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Abstract
This paper is concerned with a class of quaternion-valued cellular neural networks
with discrete and distributed delays. By using the exponential dichotomy of linear
systems and a fixed point theorem, sufficient conditions are derived for the existence
and global exponential stability of pseudo almost periodic solutions of this class of
neural networks. Finally, a numerical example is given to illustrate the feasibility of the
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1 Introduction
Since Chua and Yang proposed cellular neural networks (CNNs) in 1988 [1], various dy-
namical behaviors of CNNs, such as the existence and stability of the equilibrium, periodic
solutions, anti-periodic solutions, almost periodic solutions, and pseudo-almost periodic
solutions, have been studied by many scholars [2–15].

On the one hand, quaternion-valued neural networks (QVNNs), as an extension of the
complex-valued neural networks (CVNNs), can deal with multi-level information and re-
quire only half the connection weight parameters of CVNNs [16]. Moreover, compared
with CVNNs, QVNNs perform more prominently when it comes to geometrical transfor-
mations, like 2D affine transformations or 3D affine transformations. 3D geometric affine
transformations can be represented efficiently and compactly based on QVNNs, espe-
cially spatial rotation [17]. Since the multiplication of quaternion is not commutative due
to Hamilton rules: ij = –ji = k, jk = –kj = i, ki = –ik = j, i2 = j2 = k2 = ijk = –1, the analysis
for QVCNNs becomes difficult. However, with the continuous development of the theory
of quaternion, there are some results about the dynamics of QVNNs. For example, the au-
thors of [18, 19] studied the existence and global exponential stability of equilibrium point
for QVNNs; the authors of [20] investigated the robust stability of QVNNs with time de-
lays and parameter uncertainties; the authors of [21] considered the existence and stabil-
ity of pseudo almost periodic solutions for a class of QVCNNs on time scales by a special
decomposition method; the authors of [22, 23] investigated the existence and global μ-
stability of an equilibrium point for QVNNs; the authors of [24] dealt with the existence
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and stability of periodic solutions for QVCNNs by using a continuation theorem of co-
incidence degree theory; the authors of [25] studied the almost periodic synchronization
for QVCNNs. Although non-autonomous neural networks are more general and practical
than the autonomous ones, up to now, there have been only few results about the dynamic
behaviors of non-autonomous QVNNs.

On the other hand, it is well known that the periodicity, almost periodicity, pseudo al-
most periodicity, and so on are the very important dynamics for non-autonomous systems
[10, 12, 26]. Moreover, the almost periodicity is more general than the periodicity. In ad-
dition, the pseudo almost periodicity is a natural generalization of almost periodicity. In
the past few years, the pseudo almost periodicity of real-valued neural networks (RVNNs)
has been studied by many authors [13–15, 27–34]. Besides, as we all know, time delay is
universal and can change the dynamical behavior of the system under consideration [3,
5, 29, 30, 35, 36]. Therefore, it is important and necessary to consider the neural network
model with time delay. However, to the best of our knowledge, there is no paper published
on the existence and stability of pseudo almost periodic solutions for quaternion-valued
cellular neural networks (QVCNNs) with discrete and distributed delays.

Motivated by the above, in this paper, we are concerned with the following QVCNN
with discrete and distributed delays:

x′
p(t) = –cp(t)xp(t) +

n∑

q=1

apq(t)fq
(
xq

(
t – τpq(t)

))

+
n∑

q=1

bpq(t)
∫ ∞

0
Kpq(u)gq

(
xq(t – u)

)
du + up(t), (1)

where p ∈ {1, 2, . . . , n} := �, xp(t) ∈ Q is the state vector of the pth unit at time t, cp(t) >
0 represents the rate at which the pth unit will reset its potential to the resting state in
isolation when disconnected from the network and external inputs, apq(t), bpq(t) ∈ Q are
the synaptic weights of delayed feedback between the pth neuron and the qth neuron,
fq, gq : Q → Q are the activation functions of signal transmission, τpq(t) ≥ 0 denotes the
transmission delay, up(t) ∈Q denotes the external input on the pth neuron at time t.

Throughout this paper, we denote by BC(R,Rn), the set of all bounded continuous func-
tions from R to Rn.

The initial value is given by

xp(s) = φp(s), s ∈ (–∞, 0], p ∈ �,

where φp ∈ BC((–∞, 0],Q).
Our main aim in this paper is to study the existence and global exponential stability of

pseudo almost periodic solutions of (1). The main contributions of this paper are listed as
follows.

(1) To the best of our knowledge, this is the first time to study the existence and stability
of pseudo almost periodic solutions for QVCNNs with discrete and distributed
delays.

(2) The stability of QVNNs with distributed delays has not been reported yet.
Therefore, our result about the stability of QVNNs is new, and most of the existing
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results about the stability of QVNNs are obtained by using the theory of linear
matrix inequalities but ours are not.

(3) The method that we use to transform QVNNs into RVNNs is different from that
used in [18, 20–23].

(4) QVCNN (1) contains RVCNNs and CVCNNs as its special cases.
Throughout this paper, Rn×n, Qn×n denote the set of all n × n real-valued and quater-

nion-valued matrices, respectively. The skew field of quaternion is denoted by

Q :=
{

x = xR + ixI + jxJ + kxK}
,

where xR, xI , xJ , xK are real numbers and the elements i, j, and k obey Hamilton’s multi-
plication rules.

