(vi) f is Fréchet differentiable at x if there is ∇f (x) such that

lim
y→0

f (x + y) – f (x) – 〈∇f (x), y〉
‖y‖ = 0.

Example 2.1 Let H be a real Hilbert space. Then g(x) := ‖x‖2 is a 2-strongly convex func-
tion.

Example 2.2 Let g(x) := 1
2 〈Qx, x〉 – 〈x, b〉, where Q ∈ R

n×n is a real symmetric positive
definite matrix, and b ∈R

n. Then g is a strongly convex function.

Definition 2.4 Let f : H → (–∞,∞] be a proper lower semicontinuous and convex func-
tion. Then the subdifferential ∂f of f is defined by

∂f (x) :=
{

x∗ ∈ H : f (x) +
〈
y – x, x∗〉 ≤ f (y) for each y ∈ H

}

for each x ∈ H .

Lemma 2.1 ([18, 19]) Let f : H → (–∞,∞] be a proper lower semicontinuous and convex
function. Then:

(i) ∂f is a set-valued maximal monotone mapping;
(ii) f is Gâteaux differentiable at x ∈ int(dom(f )) if and only if ∂f (x) consists of a single

element, that is, ∂f (x) = {∇f (x)} [18, Prop. 1.1.10];
(iii) A Fréchet differentiable function f is convex if and only if ∇f is a monotone mapping.

Lemma 2.2 ([19, Example 22.3(iv)]) Let ρ > 0, let H be a real Hilbert space, and let f :
H → R be a proper lower semicontinuous and convex function. If f is ρ-strongly convex,
then ∂f is ρ-strongly monotone.

Lemma 2.3 ([19, Prop. 16.26]) Let H be a real Hilbert space, and let f : H → (∞,∞] be
a proper lower semicontinuous and convex function. Let {un}n∈N and {xn}n∈N be sequences
in H such that un ∈ ∂f (xn) for all n ∈ N. Then if xn ⇀ x and un → u, then u ∈ ∂f (x).

Lemma 2.4 ([20]) Let H be a real Hilbert space, let B : H � H be a set-valued maximal
monotone mapping, and let β > 0. The mapping JB

β defined by JB
β (x) := (I +βB)–1(x) for x ∈ H

is a single-valued mapping.

3 Main results in finite-dimensional real Hilbert space
Let ρ and L be real numbers with ρ > L > 0. Let H1 and H2 be finite-dimensional real
Hilbert spaces, and let A : H1 → H2 be a nonzero linear and bounded mapping with adjoint
A∗. Let g1, h1 : H1 → R be proper lower semicontinuous and convex functions, let g2, h2 :
H2 →R be proper lower semicontinuous and convex functions, and let f1(x) = g1(x)–h1(x)
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for x ∈ H1 and f2(y) = g2(y) – h2(y) for y ∈ H2. Further, we assume that f1 and f2 are bounded
from below, h1 and h2 are Fréchet differentiable, ∇h1 and ∇h2 are L-Lipschitz continuous,
and g1 and g2 are ρ-strongly convex.

Choose δ ∈ (0, 0.5), let β be a real number, and let {βn}n∈N be a sequence in R such that

0 < β , βn <
1

2ρ – L
.

Since ρ > L > 0 and βn > 0, we have βnL < βnρ , and then

0 <
1 + βnL

1 + 2βnρ – βnL
< 1.

Besides, we know that

1 < 1 + 2βnρ – βnL < 2,

which implies that

1
2

<
1

1 + 2βnρ – βnL
<

1 + βnL
1 + 2βnρ – βnL

< 1.

Let {rn}n∈N be a sequence in R, and let r be a real number with

lim inf
n→∞ rn > 0

and

0 < rn, r < min

{ 4√1 – 2δ · √βn(ρ – L)√
2 + 2βnL · ‖A‖2 ,

√
δ

(2 + βnL)‖A‖2

}
.

Thus we have

rn <
√

δ

(2 + βnL)‖A‖2 <
3

2‖A‖2

and

0 <
4(1 + βnL) · ‖A‖4 · r2

n√
1 – 2δ

< 2βnρ – 2βnL.

