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1 Introduction and main results
At the end of the nineteenth century, Brunn and Minkowski pioneered the classical
Brunn–Minkowski theory of convex bodies, which is the product of Minkowski linear
combination of vectors and volumes in the Euclidean space. The core of this theory are
mixed volume, mixed area measure, and the basic Brunn–Minkowski inequality. In recent
years, Brunn–Minkowski theory attracted wide attention (see [1, 2]).

By the 1960s, Firey put forward the concept of Lp-Minkowski combination of convex
bodies (see [2]). In 1993, Lutwak [3] introduced the Lp-Minkowski linear combination
of convex bodies to the classical Brunn–Minkowski theory, proposed the notions of Lp-
mixed volume, Lp-mixed quermassintegrals, and Lp-surface area measure, and obtained
the corresponding integral expression, which extended the classical Brunn–Minkowski
theory to Lp space (called the Lp Brunn–Minkowski theory). This new theory has attracted
a large number of researchers’ interests in recent years (see [4–22]). Especially, the concept
of Lp-mixed volume (p ≥ 1) plays an important role in Lp Brunn–Minkowski theory (see
[3, 23]).

The classical dual Brunn–Minkowski theory of star bodies was introduced by Lutwak
[24] in 1975. In 1996, on the basis of Lp harmonic radial combination, Lutwak [23] put
forward the concept of Lp-dual mixed volume (p ≥ 1) and gave its integral expression.
This means that the preliminary Lp dual Brunn–Minkowski theory has been established.
Afterwards, Grinberg and Zhang defined the notion of Lp radial combination (p > 0). In
2002, Gardner improved p > 0 to p �= 0 in Lp radial combination, and got a more exten-
sive class of Lp-dual mixed volume (p �= 0). For more information about the classical dual
Brunn–Minkowski theory and Lp dual Brunn–Minkowski theory, please refer to [25–35].

Very recently, Huang et al. [10] constructed the dual curvature measure in dual Brunn–
Minkowski theory. These measures are dual to Federer’s curvature measures which are
fundamental in the classical Brunn–Minkowski theory. In 2018, Lutwak, Yang, and Zhang
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[36] made further work and introduced Lp dual curvature measures which include Lp sur-
face area measure, dual curvature measures, and Lp integral curvatures. Using this new
concept, they introduced the (p, q)-mixed volume, which unifies Lp-mixed volume and Lp-
dual mixed volume. Thus, Lp Brunn–Minkowski theory and Lp dual Brunn–Minkowski
theory are partially unified.

Let K be a convex body if K is a compact, convex subset in an n-dimensional Euclidean
space R

n with nonempty interior. The set of all convex bodies in R
n is written as Kn. Let

Kn
o denote the set of convex bodies containing the origin in their interiors. Let Sn

o denote
the set of star bodies (about the origin) in R

n. We write u for the unit vector and B for the
unit ball centered at the origin, the surface of B denoted by Sn–1. We shall use V (K) for the
n-dimensional volume of the body K in R

n.
Suppose that R is the set of real numbers. If E ∈ Kn, the support function of E, hE =

h(E, ·): Rn →R, is defined by (see [1, 2])

h(E, x) = max{x · y : y ∈ E}, x ∈R
n,

where x · y denotes the standard inner product of x and y in R
n.

For a compact star-shaped (about the origin) E in R
n, the radial function ρE of E, ρE =

ρ(E, ·): Rn\{0} → [0, +∞), is defined by (see [1, 2])

ρ(E, x) = max{λ ≥ 0 : λx ∈ E}, x ∈R
n\{0}.

If ρE is positive and continuous, then E is called a star body.
If E ∈R

n is a nonempty subset, the polar set of E, E∗, is defined by (see [1, 2])

E∗ =
{

x ∈ R
n : x · y ≤ 1, y ∈ E

}
.

From this, it is easy to get that (E∗)∗ = E for all E ∈Kn
o .