For the convenience, we will introduce the notations: h̄ = supt∈R |h(t)|, h = inft∈R |h(t)|,
where h(t) is a bounded continuous function.

This paper is organized as follows. In Sect. 2, we introduce some definitions, make some
preparations for later sections. In Sect. 3, by utilizing Banach’s fixed point theorem and dif-
ferential inequality techniques, we establish the existence and global exponential stability
of pseudo almost periodic solutions of (1). In Sect. 4, we give an example to demonstrate
the feasibility of our results. This paper ends with a brief conclusion in Sect. 5.

2 Preliminaries
In this section, we shall first recall some fundamental definitions, lemmas which are used
in what follows.

Definition 1 ([37]) A function u ∈ BC(R,Rn) is said to be almost periodic if, for any ε > 0,
it is possible to find a real number l = l(ε) > 0, for any interval with length l(ε), there exists
a number τ = τ (ε) in this interval such that |u(t + τ ) – u(t)| < ε for all t ∈R. The collection
of such functions will be denoted by AP(R,Rn).

Let

PAP0
(
R,Rn) =

{
f ∈ BC

(
R,Rn)

∣∣∣ lim
r→+∞

1
2r

∫ r

–r

∥∥f (t)
∥∥dt = 0

}
.

Definition 2 ([38, 39]) A function f ∈ BC(R,Rn) is called pseudo almost periodic if it can
be expressed as f = f1 + f0, where f1 ∈ AP(R,Rn) and f0 ∈ PAP0(R,Rn). The collection of
such functions will be denoted by PAP(R,Rn).

From the above definitions, it is easy to see that AP(R,Rn) ⊂ PAP(R,Rn).

Definition 3 A quaternion-valued function x = xR + ixI + jxJ + kxK ∈ BC(R,Qn) is called
a pseudo almost periodic function if, for every l ∈ {R, I, J , K} := E, xl ∈ PAP(R,Rn).

Definition 4 ([38, 39]) The system

x′(t) = A(t)x(t) (2)
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is said to admit an exponential dichotomy if there exist a projection P and positive con-
stants α,β such that the fundamental solution matrix X(t) satisfies

∣∣X(t)PX–1(s)
∣∣ ≤ βe–α(t–s), t ≥ s,

∣∣X(t)(I – P)X–1(s)
∣∣ ≤ βe–α(s–t), t ≤ s.

Consider the following pseudo almost periodic system:

x′(t) = A(t)x(t) + f (t), (3)

where A(t) is an almost periodic matrix function, f (t) is a pseudo almost periodic vector
function.

Lemma 1 ([38, 39]) If the linear system (2) admits an exponential dichotomy, then system
(3) has a unique pseudo almost periodic solution:

x(t) =
∫ t

–∞
X(t)PX–1(s)f (s) ds –

∫ +∞

t
X(t)(I – P)X–1(s)f (s) ds,

where X(t) is the fundamental solution matrix of (2).

Lemma 2 ([38, 39]) Let cp(t) be an almost periodic function on R and

M[cp] = lim
T→∞

1
T

∫ t+T

t
cp(s) ds > 0, p ∈ �.

Then the linear system

x′(t) = diag
(
–c1(t), –c2(t), . . . , –cn(t)

)
x(t)

admits an exponential dichotomy on R.

In order to decompose the quaternion-valued system (1) into a real-valued system, we
need the following assumption:

(S1) Let xp = xR
p + ixI

p + jxJ
p + kxK

p , xl
p ∈ R, l ∈ E. Then the activation functions fq(xq) and

gq(xq) of (1) can be expressed as

fq(xq) = f R
q
(
xR

q , xI
q, xJ

q, xK
q
)

+ if I
q
(
xR

q , xI
q, xJ

q, xK
q
)

+ jf J
q
(
xR

q , xI
q, xJ

q, xK
q
)

+ kf K
q

(
xR

q , xI
q, xJ

q, xK
q
)
,

gq(xq) = gR
q
(
xR

q , xI
q, xJ

q, xK
q
)

+ igI
q
(
xR

q , xI
q, xJ

q, xK
q
)

+ jgJ
q
(
xR

q , xI
q, xJ

q, xK
q
)

+ kgK
q
(
xR

q , xI
q, xJ

q, xK
q
)
,

where f l
q , gl

q : R4 →R, p ∈ �, l ∈ E.
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Under assumption (S1), system (1) can be decomposed into the following four real-
valued sub-systems:

(
xR

p (t)
)′ = –cp(t)xR

p (t) +
n∑

q=1

(
aR

pq(t)f R
q [t, x] – aI

pq(t)f I
q [t, x]

– aJ
pq(t)f J

q [t, x] – aK
pq(t)f K

q [t, x]
)

+
n∑

q=1

(
bR

pq(t)
∫ ∞

0
Kpq(u)

× gR
q [t, u, x] du – bI

pq(t)
∫ ∞

0
Kpq(u)gI

q[t, u, x] du

– bJ
pq(t)

∫ ∞

0
Kpq(u)gJ

q[t, u, x] du – bK
pq(t)