So, we have

0 < 1 + βnL +
4(1 + βnL) · ‖A‖4 · r2

n√
1 – 2δ

< 1 + 2βnρ – βnL,

and then

0 <
1 + βnL

1 + 2βnρ – βnL
·
(

1 +
4 · ‖A‖4 · r2

n√
1 – 2δ

)
< 1.
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Let �SDCP be defined by

�SDCP :=
{

x ∈ H1 : ∇h1(x) ∈ ∂g1(x),∇h2(Ax) ∈ ∂g2(Ax)
}

.

We further assume that �SDCP �= ∅. The following result of Chuang [13] plays an important
role in this paper.

Lemma 3.1 ([13]) Under the assumptions in this section, let

⎧⎪⎪⎨
⎪⎪⎩

y := arg minv∈H2{g2(v) + 1
2β

‖v – Ax‖2 – 〈∇h2(Ax), v – Ax〉},
z := x – rA∗(Ax – y),

w := arg minu∈H1{g1(u) + 1
2β

‖u – z‖2 – 〈∇h1(z), u – z〉}.
(3.1)

Then x ∈ �SDCP if and only if x = w.

Proposition 3.1 ([13]) If ρ > L and �SDCP �= ∅, then the set �SDCP is a singleton.

In this section, we propose the following algorithm to study the split DC program.

Algorithm 3.1 Let x1 ∈ H1 be arbitrary, and let {xn}n∈N be defined as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn := arg minv∈H2{g2(v) + 1
2βn

‖v – Axn‖2 – 〈∇h2(Axn), v – Axn〉},
zn := xn – rnA∗(Axn – yn),

wn := arg minu∈H1{g1(u) + 1
2βn

‖u – zn‖2 – 〈∇h1(zn), u – zn〉},
ŷn := arg minv∈H2{g2(v) + 1

2βn
‖v – Awn‖2 – 〈∇h2(Awn), v – Awn〉},

ẑn := wn – rnA∗(Awn – ŷn),

Dn := zn – ẑn,

αn := 〈xn–wn ,Dn〉
‖Dn‖2 ,

x̂n := xn – αnDn,

xn+1 := arg minu∈H1{g1(u) + 1
2βn

‖u – x̂n‖2 – 〈∇h1(̂xn), u – x̂n〉}, n ∈ N,

stop criteria: xn = wn.

Remark 3.1 The stop criteria in Algorithm 3.1 is given by Lemma 3.1.

Theorem 3.1 Let {xn}n∈N be generated by Algorithm 3.1. Then {xn}n∈N converges to x̄,
where �SDCP = {x̄}.

Proof Take any w ∈ �SDCP and n ∈N, and let w and n be fixed. First, we know that

0 ∈ ∂g1(xn+1) +
1
βn

(xn+1 – x̂n) – ∇h1(̂xn). (3.2)

By (3.2) and Lemma 2.4 we have

xn+1 = (I + βn∂g1)–1(̂xn + βn∇h1(̂xn)
)
. (3.3)
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By (3.2) again, there exists τn ∈ ∂g1(xn+1) such that

∇h1(̂xn) = τn +
1
βn

(xn+1 – x̂n). (3.4)

Since w ∈ �SDCP, we have that ∇h1(w) ∈ ∂g1(w). By Lemma 2.2, ∂g1 is ρ-strongly mono-
tone, and this implies that

0 ≤ 〈
xn+1 – w, τn – ∇h1(w)

〉
– ρ‖xn+1 – w‖2. (3.5)

By (3.4) and (3.5) we have

0 ≤ 2βn
〈
xn+1 – w,∇h1(̂xn) – ∇h1(w)

〉
– 2βnρ‖xn+1 – w‖2

+ 2〈xn+1 – w, x̂n – xn+1〉
≤ 2βnL‖xn+1 – w‖ · ‖̂xn – w‖ – 2βnρ‖xn+1 – w‖2

+ ‖̂xn – w‖2 – ‖xn+1 – x̂n‖2 – ‖xn+1 – w‖2

≤ βnL
(‖xn+1 – w‖2 + ‖̂xn – w‖2) – 2βnρ‖xn+1 – w‖2

+ ‖̂xn – w‖2 – ‖xn+1 – x̂n‖2 – ‖xn+1 – w‖2. (3.6)

