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Abstract
We construct wavelets and derive a density condition of MRA in a higher-dimensional
Sobolev space. We give necessary and sufficient conditions for orthonormality of
wavelets in Hs(Rd). We construct nonseparable orthonormal wavelets in
a higher-dimensional Sobolev space by using multivariate box spline.
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1 Introduction
Box splines are refinable functions, and we can easily choose various directions to have a
box spline function with a desired order of smoothness. Naturally, they have been used to
construct various wavelet functions. Mathematically box splines offer an elegant toolbox
for constructing a class of multidimensional elements with flexible shape and support. In
multivariate setting, box splines are often considered as a generalization of B-splines [1].
Theoretically, the computational complexity of a box spline is lower than that of an equiva-
lent B-spline, since its support is more compact and its total polynomial degree is lower. To
investigate this potential in practice, several attempts were made. Recurrence relation [1,
2] is the most commonly used technique for evaluating box splines at an arbitrary position.
There are many papers on multivariate spline wavelet theory, in particular, on orthogonal
spline wavelets [3], compactly spline prewavelets [4–6], bivariate and trivariate compactly
supported biorthogonal box spline wavelets [7, 8], and multivariate compactly supported
tight wavelet frames [9].

Wavelets in a Sobolev space and their properties were instigated by Bastin et al. [10, 11],
Dayong and Dengfeng [12], and Pathak [13]. Regular compactly supported wavelets and
compactly supported wavelets of integer order in a Sobolev space by B-spline are given in
[10, 11]. Further, bivariate box splines in a Sobolev space were introduced in [14].

Inspired by the works mentioned, in this paper, we study nonseparable wavelets in
a higher-dimensional Sobolev space by using a multivariate box spline. To the best of
our knowledge, no previous studies of multivariate box spline wavelets exist in higher-
dimensional Sobolev spaces. This paper is organized as follows. In Sect. 2, we hereby
present construction of wavelets and density conditions of MRA in a higher-dimensional
Sobolev space. Also, we give necessary and sufficient conditions for the orthonormality of
wavelets in Hs(Rd). In Sect. 3, we construct nonseparable wavelets in a higher-dimensional
Sobolev space by using a multivariate box spline.
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1.1 Sobolev space Hs(Rd)
For any real number s, the Sobolev space Hs(Rd) consists of tempered distributions in
S′(Rd) such that

‖f ‖2
s :=

1
(2π )d

∫
Rd

(
1 + ‖ξ‖2)s∣∣f̂ (ξ )

∣∣2 dξ ,

where ‖ · ‖ denotes the Euclidean norm in R
d , and the corresponding inner product is

〈f , g〉s :=
1

(2π )d

∫
Rd

(
1 + ‖ξ‖2)sf̂ (ξ )ĝ(ξ ) dξ .

The Fourier transform f̂ of f ∈ L1(Rd) is defined as

f̂ (ξ ) :=
∫
Rd

e–i〈x,ξ 〉f (x) dx,

where 〈x, ξ 〉 is the inner product of two vectors x and ξ in R
d .

2 Multiresolution analysis
To adapt classical theory of MRA over Hs(Rd), we first derive an orthonormality and den-
sity condition. The main problem is that Hs-norm is not dilation invariant. We also don’t
achieve orhtonormality at each level of dilation by a single scaling function. This lead us
to a more general construction of MRA, where the scaling function depends on the level
of dilation. Throughout this paper, the superscript j of a function ϕ(j) represents level j.

Proposition 2.1 If s is a real number, ϕ(j) ∈ Hs(Rd), and j is an integer, then the distribu-
tions ϕ

(j)
j,k(x) = 2jd/2ϕ(j)(2jx – k), k ∈ Z

d , are orthonormal in Hs(Rd) iff

∑
k∈Zd

(
1 + 22j‖ξ + 2kπ‖2)s∣∣ϕ̂(j)(ξ + 2kπ )

∣∣2 = 1 (1)

almost everywhere. It follows that we have the bound

∣∣ϕ̂(j)(2–jξ
)∣∣≤ (1 + ‖ξ‖2)–s/2.

Proof Since ϕ
(j)
j,k(t) ∈ Hs(Rd), the series

M(ξ ) =
∑
r∈Zd

∣∣ϕ̂(j)(ξ + 2πr)
∣∣2(1 + 22j∥∥(ξ + 2πr)

∥∥2)s

converges almost everywhere, belongs to L
1
loc(Rd), and is 2πZd-periodic, that is, M(ξ ) ∈

L1(Td), where T
d = [0, 2π ]d is the d-dimensional torus. Moreover, for every l ∈ Z

d , we
have

∫
Td

M(ξ )e–i〈ξ ,(k–l)〉 dξ

=
∑
r∈Zd

∫
Td

∣∣ϕ̂(j)(ξ + 2πr)
∣∣2(1 + 22j∥∥(ξ + 2πr)

∥∥2)se–i〈ξ ,(k–l)〉 dξ

=
∫
Rd

∣∣ϕ̂(j)(ν)
∣∣2(1 + 22j∥∥(ν)