∫ ∞

0
Kpq(u)

× gK
q [t, u, x] du

)
+ uR

p (t), (4)

(
xI

p(t)
)′ = –cp(t)xI

p(t) +
n∑

q=1

(
aR

pq(t)f I
q [t, x] + aI

pq(t)f R
q [t, x]

+ aJ
pq(t)f K

q [t, x] – aK
pq(t)f J

q [t, x]
)

+
n∑

q=1

(
bR

pq(t)
∫ ∞

0
Kpq(u)

× gI
q[t, u, x] du + bI

pq(t)
∫ ∞

0
Kpq(u)gR

q [t, u, x] du

+ bJ
pq(t)

∫ ∞

0
Kpq(u)gK

q [t, u, x] du – bK
pq(t)

∫ ∞

0
Kpq(u)

× gJ
q[t, u, x] du

)
+ uI

p(t), (5)

(
xJ

p(t)
)′ = –cp(t)xJ

p(t) +
n∑

q=1

(
aR

pq(t)f J
q [t, x] + aJ

pq(t)f R
q [t, x]

– aI
pq(t)f K

q [t, x] + aK
pq(t)f I

q [t, x]
)

+
n∑

q=1

(
bR

pq(t)
∫ ∞

0
Kpq(u)

× gJ
q[t, u, x] du + bJ

pq(t)
∫ ∞

0
Kpq(u)gR

q [t, u, x] du

– bI
pq(t)

∫ ∞

0
Kpq(u)gK

q [t, u, x] du + bK
pq(t)

∫ ∞

0
Kpq(u)

× gI
q[t, u, x] du

)
+ uJ

p(t), (6)

(
xK

p (t)
)′ = –cp(t)xK

p (t) +
n∑

q=1

(
aR

pq(t)f K
q [t, x] + aK

pq(t)f R
q [t, x]

+ aI
pq(t)f J

q [t, x] – aJ
pq(t)f I

q [t, x]
)

+
n∑

q=1

(
bR

pq(t)
∫ ∞

0
Kpq(u)

× gK
q [t, u, x] du + bK

pq(t)
∫ ∞

0
Kpq(u)gR

q [t, u, x] du

+ bI
pq(t)

∫ ∞

0
Kpq(u)gJ

q[t, u, x] du – bJ
pq(t)

∫ ∞

0
Kpq(u)



Meng and Li Journal of Inequalities and Applications  (2018) 2018:245 Page 6 of 17

× gI
q[t, u, x] du

)
+ uK

p (t), (7)

where f l
q[t, x] � f l

q(xR
q (t – τpq(t)), xI

q(t – τpq(t)), xJ
q(t – τpq(t)), xK

q (t – τpq(t))), gl
q[t, u, x] �

gl
q(xR

q (t – u), (xI
q(t – u)), (xJ

q(t – u)), (xK
q (t – u))), and

apq(t) = aR
pq(t) + iaI

pq(t) + jaJ
pq(t) + kaK

pq(t),

bpq(t) = bR
pq(t) + ibI

pq(t) + jbJ
pq(t) + kbK

pq(t),

up(t) = uR
p (t) + iuI

p(t) + juJ
p(t) + kuK

p (t).

According to (4)–(7), one can obtain that

X ′
p(t) = –cp(t)Xp(t) +

n∑

q=1

Apq(t)Fq[t, x]

+
n∑

q=1

Bpq(t)
∫ ∞

0
Kpq(u)Gq[t, u, x] du + Up(t), p ∈ �, (8)

where

Apq(t) =

⎛

⎜⎜⎜⎝

aR
pq(t) –aI

pq(t) –aJ
pq(t) –aK

pq(t)
aI

pq(t) aR
pq(t) –aK

pq(t) aJ
pq(t)

aJ
pq(t) aK

pq(t) aR
pq(t) –aI

pq(t)
aK

pq(t) –aJ
pq(t) aI

pq(t) aR
pq(t)

⎞

⎟⎟⎟⎠ ,

Bpq(t) =

⎛

⎜⎜⎜⎝

bR
pq(t) –bI

pq(t) –bJ
pq(t) –bK

pq(t)
bI

pq(t) bR
pq(t) –bK

pq(t) bJ
pq(t)

bJ
pq(t) bK

pq(t) bR
pq(t) –bI

pq(t)
bK

pq(t) –bJ
pq(t) bI

pq(t) bR
pq(t)

⎞

⎟⎟⎟⎠ , Xp(t) =

⎛

⎜⎜⎜⎝

xR
p (t)

xI
p(t)

xJ
p(t)

xK
p (t)

⎞

⎟⎟⎟⎠ ,

Up(t) =

⎛

⎜⎜⎜⎝

uR
p (t)

uI
p(t)

uJ
p(t)

uK
p (t)

⎞

⎟⎟⎟⎠ , Fq[t, x] =

⎛

⎜⎜⎜⎝

f R
q [t, x]
f I
q [t, x]

f J
q [t, x]

f K
q [t, x]

⎞

⎟⎟⎟⎠ , Gq[t, u, x] =

⎛

⎜⎜⎜⎝

gR
q [t, u, x]

gI
q[t, u, x]

gJ
q[t, u, x]

gK
q [t, u, x]

⎞

⎟⎟⎟⎠ .