Hence, by (3.6),

‖xn+1 – w‖2 ≤ 1 + βnL
1 + 2βnρ – βnL

‖̂xn – w‖2 –
1

1 + 2βnρ – βnL
‖xn+1 – x̂n‖2. (3.7)

Similarly to (3.2), we have

0 ∈ ∂g2(̂yn) +
1
βn

(̂yn – Awn) – ∇h2(Awn) (3.8)

and

0 ∈ ∂g1(wn) +
1
βn

(wn – zn) – ∇h1(zn). (3.9)

Similarly to (3.3), we have

yn = (I + βn∂g2)–1(Axn + βn∇h2(Axn)
)

(3.10)

and

ŷn = (I + βn∂g2)–1(Awn + βn∇h2(Awn)
)
. (3.11)

Similarly to (3.7), we have

‖wn – w‖2 ≤ 1 + βnL
1 + 2βnρ – βnL

‖zn – w‖2 –
1

1 + 2βnρ – βnL
‖wn – zn‖2, (3.12)

‖̂yn – Aw‖2 ≤ βnL + 1
1 + 2βnρ – βnL

‖Awn – Aw‖2 –
‖̂yn – Awn‖2

1 + 2βnρ – βnL
, (3.13)
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and

‖yn – Aw‖2 ≤ βnL + 1
1 + 2βnρ – βnL

‖Axn – Aw‖2 –
‖yn – Axn‖2

1 + 2βnρ – βnL
. (3.14)

Next, we set

εn := rn
[
A∗(Awn – ŷn) – A∗(Axn – yn)

]
. (3.15)

By (3.10) and (3.11) we have

‖εn‖ ≤ rn‖A‖(‖Awn – Axn‖ + ‖̂yn – yn‖
)

≤ rn‖A‖(‖Axn – Awn‖ + ‖An – Awn‖ + βnL‖Axn – Awn‖
)

≤ rn‖A‖2(2 + βnL)‖xn – wn‖
≤ √

δ‖xn – wn‖. (3.16)

By (3.15) we have

〈xn – wn, Dn〉 = 〈xn – wn, xn – wn + εn〉
= ‖xn – wn‖2 + 〈xn – wn, εn〉
≥ ‖xn – wn‖2 –

∣∣〈xn – wn, εn〉
∣∣

≥ (1 – δ)‖xn – wn‖2 (3.17)

and

〈xn – wn, Dn〉 = 〈xn – wn, xn – wn + εn〉
= ‖xn – wn‖2 + 〈xn – wn, εn〉

=
1
2
‖xn – wn‖2 + 〈xn – wn, εn〉 +

1
2
‖xn – wn‖2

≥ 1
2
‖xn – wn‖2 + 〈xn – wn, εn〉 +

1
2
‖εn‖2

=
1
2
‖xn – wn + εn‖2

=
1
2
‖Dn‖2. (3.18)

By (3.18) we know that αn ≥ 1
2 for each n ∈ N. Besides, we have

‖xn – wn + εn‖2 = ‖xn – wn‖2 + ‖εn‖2 + 2〈xn – wn, εn〉
≥ ‖xn – wn‖2 + ‖εn‖2 – 2

∣∣〈xn – wn, εn〉
∣∣

≥ ‖xn – wn‖2 + ‖εn‖2 – 2‖xn – wn‖ · ‖εn‖
≥ ‖xn – wn‖2 + ‖εn‖2 – 2δ‖xn – wn‖2

≥ (1 – 2δ)‖xn – wn‖2 > 0. (3.19)
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By (3.19) we have

α2
n ≤

(‖xn – wn‖ · ‖xn – wn + εn‖
‖xn – wn + εn‖2

)2

≤ ‖xn – wn‖2

(1 – 2δ)‖xn – wn‖2 =
1

1 – 2δ
. (3.20)