From the definition of polar, we know that if E ∈Kn
o , the support and radial function of

E∗, the polar body of E, have the following relationships (see [1, 2]):

h
(
E∗, ·) =

1
ρ(E, ·) , ρ

(
E∗, ·) =

1
h(E, ·) . (1.1)

Very recently, Lutwak et al. defined a new concept (i.e., Lp dual curvature measures)
as follows (see [36]): For p, q ∈ R, K ∈ Kn

o , and L ∈ Sn
o , the Lp dual curvature measures

C̃p,q(K , L, ·) on Sn–1 is defined by

∫

Sn–1
g(v) dC̃p,q(K , L, v) =

1
n

∫

Sn–1
g
(
αK (u)

)
h–p

K
(
αK (u)

)
ρ

q
K (u)ρn–q

L (u) du (1.2)

for each continuous g : Sn–1 →R. Here αK is the radial Gauss map (see [36]).
By (1.2), Lutwak, Yang, and Zhang [36] defined the (p, q)-mixed volumes as follows: For

K , L ∈Kn
o , M ∈ Sn

o , and p, q ∈R, the (p, q)-mixed volume Ṽp,q(K , L, M) of K , L, M is defined
by

Ṽp,q(K , L, M) =
∫

Sn–1
hp

L(v) dC̃p,q(K , M, v).
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For the (p, q)-mixed volumes, the authors [36] gave the following integral formula:

Ṽp,q(K , L, M) =
1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du. (1.3)

By (1.3), Lutwak et al. introduced the Lp mixed volume for p ∈R. For K , L ∈Kn
o and any

real p, the Lp mixed volume Vp(K , L) is given by

Vp(K , L) =
1
n

∫

Sn–1
hp

L(u) dSp(K , u).

Here Sp(K , ·) denotes the Lp surface area measure (see [3]). The case of p ≥ 1 is Lutwak’s
Lp mixed volume (see [3]).

At the same time, for K , L ∈ Sn
o and q ∈R, they also defined the qth dual mixed volume

Ṽq(K , L) by

Ṽq(K , L) =
1
n

∫

Sn–1
ρ

q
K (u)ρn–q

L (u) du.

In addition, they gave several special cases of (p, q)-mixed volume: For p, q ∈ R, K , L ∈
Kn

o , and M ∈ Sn
o , then

Ṽp,q(K , K , K) = V (K) =
1
n

∫

Sn–1
ρn

K (u) du, (1.4)

Ṽp,q(K , K , M) = Ṽq(K , M), (1.5)

Ṽp,q(K , L, K) = Vp(K , L), (1.6)

Ṽ0,q(K , L, M) = Ṽq(K , M), (1.7)

Ṽp,n(K , L, M) = Vp(K , L). (1.8)

In this paper, we further study the (p, q)-mixed volumes and establish some inequalities
including cyclic inequalities, monotonic inequalities, and product inequalities. First, we
give a class of cyclic inequalities as follows.

Theorem 1.1 Suppose p, q, r, s ∈ R satisfy 1 ≤ p < q < r ≤ n. If K , L ∈Kn
o and M ∈ Sn

o , then

Ṽq,s(K , L, M)r–p ≤ Ṽp,s(K , L, M)r–qṼr,s(K , L, M)q–p (1.9)

with equality if and only if K , L, and M are dilates.

Theorem 1.2 Suppose p, q, r, s ∈ R satisfy 1 ≤ p < q < r ≤ n. If K , L ∈Kn
o and M ∈ Sn

o , then

Ṽs,q(K , L, M)r–p ≤ Ṽs,p(K , L, M)r–qṼs,r(K , L, M)q–p (1.10)

with equality if and only if K , L, and M are dilates.

Then we obtain a type of monotonic inequalities as follows.
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Theorem 1.3 Suppose p, q ∈R satisfy 1 ≤ p < q < n. If K , L ∈Kn
o and M ∈ Sn

o , then

[
Ṽn–p,p(K , L, M)

V (K)

] 1
n–p

≥
[

Ṽn–q,q(K , L, M)
V (K)

] 1
n–q

(1.11)

with equality if and only if K and M are dilates.