The initial condition associated with (8) is of the form

Xp(s) = �p(s), p ∈ �, s ∈ (–∞, 0],

where

�p(s) =
(
φR

p (s),φI
p(s),φJ

p(s),φK
p (s)

)T

and φl
p(s) ∈ BC((–∞, 0],R), p ∈ �, l ∈ E.

Remark 1 Under assumption (S1), it is easy to see that if X = (xR
1 , xI

1, xJ
1, xK

1 , . . . , xR
n , xI

n, xJ
n,

xK
n )T ∈R4n is a solution of system (8), then x = (X1, X2, . . . , Xn)T is a solution of system (1),

and vice visa, where Xp = xR
p + ixI

p + jxJ
p + kxK

p , p ∈ �. Therefore, to find a solution for system
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(1) is equivalent to finding one for system (8). To study the stability of solutions of system
(1), we only need to investigate the stability of solutions of system (8).

3 Main results
In this section, we establish the existence and global exponential stability of pseudo almost
periodic solutions of system (8).

Let X = {f (t) | f ∈ PAP(R,R4n)} with the norm ‖f ‖X = supt∈R ‖f (t)‖, where ‖f (t)‖ =
max1≤h≤4n{|fh(t)|}, then X is a Banach space.

In the following, we assume that the following conditions hold:
(S2) There exist positive constants αl

q,β l
q such that

∣∣f l
q
(
xR

q , xI
q, xJ

q, xK
q
)

– f l
q
(
yR

q , yI
q, yJ

q, yK
q
)∣∣

≤ αR
q
∣∣xR

q – yR
q
∣∣ + αI

q
∣∣xI

q – yI
q
∣∣ + αJ

q
∣∣xJ

q – yJ
q
∣∣ + αK

q
∣∣xK

q – yK
q
∣∣,

∣∣gl
q
(
xR

q , xI
q, xJ

q, xK
q
)

– gl
q
(
yR

q , yI
q, yJ

q, yK
q
)∣∣

≤ βR
q
∣∣xR

q – yR
q
∣∣ + β I

q
∣∣xI

q – yI
q
∣∣ + β J

q
∣∣xJ

q – yJ
q
∣∣ + βK

q
∣∣xK

q – yK
q
∣∣

and f l
q(0, 0, 0, 0) = gl

q(0, 0, 0, 0) = 0, where p ∈ �, l ∈ E.
(S3) The function cp ∈ C(R,R+) with M[cp] > 0 is almost periodic, Up ∈ C(R,R4×1),

Apq, Bpq ∈ C(R,R4×4), and τpq ∈ C(R,R+) are pseudo almost periodic, where p, q ∈
�.

(S4) The delay kernel Kpq : [0,∞) → R is continuous and integrable with 0 ≤∫ ∞
0 |Kpq(u)|du ≤ K̄pq , where p, q ∈ �.

(S5) There exists a constant κ such that

max
p∈�

{
max
l∈E

{

pκ + ūl

p

cp

}}
≤ κ , max

p∈�

{

p

cp

}
:= ρ < 1,

where


p = Vp + Wp, p ∈ �,

Vp =
n∑

q=1

(
āR

pq + āI
pq + āJ

pq + āK
pq

)(
αR

q + αI
q + αJ

q + αK
q
)
, p ∈ �,

Wp =
n∑

q=1

K̄pq
(
b̄R

pq + b̄I
pq + b̄J

pq + b̄K
pq

)(
βR

q + β I
q + β J

q + βK
q
)
, p ∈ �.

Theorem 1 Suppose that (S1)–(S5) hold. Then system (8) has a unique pseudo almost pe-
riodic solution in the region X∗ = {ϕ | ϕ ∈X,‖ϕ‖X ≤ κ}.

Proof Let ϕ = (ϕR
1 ,ϕI

1,ϕJ
1,ϕK

1 , . . . ,ϕR
n ,ϕI

n,ϕJ
n,ϕK

n )T ∈ X. Obviously, (S1) implies that Fq[t,ϕ]
and Gq[t, u,ϕ] are uniformly continuous functions on R for q ∈ �. Set h(t, z) = ϕq(t – z)
(q ∈ �), where ϕq(t –z) = (ϕR

q (t –z),ϕI
q(t –z),ϕJ

q(t –z),ϕK
q (t –z)). By Theorem 5.3 in [40] and

Definition 5.7 in [40], we can obtain that h ∈ PAP(R×) and h is continuous in z ∈ K and
uniformly in t ∈R for all compact subset K of  ⊂ R. This, together with τpq ∈ PAP(R,R+)
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and Theorem 5.11 in [40], implies that

ϕq
(
t – τpq(t)

) ∈ PAP
(
R,R4), p, q ∈ �.

Again from Corollary 5.4 in [40], we have

Fq[t,ϕ] ∈ PAP
(
R4,R4×1), q ∈ �,

which implies that

n∑

q=1

Apq(t)Fq[t,ϕ] ∈ PAP
(
R,R4×1), p, q ∈ �.

By a similar argument as that in the proof of Lemma 2.3 in [13], one can obtain that

n∑

q=1

Bpq(t)
∫ ∞

0
Kpq(u)Gq

(
ϕq(t – u)

)
du ∈ PAP

(
R,R4×1), p ∈ �.