∥∥2)se–i〈ν,(k–l)〉 dν
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= 2–jd
∫
Rd

∣∣ϕ̂(j)(2–ju
)∣∣2(1 + ‖u‖2)se–i2–j〈u,(k–l)〉 du

=
∫
Rd

(
1 + ‖u‖2)se–i2–j〈u,k〉2–jd/2ϕ̂(j)(2–ju

)
e–i2–j〈u,l〉2–jd/2ϕ̂(j)

(
2–ju
)

du

=
∫
Rd

(
1 + ‖u‖2)sF[ϕ(j)

j,k(t)
]
(u)F

[
ϕ

(j)
j,l (t)
]
(u) du

= (2π )d〈ϕ(j)
j,k(t),ϕ(j)

j,l (t)
〉
s.

Since {1/(2π )de–i〈ξ ,(k–l)〉 : k, l ∈ Z
d} is an orthonormal basis for L2(Td), we have

1
(2π )d

∫
Td

M(ξ )e–i〈ξ ,(k–l)〉 dξ =
〈
ϕ

(j)
j,k(t),ϕ(j)

j,l (t)
〉
s = δk,l

if M(ξ ) = 1.
From (1) we get

(
1 + 22j‖ξ‖2)s∣∣ϕ̂(j)(ξ )

∣∣2 ≤ 1,

which implies

∣∣ϕ̂(j)(ξ )
∣∣≤ (1 + 22j‖ξ‖2)–s/2. �

Proposition 2.2 Let ϕ(j), j ∈ Z, be a sequence of elements of Hs(Rd) such that, for every j,
the distributions ϕ

(j)
j,k(x) = 2jd/2ϕ(j)(2jx – k), k ∈ Z

d , are orthonormal in Hs(Rd). If Pj is the
orthogonal projection from Hs(Rd) onto Vj := span{ϕ(j)

j,k : k ∈ Z
d}, then, for every h ∈ Hs(Rd),

we have

lim
j→+∞

(
‖Pjh‖2

s –
1

(2π )d

∫
Rd

(
1 + ‖ξ‖2)2s∣∣ĥ(ξ )

∣∣2∣∣ϕ̂(j)(2–jξ
)∣∣2 dξ

)
= 0.

Moreover, if there are A,α > 0 such that

∫
Rd

(
1 + ‖ξ‖)α∣∣ϕ̂(j)(ξ )

∣∣2 dξ ≤ A

for every j ≤ 0, then
⋂j=∞

j=–∞ Vj = {0}d .

Proof Let us prove the first part with h ∈ C∞
0 (Rd). By the definition of Pj we get

‖Pjh‖2
s =
∑
k∈Zd

∣∣〈h,ϕ(j)
j,k
〉
s

∣∣2 =
2–jd

(2π )2d

∑
k∈Zd

∣∣∣∣
∫
Rd

(
1 + ‖ξ‖2)sĥ(ξ )ϕ̂(j)

(
2–jξ
)
ei2–j〈k,ξ 〉 dξ

∣∣∣∣
2

.

Moreover, since h and ϕ(j) belong to Hs(Rd),

∫
Rd

(
1 + ‖ξ‖2)sĥ(ξ )ϕ̂(j)

(
2–jξ
)
ei2–j〈k,ξ 〉 dξ

=
∫

]0,2j2π [d
ei2–j〈k,ξ 〉 ∑

p∈Zd

(
1 +
∥∥ξ + 2j2πp

∥∥2)sĥ(ξ + 2j2πp
)
ϕ̂(j)
(
2–jξ + 2πp

)
dξ .
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Hence, using the Parseval formula in L2(]0, 2j2π [d), we get

‖Pjh‖2
s

=
1

(2π )d

∫
]0,2j2π [d

∣∣∣∣
∑
p∈Zd

(
1 +
∥∥ξ + 2j2πp

∥∥2)sĥ(ξ + 2j2πp
)
ϕ̂(j)
(
2–jξ + 2πp

)∣∣∣∣
2

dξ

=
1

(2π )d

∑
q∈Zd

∫
Rd

(
1 + ‖ξ‖2)s(1 +

∥∥ξ + 2j2πq
∥∥2)sĥ(ξ )ϕ̂(j)

(
2–jξ
)

× ĥ
(
ξ + 2j2πq

)
ϕ̂(j)(2–jξ + 2πq

)
dξ

=
1

(2π )d

∫
Rd

(
1 + ‖ξ‖2)2s∣∣ĥ(ξ )

∣∣2∣∣ϕ̂(j)(2–jξ
)∣∣2

+
1

(2π )d

∑
q∈Zd\{0}d

∫
Rd

(
1 + ‖ξ‖2)s(1 +

∥∥ξ + 2j2πq
∥∥2)sĥ(ξ )ϕ̂(j)

(
2–jξ
)

× ĥ
(
ξ + 2j2πq

)
ϕ̂(j)(2–jξ + 2πq

)
dξ .