Next, we have

‖̂xn – w‖2 = ‖xn – αnDn – w‖2

= ‖xn – w‖2 + α2
n‖Dn‖2 – 2αn〈xn – w, Dn〉

= ‖xn – w‖2 + α2
n‖Dn‖2 – 2αn〈xn – wn, Dn〉

– 2αn〈wn – w, Dn〉
= ‖xn – w‖2 – α2

n‖Dn‖2 – 2αn〈wn – w, Dn〉
= ‖xn – w‖2 – α2

n‖Dn‖2 – 2αn〈wn – w, zn – ẑn〉
= ‖xn – w‖2 – α2

n‖Dn‖2 – αn‖wn – ẑn‖2 – αn‖zn – w‖2

+ αn‖wn – zn‖2 + αn‖̂zn – w‖2. (3.21)

On the other hand, we have

2‖̂zn – w‖2 = 2
〈̂
zn – w, wn – rnA∗(Awn – ŷn) – w

〉
= 2〈̂zn – w, wn – w〉 – 2rn

〈̂
zn – w, A∗(Awn – ŷn)

〉
= 2〈̂zn – w, wn – w〉 – 2rn〈Âzn – Aw, Awn – ŷn〉
= ‖̂zn – w‖2 + ‖wn – w‖2 – ‖̂zn – wn‖2 – rn‖Âzn – ŷn‖2

– rn‖Awn – Aw‖2 + rn‖Âzn – Awn‖2 + rn‖̂yn – Aw‖2, (3.22)

which implies that

‖̂zn – w‖2 = ‖wn – w‖2 – ‖̂zn – wn‖2 – rn‖Âzn – ŷn‖2

– rn‖Awn – Aw‖2 + rn‖Âzn – Awn‖2 + rn‖̂yn – Aw‖2. (3.23)

By (3.12), (3.13), (3.21), and (3.23) we have

‖̂xn – w‖2

= ‖xn – w‖2 – α2
n‖Dn‖2 – 2αn‖wn – ẑn‖2 – αn‖zn – w‖2

+ αn‖wn – zn‖2 + αn‖wn – w‖2 – αnrn‖Âzn – ŷn‖2

– αnrn‖Awn – Aw‖2 + αnrn‖Âzn – Awn‖2 + αnrn‖̂yn – Aw‖2

≤ ‖xn – w‖2 – α2
n‖Dn‖2 – αn

(
2 – rn‖A‖2)‖̂zn – wn‖2 – αn‖zn – w‖2

+ αn‖wn – zn‖2 + αn‖wn – w‖2 – αnrn‖Âzn – ŷn‖2

– αnrn‖Awn – Aw‖2 + αnrn‖̂yn – Aw‖2

≤ ‖xn – w‖2 – α2
n‖Dn‖2 – αn

(
2 – rn‖A‖2)‖̂zn – wn‖2 – αn‖zn – w‖2



Chuang and Yang Journal of Inequalities and Applications  (2018) 2018:250 Page 10 of 16

+ αn‖wn – zn‖2 + αn‖zn – w‖2 –
αn

1 + 2βnρ – βnL
‖wn – zn‖2

– αnrn‖Âzn – ŷn‖2 – αnrn‖Awn – Aw‖2 + αnrn‖Awn – Aw‖2

≤ ‖xn – w‖2 – α2
n‖Dn‖2 – αn

(
2 – rn‖A‖2)‖̂zn – wn‖2

+ αn‖wn – zn‖2 –
αn

1 + 2βnρ – βnL
‖wn – zn‖2

– αnrn‖Âzn – ŷn‖2. (3.24)

We also have

–2α2
n‖Dn‖2 = αn‖wn – ẑn‖2 + αn‖xn – zn‖2 – αn‖wn – zn‖2 – αn‖xn – ẑn‖2. (3.25)

By (3.24) and (3.25) we have

‖̂xn – w‖2

≤ ‖xn – w‖2 – αn

(
3
2

– rn‖A‖2
)

‖̂zn – wn‖2 – αnrn‖Âzn – ŷn‖2

–
αn

1 + 2βnρ – βnL
‖wn – zn‖2 –

1
2

· αn‖xn – ẑn‖2 +
1
2

· αn‖xn – zn‖2

+
1
2

· αn‖wn – zn‖2. (3.26)

By (3.14) we have

‖xn – zn‖ =
∥∥rnA∗(Axn – yn)