For any ϕ ∈ X, consider the following linear system:

X ′
p(t) = –cp(t)Xp(t) +

n∑

q=1

Apq(t)Fq[t,ϕ]

+
n∑

q=1

Bpq(t)
∫ ∞

0
Kpq(u)Gq[t, u,ϕ] du + Up(t), p ∈ �. (9)

In view of Lemma 2, we can conclude that the linear system

X ′
p(t) = –cp(t)Xp(t), p ∈ � (10)

admits an exponential dichotomy. Furthermore, by Lemma 1, we obtain that system (9)
has exactly one pseudo periodic almost solution:

Xϕ =
(
Xϕ

1 , Xϕ
2 , . . . , Xϕ

n
)
,

where

Xϕ
p (t) =

∫ t

–∞
e–

∫ t
s cp(u) du

( n∑

q=1

Apq(s)Fq[s,ϕ]

+
n∑

q=1

Bpq(s)
∫ ∞

0
Kpq(u)Gq[s, u,ϕ] du + Up(s)

)
ds, p ∈ �. (11)

Define a mapping T : X→X by setting (Tϕ)(t) = Xϕ(t), ∀ϕ ∈ X. Obviously, X∗ is a closed
convex subset of X.
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Now, we prove that the mapping T is a self-mapping from X∗ to X∗. In fact, for ∀ϕ ∈X∗,
we have

sup
t∈R

∣∣(Tϕ)R
p (t)

∣∣

= sup
t∈R

∣∣∣∣∣

∫ t

–∞
e–

∫ t
s cp(u) du

( n∑

q=1

(
aR

pq(s)f R
q [s,φ] – aI

pq(s)f I
q [s,φ]

– aJ
pq(s)f J

q [s,φ] – aK
pq(s)f K

q [s,φ]
)

+
n∑

q=1

(
bR

pq(s)
∫ ∞

0
Kpq(u)g̃R

q du

– bI
pq(s)

∫ ∞

0
Kpq(u)g̃I

q du – bJ
pq(s)

∫ ∞

0
Kpq(u)g̃J

q du

– bK
pq(s)

∫ ∞

0
Kpq(u)g̃K

q du
)

+ uR
p (s)

)
ds

∣∣∣∣∣

≤ sup
t∈R

∫ t

–∞
e–

∫ t
s cp(u) du

( n∑

q=1

(
āR

pq + āI
pq + āJ

pq + āK
pq

)

× (
αR

q
∣∣ϕR

q
(
s – τpq(s)

)∣∣ + αI
q
∣∣ϕI

q
(
s – τpq(s)

)∣∣ + αJ
q
∣∣ϕJ

q
(
s – τpq(s)

)∣∣

+ αK
q
∣∣ϕK

q
(
s – τpq(s)

)∣∣) +
n∑

q=1

(
b̄R

pq + b̄I
pq + b̄J

pq + b̄K
pq

)

×
∫ ∞

0

∣∣Kpq(u)
∣∣(βR

q
∣∣ϕR

q (s – u)
∣∣ + β I

q
∣∣ϕI

q(s – u)
∣∣ + β J

q
∣∣ϕJ

q(s – u)
∣∣

+ βK
q
∣∣ϕK

q (s – u)
∣∣)du + ūR

p

)
ds

≤ sup
t∈R

∫ t

–∞
e–

∫ t
s cp(u) du

( n∑

q=1

(
āR

pq + āI
pq + āJ

pq + āK
pq

)(
αR

q + αI
q + αJ

q

+ αK
q
)‖ϕ‖X +

n∑

q=1

K̄pq
(
b̄R

pq + b̄I
pq + b̄J

pq + b̄K
pq

)(
βR

q + β I
q + β J

q

+ βK
q
)‖ϕ‖X + ūR

p

)
ds

≤ 1
cp

(
Vpκ + Wpκ + ūR

p
)

=

pκ + ūR

p

cp
, p ∈ �. (12)

In a similar way, we can obtain

sup
t∈R

∣∣(Tϕ)p(t)
∣∣ ≤ 
pκ + ūl

p

cp
, p ∈ �, l = I, J , K . (13)

It follows from (12), (13), and (H4) that

‖Tϕ‖X ≤ κ ,
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which implies that Tϕ ∈ X∗. Therefore, the mapping T is a self-mapping from X∗ to X∗.
Next, we show that T : X∗ → X∗ is a contraction mapping. In fact, for any ϕ,ψ ∈ X∗, we
have

sup
t∈R

∣∣(Tϕ)R
p (t) – (Tψ)R

p (t)
∣∣

≤ sup
t∈R

∫ t

–∞
e–

∫ t
s cp(u) du

( n∑

q=1

(
āR

pq + āI
pq + āJ

pq + āK
pq

)(
αR

q
∣∣ϕR

q
(
s – τpq(s)

)

– ψR
q
(
s – τpq(s)

)∣∣ + αI
q
∣∣ϕI

q
(
s – τpq(s)

)
– ψ I

q
(
s – τpq(s)

)∣∣

+ αJ
q
∣∣ϕJ

q
(
s – τpq(s)

)
– ψ J

q
(
s – τpq(s)

)∣∣ + αK
q
∣∣ϕK

q
(
s – τpq(s)

)

– ψK
q

(
s – τpq(s)