The term associated with q = {0}d, {0}d = (0, 0, . . . , 0) ∈ Z
d is used as an approximation for

‖Pjh‖2
s . Using Proposition 2.1, the inequality |ϕ(j)(2–jξ )| ≤ (1 + ‖ξ‖2)–s/2, and the fact that

ĥ belongs to the Schwartz space S(Rd) (i.e., |ĥ(ξ )| ≤ C(1 +‖ξ‖2)–α for any α > 0), we obtain
that the sum of the other ones is bounded by

∑
q∈Zd\{0}d

∫
Rd

(
1 + ‖ξ‖2)s/2(1 +

∥∥ξ + 2j2πq
∥∥2)s/2∣∣ĥ(ξ )ĥ

(
ξ + 2j2πq

)∣∣dξ

≤ C
∑

q∈Zd\{0}d

1
(1 + ‖2j2πq‖2)2

∫
Rd

1
(1 + ‖ξ‖2)2 dξ

≤ C
∑

q∈Zd\{0}d

1
(‖2j2πq‖2)2

∫
Rd

1
(1 + ‖ξ‖2)2 dξ

≤ C2–4(j+1)
( ∑

q∈Zd\{0}d

1
|q|2
)∫

Rd

1
(1 + ‖ξ‖2)2 dξ ,

where |q| = (
∑d

r=1 |qr|2)1/2, q = (q1, q2, . . . , qd) ∈ Z
d . This expression converges to 0 as j →

+∞.
Now let h ∈ Hs(Rd). Recall the inequality

‖f + g‖2 ≤ (1 + ε)‖f ‖2 +
(

1 +
1
ε

)
‖g‖2,

which is valid for every ε > 0 and any seminorm. For any χ ∈ C∞
0 (Rd), we have

‖Pjh‖2
s –

1
(2π )d

∫
Rd

(
1 + ‖ξ‖2)2s∣∣ĥ(ξ )

∣∣2∣∣ϕ̂(j)(2–jξ
)∣∣2 dξ

≤ (1 + ε)‖Pjχ‖2
s +
(

1 +
1
ε

)∥∥Pj(h – χ )
∥∥2

–
1

(2π )d(1 + ε)

∫
Rd

(
1 + ‖ξ‖2)2s∣∣χ̂ (ξ )

∣∣2∣∣ϕ̂(j)(2–jξ
)∣∣2 dξ
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+
1

(2π )d(ε)

∫
Rd

(
1 + ‖ξ‖2)2s∣∣ĥ(ξ ) – χ̂ (ξ )

∣∣2∣∣ϕ̂(j)(2–jξ
)∣∣2 dξ

≤ (1 + ε)
(

‖Pjχ‖2
s –

1
(2π )d

∫
Rd

(
1 + ‖ξ‖2)2s∣∣χ̂ (ξ )

∣∣2∣∣ϕ̂(j)(2–jξ
)∣∣2 dξ

)

+
(

1 +
2
ε

)
‖h – χ‖2

s +
(

1 + ε –
1

(1 + ε)

)
‖χ‖2

s .

By the same way, we can obtain a similar lower bound. To prove that the left-hand side
converges to 0 as j converges to +∞, we first take ε sufficiently small. Then we choose χ

approximating h and finally j large.
For the second part, we have to prove that, for every h ∈ C∞

0 (Rd), Pjh converges to zero
in Hs(Rd) as j → –∞. We use the last expression of ‖Pjh‖s obtained previously. We first es-
timate the sum over q without the integral. By the Cauchy–Schwarz inequality and Propo-
sition 2.1 we have

∑
q∈Zd

(
1 +
∥∥ξ + 2j2πq

∥∥2)s∣∣ĥ(ξ + 2j2πq
)
ϕ̂(j)
(
2–jξ + 2πq

)∣∣

≤
(∑

q∈Zd

(
1 +
∥∥ξ + 2j2πq

∥∥2)s∣∣ĥ(ξ + 2j2πq
)∣∣2
)1/2

.

We know that

∑
q∈Zd

(
1 +
∥∥ξ + 2j2πq

∥∥2)s∣∣ĥ(ξ + 2j2πq
)∣∣2(2j+1π

)d →
∫
Rd

(
1 + ‖ξ‖2)s∣∣ĥ(ξ )

∣∣2 dξ

if j ≤ –1. It follows that

‖Pjh‖2
s ≤ 1

(2π )d

∫
Rd

(
1 + ‖ξ‖2)s∣∣ĥ(ξ )ϕ̂(j)(2–jξ

)∣∣2–jdC‖h‖s dξ

≤2–jdC‖h‖s

(2π )d

(∫
Rd

(
1 + 2–j‖ξ‖)α∣∣ϕ̂(j)(2–jξ

)∣∣2 dξ

)1/2

×
(∫

Rd

(
1 + 2–j‖ξ‖)–α(1 + ‖ξ‖2)2s∣∣ĥ(ξ )

∣∣2 dξ

)1/2

≤ C
√

A‖h‖s

(2π )d

(∫
Rd

(
1 + 2–j‖ξ‖)–α(1 + ‖ξ‖2)2s∣∣ĥ(ξ )

∣∣2 dξ

)1/2

.