Theorem 1.4 Suppose p, q ∈R satisfy 1 ≤ p < q < n. If K , L ∈Kn
o and M ∈ Sn

o , then

[
Ṽp,p(K , L, M)

V (M)

] 1
p

≤
[

Ṽq,q(K , L, M)
V (M)

] 1
q

(1.12)

with equality if and only if K and M are dilates.

Finally, we set up a type of product inequalities as follows.

Theorem 1.5 Suppose p > 0, q ∈R. If K , L ∈Kn
o and M ∈ Sn

o , then

Ṽp,q(K , L, M)Ṽp,q
(
K , L∗, M

) ≥ Ṽp,q(K , B, M)2 (1.13)

with equality if and only if L is a ball centered at the origin.

Theorem 1.6 Suppose p, q ∈R and q > n. If K , L, M ∈Kn
o , then

Ṽp,q(K , L, M)Ṽp,q
(
K , L, M∗) ≥ Ṽp,q(K , L, B)2 (1.14)

with equality if and only if M is a ball centered at the origin.

The proofs of Theorems 1.1–1.6 will be completed in the next section.

2 Proofs of theorems
In this part, we give the proofs of Theorems 1.1–1.6.

Proof of Theorem 1.1 For p, q, r, s ∈R, K , L ∈Kn
o , and M ∈ Sn

o . Since 1 ≤ p < q < r ≤ n, then
r–p
r–q > 1. From (1.3) and Hölder’s integral inequality, we get that for u ∈ Sn–1

Ṽp,s(K , L, M)
r–q
r–p Ṽr,s(K , L, M)

q–p
r–p

=
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρs

K (u)ρn–s
M (u) du

] r–q
r–p

·
[

1
n

∫

Sn–1

(
hL

hK

)r(
αK (u)

)
ρs

K (u)ρn–s
M (u) du

] q–p
r–p

=
[

1
n

∫

Sn–1

((
hL

hK

) p(r–q)
r–p (

αK (u)
)
ρ

s(r–q)
r–p

K (u)ρ
(n–s)(r–q)

r–p
M (u)

) r–p
r–q

du
] r–q

r–p

·
[

1
n

∫

Sn–1

((
hL

hK

) r(q–p)
r–p (

αK (u)
)
ρ

s(q–p)
r–p

K (u)ρ
(n–s)(q–p)

r–p
M (u)

) r–p
q–p

du
] q–p

r–p
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≥ 1
n

∫

Sn–1

(
hL

hK

)q(
αK (u)

)
ρs

K (u)ρn–s
M (u) du

= Ṽq,s(K , L, M),

i.e.,

Ṽq,s(K , L, M)r–p ≤ Ṽp,s(K , L, M)r–qṼr,s(K , L, M)q–p. (2.1)

This yields (1.9). According to the equality condition of Hölder’s integral inequality, we
see that equality holds in (2.1) if and only if K , L, and M are dilates. �

In (2.1), if M = K or s = n, by (1.6) or (1.8), we can get the following result (see [23]).

Corollary 2.1 Suppose that p, q, r ∈ R satisfy 1 ≤ p < q < r ≤ n. If K , L ∈Kn
o , then

Vq(K , L)r–p ≤ Vp(K , L)r–qVr(K , L)q–p

with equality if and only if K and L are dilates.

Proof of Theorem 1.2 For p, q, r, s ∈R, K , L ∈Kn
o , and M ∈ Sn

o . Since 1 ≤ p < q < r ≤ n, then
r–p
r–q > 1. From (1.3) and Hölder’s integral inequality, we get that for u ∈ Sn–1

Ṽs,p(K , L, M)
r–q
r–p Ṽs,r(K , L, M)

q–p
r–p

=
[

1
n

∫

Sn–1

(
hL

hK

)s(
αK (u)

)
ρ

p
K (u)ρn–p

M (u) du
] r–q

r–p

·
[

1
n

∫

Sn–1

(
hL

hK

)s(
αK (u)