)∣∣) +
n∑

q=1

(
b̄R

pq + b̄I
pq + b̄J

pq + b̄K
pq

)∫ ∞

0

∣∣Kpq(u)
∣∣

× (
βR

q
∣∣ϕR

q (s – u) – ψR
q (s – u)

∣∣ + β I
q
∣∣ϕI

q(s – u) – ψ I
q(s – u)

∣∣

+ β J
q
∣∣ϕJ

q(s – u) – ψ J
q(s – u)

∣∣ + βK
q
∣∣ϕK

q (s – u) – ψK
q (s – u)

∣∣)du

)
ds

≤ sup
t∈R

∫ t

–∞
e–

∫ t
s cp(u) du

( n∑

q=1

(
āR

pq + āI
pq + āJ

pq + āK
pq

)(
αR

q + αI
q

+ αJ
q + αK

q
)‖ϕ – ψ‖X +

n∑

q=1

K̄pq
(
b̄R

pq + b̄I
pq + b̄J

pq + b̄K
pq

)(
βR

q + β I
q

+ β J
q + βK

q
)‖ϕ – ψ‖X

)
ds

≤ 1
cp

(Vp + Wp)‖ϕ – ψ‖X =

p

cp
‖ϕ – ψ‖X. (14)

In a similar way, we can obtain

sup
t∈R

∣∣(Tϕ)l
p(t) – (Tψ)l

p(t)
∣∣ ≤ 
p

cp
‖ϕ – ψ‖X, p ∈ �, l = I, J , K . (15)

It follows from (14), (15), and (H4) that

∥∥T(ϕ) – T(ψ)
∥∥
X

≤ ρ‖ϕ – ψ‖X.

Hence, T is a contraction mapping from X∗ to X∗. Therefore, T has a unique fixed point
in X∗, that is, (8) has a unique pseudo almost periodic solution in X∗. The proof is com-
plete. �

By Remark 1, Theorem 1, we have the following.

Theorem 2 Suppose that (S1)–(S5) hold, then system (1) has a unique pseudo almost pe-
riodic solution in X∗ = {ϕ | ϕ ∈ X,‖ϕ‖X ≤ κ}.
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Definition 5 Let x = (xR
1 , xI

1, xJ
1, xK

1 , . . . , xR
n , xI

n, xJ
n, xK

n )T be a solution of (8) with the initial
value ϕ = (ϕR

1 ,ϕI
1,ϕJ

1,ϕK
1 , . . . ,ϕR

n ,ϕI
n,ϕJ

n,ϕK
n )T ∈ C((–∞, 0],R4n) and y = (yR

1 , yI
1, yJ

1, yK
1 , . . . , yR

n ,
yI

n, yJ
n, yK

n )T be an arbitrary solution of system (8) with the initial value ψ = (ψR
1 ,ψ I

1,ψ J
1,ψK

1 ,
. . . ,ψR

n ,ψ I
n,ψ J

n,ψK
n )T ∈ C((–∞, 0],R4n). If there exist constants λ > 0 and M > 0 such that

∥∥x(t) – y(t)
∥∥ ≤ M‖ϕ – ψ‖e–λt , t > 0,

where

∥∥x(t) – y(t)
∥∥ = max

p∈�

{∣∣xl
p(t) – yl

p(t)
∣∣, l ∈ E

}
,

‖ϕ – ψ‖0 = max
p∈�,l∈E

{
sup

s∈(–∞,0]

∣∣ϕl
p(s) – ψ l

p(s)
∣∣
}

.

Then the solution x of system (8) is said to be globally exponentially stable.

Theorem 3 Under the assumptions of Theorem 1, system (8) has a unique pseudo almost
periodic solution that is globally exponentially stable.

Proof From Theorem 1, we see that system (8) has a pseudo almost periodic solu-
tion X∗ = (X∗

1 , X∗
2 , . . . , X∗

n)T with initial value �∗ = (φ∗
1 ,φ∗

2 , . . . ,φ∗
n)T . Suppose that X =

(X1, X2, . . . , Xn)T is an arbitrary solution of system (8) with initial value � = (φ1,φ2, . . . ,φn)T

and let Z = X – X∗, then we have

Z′
p(t) = –cp(t)Zp(t) +

n∑

q=1

Apq(t)
(
Fq

[
t, z + x∗] – Fq

[
t, x∗])

+
n∑

q=1

Bpq(t)
∫ ∞

0
Kpq(u)

(
Gq

[
t, u, z + x∗]

– Gq
[
t, u, x∗])du, p ∈ �. (16)

The initial condition of (16) is

Zp(s) = ψp(s) = �p(s) – �∗
p(s), s ∈ (–∞, 0], p ∈ �.

For p ∈ �, we define �p as follows:

�p(θ ) = θ – cp + Vpeθ τ̄pq + Wp, p ∈ �.

From (S5), we have

�p(0) = –cp + Vp + Wp = –cp + 
p < 0

and �p(θ ) is continuous on [0, +∞) and �p(θ ) → +∞, as θ → +∞. Hence, there exists
ξp > 0 such that �p(ξp) = 0 and �p(θ ) < 0 for θ ∈ (0, ξp), p ∈ �. So, we can choose a positive
constant 0 < λ < min{minp∈� ξp, minp∈�{cp}} such that

�p(λ) < 0, p ∈ �.