The last expression converges to zero as j converges to –∞. �

Now we construct wavelets in Hs(Rd) with the help of previous propositions.
By definition, Vj is the set of all f ∈ Hs(Rd) such that

f̂ (ξ ) = m
(
2–jξ
)
ϕ̂(j)(2–jξ

)
,

where m ∈ L2
loc(Rd) is 2πZd-periodic. This follows immediately from the fact that the

Fourier transform of 2jd/2ϕ(j)(2jx – k) is

2–jd/2e–i2–j〈k,ξ 〉ϕ̂(j)(2–jξ
)
.
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We have Vj ⊂ Vj+1 for every j ∈ Z
d iff there are 2πZd-periodic functions m(j)

0 ∈ L2
loc(Rd)

such that the following scale relation holds:

ϕ̂(j)(2ξ ) = m(j+1)
0 (ξ )ϕ̂(j+1)(ξ ); (2)

moreover, ϕ(j) and ϕ(j+1) satisfy the hypothesis of Proposition 2.1. Now, using our theorems
and propositions, we develop the definition of MRA in Hs(Rd).

Definition 2.3 Let s be a real number. The MRA of Hs(Rd) is a sequence Vj, j ∈ Z, of
closed linear subspaces of Hs(Rd) such that

(a) Vj ⊂ Vj+1,
(b)
⋃j=∞

j=–∞ Vj = Hs(Rd),
(c)
⋂j=∞

j=–∞ Vj = {0}d , and
(d) for every j, there is a function ϕ(j) such that the distributions 2jd/2ϕ(j)(2jx – k),

k ∈ Z
d , form an orthonormal basis for Vj.

Before giving a necessary condition for the orthonormality, we define Ed := {0, 1}d as the
unit cube in the d-dimensional Euclidean space.

Theorem 2.4 If ϕ(j) and ϕ(j+1) satisfy the hypothesis of Proposition 2.1, then

2d–1∑
q=0

∣∣m(j+1)
0 (ξ + γqπ )

∣∣ = 1, γq ∈ Ed, q = 1, 2, . . . , 2d – 1.

Proof We know from Proposition 2.1 that if the system is orthonormal, then

δk,l =
〈
ϕ

(j)
j,k ,ϕ(j)

j,l
〉
s

=
2–jd

(2π )d

∫
Rd

∣∣ϕ̂(j)(2–jξ
)∣∣2e–i2–j〈ξ ,(k–l)〉(1 + ‖ξ‖2)s dξ

=
1

(2π )d

∫
Rd

∣∣ϕ̂(j)(u)
∣∣2e–i〈u,(k–l)〉(1 + 22j‖u‖2)s du

=
1

(2π )d

∫
Rd

∣∣m(j+1)
0 (u/2)

∣∣2∣∣ϕ̂(j+1)(u/2)
∣∣2e–i〈u,(k–l)〉(1 + 22j‖u‖2)s du

=
2d

(2π )d

∫
Rd

∣∣m(j+1)
0 (ν)

∣∣2∣∣ϕ̂(j+1)(ν)
∣∣2e–i2〈ν,(k–l)〉(1 + 22(j+1)‖ν‖2)sdν

=
1

(π )d

∫
Td

∣∣m(j+1)
0 (ν)

∣∣2∑
r∈Zd

∣∣ϕ̂(j+1)(ν + 2πr)
∣∣2

× (1 + 22(j+1)‖ν + 2πr‖2)se–i2〈ν,(k–l)〉 dν

=
1

(π )d

∫
Td

∣∣m(j+1)
0 (ν)

∣∣2e–i2〈ν,(k–l)〉 dν

=
1

(π )d

∫
[0,π )d

2d–1∑
q=0

∣∣m(j+1)
0 (ν + γqπ )

∣∣2e–i2〈ν,(k–l)〉 dν,
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which implies that

2d–1∑
q=0

∣∣m(j+1)
0 (ξ + γqπ )

∣∣2 = 1, γq ∈ Ed,

if k = l. �

With the help of (2) and Theorem 2.4, we may define ϕ(j) by

ϕ̂(j)(ξ ) = m(j+1)
0 (ξ /2)ϕ̂(j+1)(ξ /2)

=
J∏

t=1

m(j+t)
0
(
ξ /2t)ϕ̂(j+J)(ξ /2J)

= · · · =
1

(1 + ‖ξ‖2)s/2

+∞∏
t=1

m(j+t)
0
(
ξ /2t) (3)

for j ∈ Z. For Vj, let Wj be the orthogonal complement of Vj in Vj+1. We have

ψ
(j)
j,k,p := 2jd/2ψ (j)

p
(
2jx – k

) ∈ Vj+1 (4)

if there are 2πZd-periodic functions m(j)
1 , m(j)

2 , . . . , m(j)
2d–1 ∈ L2

loc(Rd) such that

ψ̂ (j)
p
(
2–jξ
)

= m(j+1)
p
(
2–j–1ξ

)
ϕ̂(j+1)(2–j–1ξ

)
, p = 1, 2, . . . , 2d – 1.