∥∥
≤ rn‖A‖(‖Axn – Aw‖ + ‖yn – Aw‖)
≤ 2rn‖A‖ · ‖Axn – Aw‖
≤ 2rn‖A‖2‖xn – w‖. (3.27)

By (3.7), (3.26), and (3.27) we have

‖xn+1 – w‖2 ≤ 1 + βnL
1 + 2βnρ – βnL

‖̂xn – w‖2 –
1

1 + 2βnρ – βnL
‖xn+1 – x̂n‖2

≤ 1 + βnL
1 + 2βnρ – βnL

(
‖xn – w‖2 – αn

(
3
2

– rn‖A‖2
)

‖̂zn – wn‖2

– αnrn‖Âzn – ŷn‖2 – αn ·
(

1
1 + 2βnρ – βnL

–
1
2

)
‖wn – zn‖2

–
1
2

· αn‖xn – ẑn‖2 +
1
2

· αn‖xn – zn‖2
)

–
1

1 + 2βnρ – βnL
‖xn+1 – x̂n‖2

≤ 1 + βnL
1 + 2βnρ – βnL

(
1 + 2αnr2

n‖A‖4)‖xn – w‖2

≤ ‖xn – w‖2. (3.28)
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By (3.28), limn→∞ ‖xn – w‖ exists, {xn}n∈N is a bounded sequence, and

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

limn→∞ 1+βnL
1+2βnρ–βnL · αn( 3

2 – rn‖A‖2)‖̂zn – wn‖2 = 0,

limn→∞ 1+βnL
1+2βnρ–βnL · αnrn‖Âzn – ŷn‖2 = 0,

limn→∞ 1+βnL
1+2βnρ–βnL · αn

1+2βnρ–βnL‖wn – zn‖2 = 0,

limn→∞ 1+βnL
1+2βnρ–βnL · 1

2 · αn‖xn – ẑn‖2 = 0.

(3.29)

By the assumptions we have

lim
n→∞‖̂zn – wn‖ = lim

n→∞‖Âzn – ŷn‖ = lim
n→∞‖wn – zn‖ = lim

n→∞‖xn – ẑn‖ = 0. (3.30)

Since {xn}n∈N is bounded, there exists a subsequence {xnk }k∈N of {xn}n∈N such that xnk →
x̄ ∈ H1. Thus, wnk → x̄, znk → x̄, Awnk → Ax̄, and ŷnk → Ax̄. By (3.8), (3.9), and Lemma 2.3
we get that x̄ ∈ �SDCP. By Proposition 3.1, �SDCP = {x̄}. Further, limn→∞ ‖xn – x̄‖ =
limk→∞ ‖xnk – x̄‖ = 0. Therefore the proof is completed. �

4 Main results in infinite-dimensional real Hilbert space
Let H1 and H2 be infinite-dimensional real Hilbert spaces. Let δ, ρ , L, A, A∗, g1, h1, g2, h2,
f1, f2, {rn}n∈N, and {βn}n∈N be the same as in Sect. 3.

Definition 4.1 Let C be a nonempty closed convex subset of a real Hilbert space H , and
let T : C → H . Let Fix(T) := {x ∈ C : Tx = x}. Then:

(i) T is a nonexpansive mapping if ‖Tx – Ty‖ ≤ ‖x – y‖ for all x, y ∈ C;
(ii) T is a firmly nonexpansive mapping if ‖Tx – Ty‖2 ≤ 〈x – y, Tx – Ty〉 for all x, y ∈ C,

that is, ‖Tx – Ty‖2 ≤ ‖x – y‖2 – ‖(I – T)x – (I – T)y‖2 for all x, y ∈ C.

Lemma 4.1 ([21]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
T : C → H be a nonexpansive mapping, and let {xn}n∈N be a sequence in C. If xn ⇀ w and
limn→∞ ‖xn – Txn‖ = 0, then Tw = w.

Definition 4.2 Let β > 0, let H be a real Hilbert space, and let g : H → R be a proper
lower-semicontinuous and convex function. Then the proximal operator of g of order β

is defined by

proxβ ,g(x) := argmin
v∈H

{
g(v) +

1
2β

‖v – x‖2
}

for each x ∈ H . In fact, we know that proxβ ,g(x) = (I + β∂g)–1(x) = J∂g
β (x) and T(x) :=

proxβ ,g(x) is a firmly nonexpansive mapping.