)
ρr

K (u)ρn–r
M (u) du

] q–p
r–p

=
[

1
n

∫

Sn–1

((
hL

hK

) s(r–q)
r–p (

αK (u)
)
ρ

p(r–q)
r–p

K (u)ρ
(n–p)(r–q)

r–p
M (u)

) r–p
r–q

du
] r–q

r–p

·
[

1
n

∫

Sn–1

((
hL

hK

) s(q–p)
r–p (

αK (u)
)
ρ

r(q–p)
r–p

K (u)ρ
(n–r)(q–p)

r–p
M (u)

) r–p
q–p

du
] q–p

r–p

≥ 1
n

∫

Sn–1

(
hL

hK

)s(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du

= Ṽs,q(K , L, M).

Thus, we get

Ṽs,q(K , L, M)r–p ≤ Ṽs,p(K , L, M)r–qṼs,r(K , L, M)q–p. (2.2)

This yields (1.10). According to the equality condition of Hölder’s integral inequality, we
see that equality holds in (2.2) if and only if K , L, and M are dilates. �

Combined with (1.5) and (1.7), taking L = K or s = 0 in (2.2), we obtain the following
corollary.
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Corollary 2.2 Suppose p, q, r ∈R satisfy 1 ≤ p < q < r ≤ n. If K ∈Kn
o and M ∈ Sn

o , then

Ṽq(K , M)r–p ≤ Ṽp(K , M)r–qṼr(K , M)q–p

with equality if and only if K and M are dilates.

Proof of Theorem 1.3 For p, q ∈ R, K , L ∈ Kn
o , and M ∈ Sn

o . Since 1 ≤ p < q, then n–q
n–p < 1.

From (1.3), (1.4), and Hölder’s integral inequality, we obtain that for u ∈ Sn–1

Ṽn–q,q(K , L, M)
n–p
n–q V (K)

p–q
n–q

=
[

1
n

∫

Sn–1

(
hL

hK

)n–q(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du
] n–p

n–q
·
[

1
n

∫

Sn–1
ρn

K (u) du
] p–q

n–q

=
[

1
n

∫

Sn–1

((
hL

hK

)n–p(
αK (u)

)
ρ

q(n–p)
n–q

K (u)ρn–p
M (u)

) n–q
n–p

du
] n–p

n–q

·
[

1
n

∫

Sn–1

(
ρ

n(p–q)
n–q

K (u)
) n–q

p–q du
] p–q

n–q

≤ 1
n

∫

Sn–1

(
hL

hK

)n–p(
αK (u)

)
ρ

p
K (u)ρn–p

M (u) du

= Ṽn–p,p(K , L, M),

i.e.,

[
Ṽn–p,p(K , L, M)

V (K)

] 1
n–p

≥
[

Ṽn–q,q(K , L, M)
V (K)

] 1
n–q

. (2.3)

This gives (1.11). According to the equality condition of Hölder’s integral inequality, we
know that equality holds in (2.3) if and only if K and M are dilates. �

Proof of Theorem 1.4 For p, q ∈ R, K , L ∈ Kn
o , and M ∈ Sn

o . Since 1 ≤ p < q, then q
p > 1.

From (1.3), (1.4), and Hölder’s integral inequality, we obtain that for u ∈ Sn–1

Ṽq,q(K , L, M)
p
q V (M)

q–p
q

=
[

1
n

∫

Sn–1

(
hL

hK

)q(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du
] p

q
·
[

1
n

∫

Sn–1
ρn

M(u) du
] q–p

q

=
[

1
n

∫

Sn–1

((
hL

hK

)p(
αK (u)

)
ρ

p
K (u)ρ

p(n–q)
q

M (u)
) q

p
du

] p
q

·
[

1
n

∫

Sn–1

(
ρ

n(q–p)
q

M (u)
) q

q–p du
] q–p

q

≥ 1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

p
K (u)ρn–p

M (u) du

= Ṽp,p(K , L, M),
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i.e.,
[

Ṽp,p(K , L, M)
V (M)

] 1
p

≤
[

Ṽq,q(K , L, M)
V (M)

] 1
q

. (2.4)

This gives (1.12). According to the equality condition of Hölder’s integral inequality, we
know that equality holds in (2.4) if and only if K and M are dilates. �

We can get the following corollary by (1.5) and (1.7) in (2.4).