Theorem 2.5 The distributions ψ
(j)
j,k,p(x) = 2jd/2ψ

(j)
p (2jx – k) are orthonormal if

2d–1∑
q=0

∣∣m(j+1)
p (ξ + γqπ )

∣∣ = 1, γq ∈ Ed,∀p = 1, 2, . . . , 2d – 1,

and they are orthogonal to Vj if

2d–1∑
q=0

m(j+1)
p (ξ + γqπ )m(j+1)

0 (ξ + γqπ ) = 0, γq ∈ Ed,∀p = 1, 2, . . . , 2d – 1. (5)

Proof

〈
ψ

(j)
j,k,p,ψ (j)

j,l,p
〉
s

=
2–jd

(2π )d

∫
Rd

∣∣ψ̂ (j)
p
(
2–jξ
)∣∣2e–i2–j〈ξ ,(k–l)〉(1 + ‖ξ‖2)s dξ

=
1

(2π )d

∫
Rd

∣∣ψ̂ (j)
p (u)

∣∣2e–i〈u,(k–l)〉(1 + 22j‖u‖2)s du

=
1

(2π )d

∫
Rd

∣∣m(j+1)
p (u/2)

∣∣2∣∣ϕ̂(j+1)(u/2)
∣∣2e–i〈u,(k–l)〉(1 + 22j‖u‖2)s du

=
2d

(2π )d

∫
Rd

∣∣m(j+1)
p (ν)

∣∣2∣∣ϕ̂(j+1)(ν)
∣∣2e–i2〈ν,(k–l)〉(1 + 22(j+1)‖ν‖2)sdν
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=
1

(π )d

∫
Td

∣∣m(j+1)
p (ν)

∣∣2∑
r∈Zd

∣∣ϕ̂(j+1)(ν + 2πr)
∣∣2

× (1 + 22(j+1)‖ν + 2πr‖2)se–i2〈ν,(k–l)〉 dν

=
1

(π )d

∫
Td

∣∣m(j+1)
p (ν)

∣∣2e–i2〈ν,(k–l)〉 dν

=
1

(π )d

∫
[0,π )d

2d–1∑
q=1

∣∣m(j+1)
p (ν + γqπ )

∣∣2e–i2〈ν,(k–l)〉 dν

=
1

(π )d

∫
[0,π )d

e–i2〈ν,(k–l)〉 dν.

Therefore

〈
ψ

(j)
j,k,p,ψ (j)

j,l,p
〉
s = 1

if
∑2d–1

q=0 |m(j+1)
p (ξ + γqπ )| = 1,γq ∈ Ed , and k = l.

Now we prove second part of the theorem:

0 =
〈
ψ

(j)
j,k,p,ϕ(j)

j,l,p
〉
s

=
2–jd

(2π )d

∫
Rd

(
1 + ‖ξ‖2)sψ̂ (j)

p
(
2–jξ
)
ϕ̂(j)
(
2–jξ
)
e–i2–j〈ξ ,(k–l)〉 dξ

=
1

(2π )d

∫
Rd

(
1 + 22j‖ξ‖2)sm(j+1)

p (ξ /2)m(j+1)
0 (ξ /2)

∣∣ϕ̂(j+1)(ξ /2)
∣∣2e–i〈ξ ,(k–l)〉 dξ

=
2d

(2π )d

∫
Rd

(
1 + 22(j+1)‖ξ‖2)sm(j+1)

p (ξ )m(j+1)
0 (ξ )

∣∣ϕ̂(j+1)(ξ )
∣∣2e–i2〈ξ ,(k–l)〉 dξ

=
1

(π )d

∫
Td

m(j+1)
p (ξ )m(j+1)

0 (ξ )

×
∑
r∈Zd

(
1 + 22(j+1)‖ξ + 2rπ‖2)s∣∣ϕ̂(j+1)(ξ + 2rπ )

∣∣2e–i2〈ξ ,(k–l)〉 dξ

=
1

(π )d

∫
[0,π )d

2d–1∑
q=1

m(j+1)
p (ξ + γqπ )m(j+1)

0 (ξ + γqπ )e–i2〈ξ ,(k–l)〉 dξ ,

which implies

2d–1∑
q=0

m(j+1)
p (ξ + γqπ )m(j+1)

0 (ξ + γqπ ) = 0, γq ∈ Ed,∀p = 1, 2, . . . , 2d – 1.
�

Now we define unitary matrix with the help of our theorems,

⎡
⎢⎢⎢⎢⎣

m(j)
0 (ξ + γ0π ) m(j)

0 (ξ + γ1π ) · · · m(j)
0 (ξ + γ2d–1π )

m(j)
1 (ξ + γ0π ) m(j)

1 (ξ + γ1π ) · · · m(j)
1 (ξ + γ2d–1π )

. . . . . . . . . . . .
m(j)

2d–1(ξ + γ0π ) m(j)
2d–1(ξ + γ1π ) · · · m(j)

2d–1(ξ + γ2d–1π )