Lemma 4.2 ([22, Lemma 2.3]) Let H be a real Hilbert space, and let g : H →R be a proper
lower-semicontinuous and convex function. For β2 ≥ β1 > 0, we have

proxβ2,g(x) = proxβ1,g

(
β1

β2
x + (1 –

β1

β2
) proxβ2,g(x)

)
.

The following result plays an important role when we study our convergence theorem
in an infinite-dimensional real Hilbert space.
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Lemma 4.3 Let H be a real Hilbert space, let g, h : H → R be proper lower-semicontinuous
and convex functions, and suppose that h is Fréchet differentiable. Then for all x ∈ H and
0 < β1 ≤ β2, we have

∥∥x – proxβ1,g(x + β1∇h(x))
∥∥ ≤ 2

∥∥x – proxβ2,g(x + β2∇h(x))
∥∥.

Proof By Lemma 4.2 we have

proxβ2,g
(
x +β2∇h(x)

)
= proxβ1,g

(
β1

β2

(
x +β2∇h(x)

)
+

(
1 –

β1

β2

)
proxβ2,g

(
x +β2∇h(x)

))
.

Thus,

∥∥proxβ1,g
(
x + β1∇h(x)

)
– proxβ2,g

(
x + β2∇h(x)

)∥∥
≤

∥∥∥∥x + β1∇h(x) –
(

β1

β2

(
x + β2∇h(x)

)
+

(
1 –

β1

β2

)
proxβ2,g

(
x + β2∇h(x)

))∥∥∥∥
=

(
1 –

β1

β2

)∥∥x – proxβ2,g
(
x + β2∇h(x)

)∥∥
≤ ∥∥x – proxβ2,g

(
x + β2∇h(x)

)∥∥,

and then

∥∥x – proxβ1,g
(
x + β1∇h(x)

)∥∥
≤ ∥∥x – proxβ2,g

(
x + β2∇h(x)

)∥∥ +
∥∥proxβ2,g

(
x + β2∇h(x)

)
– proxβ1,g

(
x + β1∇h(x)

)∥∥
≤ 2

∥∥x – proxβ2,g
(
x + β2∇h(x)

)∥∥.

Therefore the proof is completed. �

Lemma 4.4 Let β > 0, let H be a real Hilbert space, and let g : H → R be a proper lower
semicontinuous and ρ-strongly convex function. Then T(x) := proxβ ,g(x) is a contraction
mapping. In fact, ‖Tx – Ty‖ ≤ 1

1+βρ
‖x – y‖.

Lemma 4.5 Let β > 0, let H be a real Hilbert space, and let g, h : H → R be proper lower
semicontinuous and convex functions. Further, we assume that h is Fréchet differentiable,
∇h is L-Lipschitz continuous, and g is ρ-strongly convex. Let T : H → H be defined by
Tx := proxβ ,g(x + β∇h(x)) for each x ∈ H . Then the following are satisfied.

(i) If ρ > L > 0, then T is a contraction mapping.
(ii) If ρ = L > 0, then T is a nonexpansive mapping.

Proof For x, y ∈ H , we have

‖Tx – Ty‖ ≤ 1
1 + βρ

∥∥(
x + β∇h(x)

)
–

(
y + β∇h(y)

)∥∥

≤ 1
1 + βρ

(‖x – y‖ + β
∥∥∇h(x) – ∇h(y)

)∥∥)
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≤ 1
1 + βρ

(‖x – y‖ + βL‖x – y‖)

=
1 + βL
1 + βρ

‖x – y‖.

Thus the proof is completed. �

Theorem 4.1 In Theorem 3.1, let H1 and H2 be an infinite-dimensional real Hilbert space
and assume that lim infn→∞ βn > 0. Then the sequence {xn}n∈N generated by Algorithm 3.1
converges weakly to the unique solution x̄ of problem (SDCP).

