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1 Introduction
In this paper, we consider the nonparametric regression model

Yi = m(Xi) + Ui, 1 ≤ i ≤ n, n ≥ 1,

where (Xi, Yi) ∈ Rd × R, d ≥ 1, and Ui are random variables satisfying E(Ui|Xi) = 0, 1 ≤ i ≤
n, n ≥ 1. So we have

E(Yi|Xi = x) = m(x), i ≥ 1.

Let K(x) be a kernel function. Define Kh(x) = h–dK(x/h), where h = hn is a sequence of
positive bandwidths tending to zero as n → ∞. Kernel-type estimators of the regression
function are widely used in various situations because of their flexibility and efficiency in
the dependent and independent data. For the independent data, Nadaraya [1] and Watson
[2] gave the most popular nonparametric estimator of the unknown function m(x) named
the Nadaraya–Watson estimator m̂NW(x):

m̂NW(x) =
∑n

i=1 YiKh(x – Xi)
∑n

i=1 Kh(x – Xi)
. (1.1)

Jones et al. [3] considered various versions of kernel-type regression estimators such as the
Nadaraya–Watson estimator (1.1) and the local linear estimator. They also investigated the
internal estimator

m̂n(x) =
1
n

n
∑

i=1

YiKh(x – Xi)
f (Xi)

(1.2)
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for a known density f (·). Here the factor 1
f (Xi)

is internal to the summation, whereas the
estimator m̂NW(x) has the factor 1

̂f (x) = 1
n–1 ∑n

i=1 Kh(x–Xi)
externally to the summation.

The internal estimator was first proposed by Mack and Müller [4]. Jones et al. [3] stud-
ied various kernel-type regression estimators, including the introduced internal estimator
(1.2). Linton and Nielsen [5] introduced an integration method based on direct integra-
tion of initial pilot estimator (1.2). Linton and Jacho-Chávez [6] studied the other internal
estimator

m̃n(x) =
1
n

n
∑

i=1

YiKh(x – Xi)
̂f (Xi)

, (1.3)

where ̂f (Xi) = 1
n
∑n

j=1 Lb(Xi – Xj) and Lb(·) = L(·/b)/bd . Here L(·) is a kernel function, b is
the bandwidth, and the density f (·) is unknown. Under the independent data, Linton and
Jacho-Chávez [6] obtained the asymptotic normality of the internal estimator m̃n(x) in
(1.3). Shen and Xie [7] obtained the complete convergence and uniform complete con-
vergence of internal estimator m̂n(x) in (1.2) under the geometrical α-mixing (or strong
mixing) data. Li et al. [8] weakened the conditions of Shen and Xie [7] and obtained the
convergence rate and uniform convergence rate for the estimator m̂n(x) in probability.

As far as we know, there are no results on asymptotic normality of the internal estimator
m̂n(x). Similarly to Linton and Jacho-Chávez [6], we investigate the asymptotic normality
of the internal estimator m̂n(x) with independent data and ϕ-mixing data, respectively.
Asymptotic normality results are presented in Sect. 3.

Denote Fm
n = σ (Xi, n ≤ i ≤ m) and define the coefficients

ϕ(n) = sup
m≥1

sup
A∈Fm

1 ,B∈F∞
m+n ,P(A) �=0

∣

∣P(B|A) – P(B)
∣

∣.

If ϕ(n) ↓ 0 as n → ∞, then {Xn}n≥1 is said to be a ϕ-mixing sequence.
The concept of ϕ-mixing is introduced by Dobrushin [9], and many properties of ϕ-

mixing are presented in Chap. 4 of Billingsley [10]. If the coefficient of the process is
geometrically decreasing, then the autoregressive moving average (ARMA) process can
construct a geometric ϕ-mixing sequence. Györfi et al. [11, 12] gave more examples and
applications to nonparametric estimation. We can also refer to Fan and Yao [13] and Bosq
and Blanke [14] for the works on nonparametric regression under independent and de-
pendent data.