⎤
⎥⎥⎥⎥⎦ . (6)
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Theorem 2.6 Suppose that the scaling function ϕ(j), j ∈ Z, generate an MRA {Vj} of Hs(Rd)
and ϕ

(j)
j,k , k ∈ Z

d , form an orthonormal basis for Vj, j ∈ Z. Suppose that, for each j ∈ Z, m(j)
p for

p = 1, 2, . . . , 2d –1 are such that matrix (6) is unitary. Define ψ
(j)
j,k,p by (4) for p = 1, 2, . . . , 2d –1

and j ∈ Z. Then Wj = Wj,1 ⊕ Wj,2 ⊕ · · · ⊕ Wj,2d–1 with Wj,p = span{2jd/2ψ
(j)
p (2jx – k) : k ∈

Z}, p = 1, 2, . . . , 2d – 1, is perpendicular to Vj in Vj+1, and Vj+1 = Vj ⊕ Wj. Therefore

2jd/2ψ (j)
p
(
2jx – k

)
, k ∈ Z, p = 1, 2, . . . , 2d – 1,

is an orthonormal basis for Hs(Rd).

Proof First,we show that ψ
(j)
j,k,p⊥Vj, for all k ∈ Z

d and p = 1, 2, . . . , 2d – 1. Indeed,

(2π )d〈ψ (j)
j,k,p(x),ϕ(j)

j,k(x)
〉
s

= (2π )d〈2jd/2ψ (j)
p
(
2jx – k1

)
, 2jd/2ϕ

(j)
j,k
(
2jx – k2

)〉
s

=
∫
Rd

(
1 + ‖ξ‖2)sF(2jd/2ψ (j)

p
(
2jξ – k1

))
F
(
2jd/2ϕ

(j)
j,k
(
2jξ – k2

))
dξ

= 2–jd
∫
Rd

(
1 + ‖ξ‖2)sψ̂ (j)

p
(
2–jξ
)
ϕ̂(j)
(
2–jξ
)
e2–j〈ξ ,(k2–k1)〉 dξ

=
∫
Rd

(
1 + 22j‖ξ‖2)sm(j+1)

p (ξ /2)ϕ̂(j+1)(ξ /2)

× m(j+1)
0 (ξ /2)ϕ̂(j+1)(ξ /2)e2–j〈ξ ,(k2–k1)〉 dξ

=
∫
Td

∑
l∈Zd

(
1 + 22j‖ξ + 2π l‖2)sm(j+1)

p (ξ /2 + π l)ϕ̂(j+1)(ξ /2 + π l)

× m(j+1)
0 (ξ /2 + π l)ϕ̂(j+1)(ξ /2 + π l)e2–j〈ξ ,(k2–k1)〉 dξ

=
∫
Td

[2d–1∑
q=0

m(j+1)
p (ξ /2 + γqπ )m(j+1)

0 (ξ /2 + γqπ )

]
e2–j〈ξ ,(k2–k1)〉 dξ

by Proposition 2.1. This expression is equal to zero because matrix (6) is unitary. Similarly,
we can show that Wj,p1⊥Wj,p2 for all p1, p2 ∈ {1, 2, . . . , 2d – 1}.

We know show that Vj+1 = Vj ⊕ Wj,1 ⊕ Wj,2 ⊕ · · · ⊕ Wj,2d–1 for any f ∈ Vj+1. We write

f̂ (ξ ) = B
(
2–j–1ξ

)
ϕ̂(j+1)(2–j–1ξ

)
.

We will demonstrate that there exist 2πZd-periodic functions G(2–jξ ) and Hp(2–jξ ) such
that

f̂ (ξ ) = G
(
2–jξ
)
ϕ̂(j)(2–jξ

)
+

2d–1∑
p=1

Hp
(
2–jξ
)
ψ̂ (j)

p
(
2–jξ
)
.

Now, we have

B(ξ /2)ϕ̂(j+1)(ξ /2) = G(ξ )ϕ̂(j)(ξ ) +
2d–1∑
p=1

Hp(ξ )ψ̂ (j)
p (ξ )
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= G(ξ )m(j+1)
0 (ξ /2)ϕ̂(j+1)(ξ /2) +

2d–1∑
p=1

Hp(ξ )m(j+1)
p (ξ /2)ϕ̂(j+1)(ξ /2).

It follows that

B(ξ /2) = G(ξ )m(j+1)
0 (ξ /2) +

2d–1∑
p=1

Hp(ξ )m(j+1)
p (ξ /2).

By the periodicity (2πZd-periodic) of G and Hp we have

B(ξ /2 + γqπ ) = G(ξ )m(j+1)
0 (ξ /2 + γqπ ) +

2d–1∑
p=1

Hp(ξ )m(j+1)
p (ξ /2 + γqπ )

for q = 0, 1, . . . , 2d – 1. This completes proof. �

3 Multivariate box spline
Now we give an example of multivariate box splines in a Sobolev space. Using them, we
construct a wavelet in Hs(Rd).