Proof By Proposition 3.1 we know that �SDCP = {x̄}. Since lim infn→∞ βn > 0, we may as-
sume that there exists a real number β∗ such that βn > β∗ > 0. By (3.11) we have

ŷn = (I + βn∂g2)–1(Awn + βn∇h2(Awn)
)

= proxβn ,g2

(
Awn + βn∇h2(Awn)

)
. (4.1)

Similarly, we have

wn = (I + βn∂g1)–1(zn + βn∇h1(zn)
)

= proxβn ,g1

(
zn + βn∇h1(zn)

)
. (4.2)

By (3.30) we know that

lim
n→∞‖Awn – ŷn‖ = lim

n→∞‖wn – zn‖ = lim
n→∞‖xn – wn‖ = 0. (4.3)

By (4.2) and (4.3) we have

lim
n→∞

∥∥zn – proxβn ,g1

(
zn + βn∇h1(zn)

)∥∥ = 0 (4.4)

and

lim
n→∞

∥∥Awn – proxβn ,g2

(
Awn + βn∇h2(Awn)

)∥∥ = 0. (4.5)

By (4.4), (4.5), and Lemma 4.3 we have

lim
n→∞

∥∥zn – proxβ∗ ,g1

(
zn + β∗∇h1(zn)

)∥∥ = 0 (4.6)

and

lim
n→∞

∥∥Awn – proxβ∗ ,g2

(
Awn + β∗∇h2(Awn)

)∥∥ = 0. (4.7)

Besides, we have to show that {xn}n∈N is a bounded sequence. Since H1 is infinite dimen-
sional, there exist x̄ ∈ H1 and a subsequence {xnk }k∈N of {xn}n∈N such that xnk ⇀ x∗ ∈ H1.
By (4.3) we know that znk ⇀ x∗ and wnk ⇀ x∗. Hence, by (4.6), Lemma 4.1, and Lemma 4.5
we have that x∗ = proxβ∗ ,g1 (x∗ + β∗∇h1(x∗)), which implies that ∇h1(x∗) ∈ ∂g1(x∗). Since A
is linear, we have Awnk ⇀ Ax∗. Hence, by (4.7), Lemma 4.1 and Lemma 4.5, we have Ax∗ =
proxβ∗ ,g2 (Ax∗ +β∗∇h2(Ax∗)), which implies that ∇h2(Ax∗) ∈ ∂g2(Ax∗). So, x∗ ∈ �SDCP, and
thus limn→∞ ‖xn – x∗‖ exists. So, by Opial’s condition, we get xn ⇀ x∗. Therefore the proof
is completed. �
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Remark 4.1 To the best of our knowledge, the convergence theorems for the DC program
and split DC program are proposed in finite-dimensional Hilbert spaces. Here, Theo-
rem 4.1 is a convergence theorem for the split DC program in infinite-dimensional real
Hilbert spaces.

Following the same argument as in the proof of Theorem 4.1, we get the following con-
vergence theorem in infinite-dimensional real Hilbert spaces.

Theorem 4.2 Let H1 and H2 be infinite-dimensional real Hilbert spaces. Let A, A∗, g1, h1,
g2, h2, f1, and f2 be the same as in Sect. 3. Let ρ ≥ L > 0. Let {βn}n∈N be a sequence in [a, b] ⊆
(0,∞). Let {rn}n∈N be a sequence in (0, 1

‖A‖2 ) such that 0 < lim infn→∞ rn ≤ lim supn→∞ rn <
1

‖A‖2 . Then the sequence {xn}n∈N generated by Algorithm 1.3 converges weakly to some x̄ ∈
�SDCP.

5 Application to DC program
Let ρ , L, δ, {βn}n∈N be the same as in Sect. 3. Let H be an infinite-dimensional Hilbert
space, and let g, h : H →R be proper lower semicontinuous and convex functions. Besides,
we also assume that h is Fréchet differentiable, ∇h is L-Lipschitz continuous, and g is ρ-
strongly convex. Let f (x) = g(x) – h(x) for all x ∈ H and assume that f is bounded from
below.

Let {rn}n∈N be a sequence in R with lim infn→∞ rn > 0 and

0 < rn < min

{ 4√1 – 2δ · √βn(ρ – L)√
2 + 2βnL

,
√

δ

(2 + βnL)

}
.