Corollary 2.3 Suppose p, q ∈R satisfy 1 ≤ p < q. If K ∈Kn
o and M ∈ Sn

o , then

[
Ṽp(K , M)

V (M)

] 1
p

≤
[

Ṽq(K , M)
V (M)

] 1
q

with equality if and only if K and M are dilates.

Proof of Theorem 1.5 For p > 0, q ∈ R, K , L ∈ Kn
o , and M ∈ Sn

o . From the definitions of
support function and radial function, we know

ρL∗ (u) ≤ hL∗ (u) (2.5)

with equality if and only if L is a ball centered at the origin.
From (1.3), (1.1), (2.5), and Cauchy’s integral inequality, and noticing that h(B, ·) = 1, we

have

Ṽp,q(K , L, M)
1
2 Ṽp,q

(
K , L∗, M

) 1
2

=
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du
] 1

2

·
[

1
n

∫

Sn–1

(
hL∗

hK

)p(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du
] 1

2

=
[

1
n

∫

Sn–1
ρ

–p
L∗

(
αK (u)

)
h–p

K
(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du
] 1

2

·
[

1
n

∫

Sn–1
hp

L∗
(
αK (u)

)
h–p

K
(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du
] 1

2

≥ 1
n

∫

Sn–1

(
hL∗

ρL∗

) p
2 (

αK (u)
)
h–p

K
(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du

≥ 1
n

∫

Sn–1
h–p

K
(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du

=
1
n

∫

Sn–1

(
hB

hK

)p(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du

= Ṽp,q(K , B, M),

i.e.,

Ṽp,q(K , L, M)Ṽp,q
(
K , L∗, M

) ≥ Ṽp,q(K , B, M)2. (2.6)

Obviously, equality holds in (2.6) if and only if L is a ball centered at the origin. �
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If we take M = K or q = n in (2.6) and associate with (1.6) and (1.8), the following corol-
lary can be obtained (see [37]).

Corollary 2.4 Suppose p > 0. If K , L ∈Kn
o , then

Vp(K , L)Vp
(
K , L∗) ≥ Vp(K , B)2

with equality if and only if L is a ball centered at the origin.

Proof of Theorem 1.6 For p, q ∈R and q > n, K , L, M ∈Kn
o . From the definitions of support

function and radial function, we know

ρM(u) ≤ hM(u) (2.7)

with equality if and only if M is a ball centered at the origin.
From (1.3), (1.1), (2.7), and Cauchy’s integral inequality, and together with ρ(B, ·) = 1, we

obtain

Ṽp,q(K , L, M)Ṽp,q
(
K , L, M∗)

=
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du
]

·
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u)ρn–q

M∗ (u) du
]

=
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u)ρn–q

M (u) du
]

·
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u)hq–n

M (u) du
]

≥
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u)

(
hM

ρM

) q–n
2

(u) du
]2

≥
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u) du

]2

=
[

1
n

∫

Sn–1

(
hL

hK

)p(
αK (u)

)
ρ

q
K (u)ρn–q

B (u) du
]2

= Ṽp,q(K , L, B)2,

This gives (1.14). Obviously, according to the equality of (2.7), we know that equality holds
in (1.14) if and only if M is a ball centered at the origin. �

By (1.5) and (1.7), taking L = K or p = 0 in Theorem 1.6, we also obtain the following
corollary.

Corollary 2.5 Suppose q ∈R and q > n. If K , M ∈Kn
o , then

Ṽq(K , M)Ṽq
(
K , M∗) ≥ Ṽq(K , B)2

with equality if and only if M is a ball centered at the origin.
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