Let D be the direction matrix of order d × ∑d+1
i=1 mi, mi ∈ N0,∀i, whose column

vectors consist of (m1, m2, . . . , md+1) copies of the following d + 1 column vectors:
(1, 0, . . . , 0)T , (0, 1, 0, . . . , 0)T , . . . , (0, 0, . . . , 1)T , and (1, 1, . . . , 1)T .

Fix s ≥ 0 and the natural numbers (m1, m2, . . . , md+1) such that

{
m[D] := min{mi + mj : i �= j for all i, j = 1, 2, . . . , d + 1}} +

1
2

> s.

Let Mm1,m2,...,md+1 be a multivariate box spline function defined in terms of the Fourier
transform by

M̂m1,m2,...,md+1 (ξ ) =
d+1∏
j=1

(
1 – e–i〈kj ,ξ 〉

i〈kj, ξ 〉
)mj

, kj ∈ D, mj ∈N0,∀j.

The multivariate box spline Mm1,m2,...,md+1 belongs to Cm[D]–1, where m[D] + 1 is the min-
imum number of columns that can be discarded from D to obtain a matrix of rank < d
(see [15]).

For

W (j)
m1,m2,...,md+1

(ξ ) :=
∑
l∈Zd

(
1 + 22j‖ξ + 2π l‖2)s∣∣M̂m1,m2,...,md+1 (ξ + 2π l)

∣∣2,

it is known that there exist c, C ≥ 0 such that

0 ≤ c ≤
∑
l∈Zd

∣∣M̂m1,m2,...,md+1 (ξ + 2π l)
∣∣2 ≤ C < ∞.

Considering ξ := (ξ1, ξ2, . . . , ξd) and l := (l1, l2, . . . , ld), we have

∑
l∈Zd

(
1 + 22j‖ξ + 2π l‖2)s∣∣M̂m1,m2,...,md+1 (ξ + 2π l)

∣∣2
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=
∑

(l1,l2,...,ld)∈Zd

(
1 + 22j

d∑
i=1

|ξi + 2π li|2
)s∣∣M̂m1,m2,...,md+1 (ξ + 2π l)

∣∣2. (7)

By mathematical induction we know that, for positive real numbers xi, i = 1, . . . , d,

( d∑
‘i=1

xi

)m

≤ dm

( d∑
i=1

(xi)m

)
, xi ∈R+. (8)

From (7) and (8) we have

∑
(l1,l2,...,ld)∈Zd

(
1 + 22j

d∑
i=1

|ξi + 2π li|2
)s∣∣M̂m1,m2,...,md+1 (ξ + 2π l)

∣∣2

≤ (d + 1)s

(
c + 22js

∑
(l1,l2,...,ld)∈Zd

( d∑
i=1

|ξi + 2π li|2s

)∣∣M̂m1,m2,...,md+1 (ξ + 2π l)
∣∣2
)

≤ (d + 1)s

(
c + 22jsC′ ∑

(l1,l2,...,ld)∈Zd

( d∑
i=1

∣∣M̂mi–s,md+1 (ξ + 2π l)
∣∣2
))

≤ Cj < +∞,

where C′, Cj > 0, and mi – s, md+1 is the ith term subtracted by s. Hence we have the fol-
lowing:

Lemma 3.1 There exists two constants cj and Cj such that

0 < cj ≤ W (j)
m1,m2,...,md+1

(ξ ) ≤ Cj < +∞.

Now, for every j ∈ Z, we define

ϕ̂(j)(ξ ) =
M̂m1,m2,...,md+1 (ξ )√
W (j)

m1,m2,...,md+1 (ξ )
. (9)

Now we find a 2πZd-periodic function m(j)
0 ∈ L2(Zd) for which the scaling relation (5)

holds:

ϕ(j)(2ξ ) = m(j+1)
0 (ξ )ϕ(j+1)(ξ ).

From (9) we get

m(j+1)
0 (ξ ) =

M̂m1,m2,...,md+1 (2ξ )
M̂m1,m2,...,md+1 (ξ )

√√√√ W (j+1)
m1,m2,...,md+1 (ξ )

W (j)
m1,m2,...,md+1 (2ξ )

=
d+1∏
i=1

(
1 + e–i〈ki ,ξ 〉

2

)mi

√√√√ W (j+1)
m1,m2,...,md+1 (ξ )

W (j)
m1,m2,...,md+1 (2ξ )

.
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Finally, let us construct wavelets associated with the scaling function ϕ(j), j ∈ Z. We define
the 2πZd-periodic functions m(j)

p , p = 1, 2, . . . , 2d–1, by

m(j)
p (ξ ) = e–i〈γp ,ξ 〉L(j)

p (2ξ )m(j+1)
0 (ξ + γpπ ),

where the trigonometric polynomial L(j)
p is to be chosen such that m(j)

p satisfies (6) for all p.