Let �DCP be defined by

�DCP :=
{

x ∈ H : ∇h(x) ∈ ∂g(x)
}

,

and assume that �DCP �= ∅.
The following algorithm and convergence theorem are given by Algorithm 3.1 and The-

orem 4.1, respectively.

Algorithm 5.1 Let x1 ∈ H be arbitrary, and let {xn}n∈N be generated as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yn := arg minv∈H{g(v) + 1
2βn

‖v – xn‖2 – 〈∇h(xn), v – xn〉},
zn := xn – rn(xn – yn),

wn := arg minu∈H1{g(u) + 1
2βn

‖u – zn‖2 – 〈∇h(zn), u – zn〉},
ŷn := arg minv∈H{g(v) + 1

2βn
‖v – wn‖2 – 〈∇h(wn), v – wn〉},

ẑn := wn – rn(wn – ŷn),

Dn := zn – ẑn,

αn := 〈xn–wn ,Dn〉
‖Dn‖2 ,

x̂n := xn – αnDn,

xn+1 := arg minu∈H{g(u) + 1
2βn

‖u – x̂n‖2 – 〈∇h(̂xn), u – x̂n〉}, n ∈N,

stop criteria: xn = wn.
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Theorem 5.1 Assume that lim infn→∞ βn > 0. Then the sequence {xn}n∈N generated by Al-
gorithm 5.1 converges weakly to the unique solution x̄ of problem (SDCP).

The following algorithm is a particular case of Algorithm 1.3.

Algorithm 5.2 ([13]) Let x1 ∈ H be arbitrary, and let {xn}n∈N be generated as follows:

⎧⎪⎪⎨
⎪⎪⎩

yn := arg minv∈H{g(v) + 1
2βn

‖v – xn‖2 – 〈∇h(xn), v – xn〉},
zn := (1 – rn)xn + rnyn,

xn+1 := arg minu∈H{g(u) + 1
2βn

‖u – zn‖2 – 〈∇h(zn), u – zn〉}, n ∈N.

By Theorem 4.2 we get the following result, which it is a generalization of [13, Thm. 4.1].

Theorem 5.2 Let ρ ≥ L > 0. Let {βn}n∈N be a sequence in [a, b] ⊆ (0,∞). Let {rn}n∈N be a
sequence in (0, 1) such that 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 1. Let {xn}n∈N be generated
by Algorithm 5.2. Then {xn}n∈N converges weakly to some x̄ ∈ �DCP.

Next, we can get the following algorithm and convergence theorem by Algorithm 5.2
and Theorem 5.2, respectively. Further, Theorem 5.3 is a generalization of [13, Thm. 4.2].

Algorithm 5.3 ([13]) Let x1 ∈ H be arbitrary, and let {xn}n∈N be generated as follows:

⎧⎪⎪⎨
⎪⎪⎩

zn := arg minu∈H{g(u) + 1
2βn

‖u – xn‖2 – 〈∇h(xn), u – xn〉},
yn := arg minv∈H{g(v) + 1

2βn
‖v – zn‖2 – 〈∇h(zn), v – zn〉},

xn+1 := (1 – rn)zn + rnyn, n ∈N.

Theorem 5.3 Let ρ ≥ L > 0. Let {βn}n∈N be a sequence in [a, b] ⊆ (0,∞). Let {rn}n∈N be a
sequence in (0, 1) such that 0 < lim infn→∞ rn ≤ lim supn→∞ rn < 1. Let {xn}n∈N be generated
by Algorithm 5.3. Then {xn}n∈N converges weakly to some x̄ ∈ �DCP.

If rn = 0 for all n ∈N, then we have the following result.

Theorem 5.4 Let ρ ≥ L > 0. Let {βn}n∈N be a sequence in [a, b] ⊆ (0,∞). Let x1 ∈ H be
arbitrary, and let {xn}n∈N be generated by

xn+1 := arg min
u∈H

{
g(u) +

1
2βn

‖u – xn‖2 –
〈∇h(xn), u – xn

〉}
, n ∈N.

Then {xn}n∈N converges weakly to some x̄ ∈ �DCP.

Proof Following similar argument as in the proof of Theorem 4.1, we get the statement of
Theorem 5.4. �
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