Meng and Li Journal of Inequalities and Applications  (2018) 2018:245 Page 12 of 17

Let γp = Vpeλτ̄pq + Wp, p ∈ �. Then γp < cp – λ, p ∈ �. Take a constant M such that

M >
cp – λ

γp
> 1, p ∈ �,

which yields

1
M

–
γp

cp – λ
< 0, p ∈ �.

Hence, for any ε > 0, it is obvious that

∥∥Z(0)
∥∥ <

(‖ϕ‖0 + ε
)

(17)

and

∥∥Z(t)
∥∥ <

(‖ϕ‖0 + ε
)
e–λt < M

(‖ϕ‖0 + ε
)
e–λt , ∀ t ∈ (–∞, 0]. (18)

We claim that

∥∥Z(t)
∥∥ < M

(‖ϕ‖0 + ε
)
e–λt , ∀ t > 0. (19)

Otherwise, there must exist some p ∈ � and η > 0 such that

⎧
⎨

⎩
|Zp(η)| = ‖Z(η)‖ = M(‖ϕ‖0 + ε)e–λη,

‖Z(t)‖ < M(‖ϕ‖0 + ε)e–λt , t < η.
(20)

Multiplying both sides of (16) by e
∫ t

0 cp(u) du and integrating over [0, t], we get

Zp(t) = Zp(0)e–
∫ t

0 cp(u) du +
∫ t

0
e–

∫ t
s cp(u) du

( n∑

q=1

Apq(s)
(
Fq

[
s, z + x∗]

– Fq
[
s, x∗]) +

n∑

q=1

Bpq(s)
∫ ∞

0
Kpq(u)

(
Gq

[
s, u, z + x∗]

– Gq
[
s, u, x∗])du

)
ds.

From this and (20), we get

∣∣zR
p (η)

∣∣

=

∣∣∣∣∣z
R
p (0)e–

∫ η
0 cp(u) du +

∫ η

0
e–

∫ η
s cp(u) du

( n∑

q=1

(
aR

pq(s)f̂ R
q
[
s, x – x∗]

– aI
pq(s)f̂ I

q
[
s, x – x∗] – aJ

pq(s)f̂ J
q
[
s, x – x∗] – aK

pq(s)f̂ K
q

[
s, x – x∗])

+
n∑

q=1

(
bR

pq(s)
∫ ∞

0
Kpq(u)ĝR

q
[
s, u, x – x∗] – bI

pq(s)
∫ ∞

0
Kpq(u)
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× ĝI
q
[
s, u, x – x∗] – bJ

pq(s)
∫ ∞

0
Kpq(u)ĝJ

q
[
s, u, x – x∗]

– bK
pq(s)

∫ ∞

0
Kpq(u)ĝK

q
[
s, u, x – x∗]

)
du

)
ds

∣∣∣∣∣

≤ (‖ϕ‖0 + ε
)
e–

∫ η
0 cp(u) du +

∫ η

0
e–

∫ η
s cp(u) du

( n∑

q=1

(
āR

pq + āI
pq

+ āJ
pq + āK

pq
)(

αR
q + αI

q + αJ
q + αK

q
)
eλτ̄pq +

n∑

q=1

(
b̄R

pq + b̄I
pq

+ b̄J
pq + b̄K

pq
)(

βR
q + β I

q + β J
q + βK

q
)∫ ∞

0

∣∣Kpq(u)
∣∣e–λseλu du

)
ds

× M
(‖ϕ‖0 + ε

)

≤ (‖ϕ‖0 + ε
)
e–ληe–

∫ η
0 (cp(u)–λ) du +

∫ η

0
e–

∫ η
s cp(u) du

( n∑

q=1

(
āR

pq

+ āI
pq + āJ

pq + āK
pq

)(
αR

q + αI
q + αJ

q + αK
q
)
eλτ̄pq +

n∑

q=1

K̄pq
(
b̄R

pq

+ b̄I
pq + b̄J

pq + b̄K
pq

)(
βR

q + β I
q + β J

q + βK
q
)
)

dsM
(‖ϕ‖0 + ε

)
e–λη

≤ (‖ϕ‖0 + ε
)
e–ληe–

∫ η
0 (cp(u)–λ) du +

1 – e(λ–cp)η

cp – λ

(
Vpeλτ̄pq

+ Wp
)
M

(‖ϕ‖0 + ε
)
e–λη

≤ M
(‖ϕ‖0 + ε

)
e–λη

[(
1
M

–
γp

cp – λ

)
e(λ–cp)η +

γp

cp – λ

]

< M
(‖ϕ‖0 + ε

)
e–λη, (21)

where f̂ l
q[s, x – x∗] � f l

q[s, x] – f l
q[s, x∗], ĝl

q[s, u, x – x∗] � gl
q[s, u, x] – gl

q[s, u, x∗].
Similarly, we can get

∣∣zl
p(η)

∣∣ < M
(‖ϕ‖0 + ε

)
e–λη, l = I, J , K . (22)

It follows from (21) and (22) that

∣∣Zp(η)
∣∣ < M

(‖ϕ‖0 + ε
)
e–λη,

which contradicts the first equation of (20). Hence, (19) holds. Letting ε → 0+, from (19),
we have

∥∥Z(t)
∥∥ ≤ M‖ϕ‖0e–λt , ∀ t > 0.