Proposition 3.2 Suppose ϕ(j) is a scaling function for an MRA Vj, j ∈ Z, of Hs(Rd) and m(j)
0

is the associated low pass filter. Then the distributions 2j/2ψ (j)(2jx – k), j ∈ Z, k ∈ Z
d , are an

orthonormal basis for Hs(Rd) if and only if

ψ̂ (j)
p (2ξ ) = e–i〈γp ,ξ 〉L(j)

p (2ξ )m(j+1)
0 (ξ + γpπ )ϕ̂(j+1)(ξ ), ∀p = 1, 2, . . . , 2d–1,

a.e. on R
d for some 2πZd-periodic function L(j)

p such that

∣∣L(j)
p (ξ )
∣∣ = 1, ∀p = 1, 2, . . . , 2d–1, a.e. ξ ∈ T

d.

Proof From Proposition 2.1 we get

∑
k∈Zd

(
1 + 22j‖ξ + 2kπ‖2)s∣∣ψ̂ (j)

p (ξ + 2kπ )
∣∣2 = 1, ∀p = 1, 2, . . . , 2d–1. (10)

Now, we have only to verify the density condition

lim
j→+∞

∣∣ϕ(j)(2–jξ
)∣∣ = (1 + ‖ξ‖2)–s/2.

By definition,

W (j)
m1,m2,...,md+1

(
2–jξ
)

=
∑
k∈Zd

(
1 +
∥∥ξ + 2j+1πk

∥∥2)s∣∣M̂m1,m2,...,md+1

(
2–jξ + 2πk

)∣∣2.

The term associated with k = 0 converges to (1 + ‖ξ‖2)s. Using the estimates

∣∣M̂m1,m2,...,md+1

(
2–jξ + 2πk

)∣∣ =
∣∣∣∣∣

d+1∏
j′=1

(
1 – e–i〈kj′ ,2–jξ 〉

i〈kj′ , 2–jξ + 2πk〉
)mj′
∣∣∣∣∣

for ξ = (ξ1, ξ2, . . . , ξd) and

∣∣∣∣∣
d+1∏
j′=1

(
1 – e–i〈kj′ ,2–jξ 〉

i〈kj′ , 2–jξ + 2πk〉
)mj′
∣∣∣∣∣

≤
(d+1∏

j′=1

∣∣∣∣ sin(2–(j+1)ξj′ )
2–j–1ξj′ + πk

∣∣∣∣
mj′
)(∣∣∣∣

sin(2–(j+1)∑d
j′=1 ξj′ )

2–j–1∑d
j′=1 ξj′ + dπk

∣∣∣∣
md+1)

≤ 2–(j+1)(
∑d+1

j′=1 mj′ )(
∏d

j′=1 |ξj′ |mj′ )(|∑d
j′=1 ξj′ |md+1 )

|k|
∑d+1

j′=1 mj′
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for 2–(j+1)(
∏d

j′=1 |ξj′ |mj′ )(|∑d
j′=1 ξj′ |md+1 ) < 1 and k = 0, we see that, as j → +∞, the sum of

the other terms converges to 0. The conclusion follows easily.
If ψ

(j)
p is an orthonormal wavelet, then the orthonormality of {2j/2ψ

(j)
p (2j · –k) : j ∈ Z, k ∈

Z
d, p = 1, 2, . . . , 2d–1} gives us

1 =
∑
k∈Zd

(
1 + 22j‖ξ + 2kπ‖2)s∣∣ψ̂ (j)

p (ξ + 2kπ )
∣∣2

=
∑
k∈Zd

(
1 + 22j‖ξ + 2kπ‖2)s∣∣L(j)

p (ξ )
∣∣2∣∣ϕ̂(j+1)(ξ /2 + kπ )

∣∣2

× ∣∣m(j+1)
0 (ξ /2 + kπ + γpπ )

∣∣2

=
∣∣L(j)

p (ξ )
∣∣2
(∑

l∈Zd

(
1 + 22(j+1)‖ξ /2 + 2lπ‖2)s∣∣ϕ̂(j+1)(ξ /2 + 2lπ )

∣∣2

×
2d–1∑
q=1

∣∣m(j+1)
0 (ξ /2 + γqπ )

∣∣2 +
∑
l∈Zd

(
1 + 22(j+1)‖ξ /2 + 2lπ + γqπ‖2)s

× ∣∣ϕ̂(j+1)(ξ /2 + 2lπ + γqπ )
∣∣2∣∣m(j+1)

0 (ξ /2)
∣∣2
)

=
∣∣L(j)

p (ξ )
∣∣2
(2d–1∑

q=0

∣∣m(j+1)
0 (ξ /2 + γqπ )

∣∣2
)

=
∣∣L(j)

p (ξ )
∣∣2, p = 1, 2, . . . , 2d–1,

for a.e. ξ ∈ T
d and γq,γp ∈ Ed , which finishes our proof. �

4 Conclusion
In this paper, we have successfully generalized MRA over higher-dimensional Sobolev
spaces by giving orthonormality and density conditions. Further, we constructed nonsep-
arable orthonormal wavelets in a higher-dimensional Sobolev space by using multivari-
ate box splines. The main obstacle in constructing wavelets is constructing low-pass and
high-pass filters with the help of multivariate box splines, which satisfy the condition of
orthonormality in Hs(Rd) for every scale j (because the Hs-norm is not dilation invariant).
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