Therefore, the pseudo almost periodic solution of system (8) is globally exponentially sta-
ble. The proof is complete. �
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By Remark 1, Theorem 3, we have

Theorem 4 Suppose that (S1)–(S5) hold, then system (1) has a unique pseudo almost pe-
riodic solution that is globally exponentially stable.

4 An example
In this section, we give an example to illustrate the feasibility and effectiveness of our
results obtained in Sect. 3.

Example 1 Consider the following quaternion-valued system:

x′
p(t) = –cp(t)xp(t) +

2∑

q=1

apq(t)fq
(
xq

(
t – τpq(t)

))

+
2∑

q=1

bpq(t)
∫ ∞

0
Kpq(u)gq

(
xq(t – u)

)
du + up(t), (23)

where p = 1, 2, xp = xR
p + ixI

p + jxJ
p + kxK

p ∈Q, and the coefficients are taken as follows:

c1(t) = 4 + cos(
√

2t), c2(t) = 5 – sin t, Kpq(u) = | sin u|e–4u,

fq(xq) =
1
4

sin2(xR
q + xJ

q
)

+ i
∣∣xI

q + xK
q
∣∣ + j

1
2

sin xJ
q + k

1
2
(∣∣xK

q + 1
∣∣ +

∣∣xK
q
∣∣ – 1

)
,

gq(xq) = tan xR
q + i

1
8

sin2(xR
q + xI

q
)

+ j
∣∣xJ

q
∣∣ + k

1
4

sin
(√

2xK
q
)
,

a11(t) = a12(t) = 0.032 cos t + i0.03 sin(
√

2t) + j0.028 sin t + k0.045 cos t,

a21(t) = a22(t) = 0.04 sin(
√

2t) + i0.05 sin(
√

3t) + j0.036 cos(
√

2t) + k0.06 sin t,

b11(t) = b12(t) = 0.4 sin t + i0.2 cos(
√

2t) + j0.3 sin(
√

3t) + k0.25 cos t,

b21(t) = b22(t) = 0.5 cos(
√

3t) + i0.45 sin t + j0.35 cos t + k0.6 sin(
√

2t),

τ11(t) =
∣∣sin(2t)

∣∣, τ12(t) = cos2 t, τ21(t) =
∣∣sin(

√
2t)

∣∣, τ22(t) = sin2 t,

u1(t) = u2(t) = cos t + i sin(2t) + j sin(
√

2t) + k cos(
√

2t).

By a simple calculation, we have

c1 = 3, c2 = 4, K̄pq =
1
4

, p, q = 1, 2,

αR
q = αJ

q =
1
2

, αI
q = αK

q = βR
q = β J

q = 1, β I
q = βK

q =
1
4

,

āR
11 = āR

12 = 0.032, āI
11 = āI

12 = 0.03, āJ
11 = āJ

12 = 0.028,

āK
11 = āK

12 = 0.045, āR
21 = āR

22 = 0.04, āI
21 = āI

22 = 0.05,

āJ
21 = āJ

22 = 0.036, āK
21 = āK

22 = 0.06, b̄R
11 = b̄R

12 = 0.4,

b̄I
11 = b̄I

12 = 0.2, b̄J
11 = b̄J

12 = 0.3, b̄K
11 = b̄K

12 = 0.25,

b̄R
21 = b̄R

22 = 0.5, b̄I
21 = b̄I

22 = 0.45, b̄J
21 = b̄J

22 = 0.35, b̄K
21 = b̄K

22 = 0.6,
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Figure 1 Transient states of four parts of QVNN (23) in Example 1

ūR
1 = ūI

1 = ūJ
1 = ūK

1 = ūR
2 = ūI

2 = ūJ
2 = ūK

2 = 1, τ̄pq = 1, p, q = 1, 2.

Take κ = 2, then we have

max

{
2
1 + ūR

1
c1

,
2
1 + ūI

1
c1

,
2
1 + ūJ

1
c1

,
2
1 + ūK

1
c1

,
2
2 + ūR

2
c2

,
2
2 + ūI

2
c2

,

2
2 + ūJ
2

c2
,

2
2 + ūK
2

c2

}
≈ {1.8327, 1.9955} = 1.9955 ≤ κ = 2

and

max

{

1

c1
,


2

c2

}
≈ {0.7492, 0.8728} = 0.8728 = ρ < 1.

It is easy to check that all the assumptions in Theorem 4 are satisfied. Therefore, we obtain
that (23) has a pseudo almost periodic solution that is globally exponentially stable (see
Fig. 1).

Remark 2 The results obtained in [13–15, 21, 27–34] cannot be applied to obtain that
system (23) has a unique pseudo almost periodic solution that is globally exponentially
stable.

5 Conclusion
In this paper, we have established the existence and global exponential stability of pseudo
almost periodic solutions of QVCNNs with discrete and distributed delays. An example
has been given to demonstrate the effectiveness of our results. This is the first time to study
the pseudo almost periodic oscillation for QVCNNs with discrete and distributed delays.
Furthermore, the method of this paper can be used to study other types of quaternion-
valued neural networks.
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