Regarding notation, for x = (x1, . . . , xd) ∈ Rd , set ‖x‖ = max(|x1|, . . . , |xd|). Throughout
the paper, c, c1, c2, c3, . . . , d, B0, B1 denote some positive constants not depending on n,
which may be different in various places, 
x� denotes the largest integer not exceeding
x, → means to take the limit as n → ∞, and cn ∼ dn means that cn

dn
→ 1, D−→ means

the convergence in distribution, and X D= Y means that random variables X and Y have
the same distribution. A sequence {Xi, i ≥ 1} is said to be second-order stationary if
(X1, X1+k) D= (Xi, Xi+k) for i ≥ 1, k ≥ 1.

2 Some assumptions
In this section, we list some assumptions.
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Assumption 2.1 There exist two positive constants K̄ > 0 and μ > 0 such that

sup
u∈Rd

∣

∣K(u)
∣

∣ ≤ K̄ and
∫

Rd

∣

∣K(u)
∣

∣du = μ. (2.1)

Assumption 2.2 Let Sf denote the compact support of known density f (·) of X1. For x ∈
Sf , the function m(x) is twice differentiable, and there exists a positive constant b such that

∣

∣

∣

∣

∂2m(x)
∂xi ∂xj

∣

∣

∣

∣

≤ b, ∀i, j = 1, 2, . . . , d.

The kernel density function is symmetric and satisfies
∫

Rd
|vi||vj|K(v) dv < ∞, ∀i, j = 1, 2, . . . , d.

Assumption 2.3 We assume the data observed {(Xi, Yi), i ≥ 1} is an independent and
identically distributed stochastic sequence with values in Rd × R . The known density f (·)
of X1 is upon its compact support Sf and such that infx∈Sf f (x) > 0. For 0 < δ ≤ 1, we sup-
pose that

E|Y1|2+δ < ∞ (2.2)

and

sup
x∈Sf

E
(|Y1|2+δ|X1 = x

)

f (x) ≤ B0 < ∞. (2.3)

Assumption 2.3∗ We assume that the data observed {(Xi, Yi), i ≥ 1} is a second-order
stationary stochastic sequence with values in Rd × R . The sequence {(Xi, Yi), i ≥ 1} is also
assumed to be ϕ-mixing with

∑∞
n=1 ϕ1/2(n) < ∞. The known density f (·) of X1 is upon its

compact support Sf and such that infx∈Sf f (x) > 0. Let (2.2) and (2.3) be fulfilled. Moreover,
for all j ≥ 1, we have

sup
x1∈Sf ,xj+1∈Sf

E
(|Y1Yj+1||X1 = x1, Xj+1 = xj+1

)

fj(x1, xj+1) ≤ B1 < ∞, (2.4)

where fj(x1, xj+1) denotes the joint density of (X1, Xj+1).

Remark 2.1 Assumption 2.1 is a usual condition on the kernel function, and Assump-
tion 2.2 is used to get the convergence rate of |Em̂n(x) – m(x)|. Assumptions 2.3 and 2.3∗

are the conditions of independent and dependent data {(Xi, Yi), i ≥ 1}, respectively. Sim-
ilarly to Hansen [15], conditions (2.2) and (2.3) are used to control the tail behavior of
the conditional expectation E(|Y1|2+δ|X1 = x), and (2.4) is used to estimate the covariance
Cov(Y1, Yj+1).

3 Asymptotic normality of internal estimator m̂n(x) with independent and
dependent data

In this section, we show some results on asymptotic normality of the internal estimator of
a nonparametric regression model with independent and dependent data. Theorem 3.1 is
for independent data, and Theorem 3.2 is for ϕ-mixing data.
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Theorem 3.1 Let Assumptions 2.1–2.3 hold, and let lim‖u‖→∞ ‖u‖dK(u) = 0. Suppose that
E(Y 2

1 |X1=x)
f (x) is positive and continuous at point x ∈ Sf . If 0 < hd → 0, nhd → ∞, and nhd+4 → 0

as n → ∞, then

√
nhd

[

m̂n(x) – m(x)
] D−−→ N

(

0,σ 2(x)
)

, (3.1)

where σ 2(x) = E(Y 2
1 |X1=x)
f (x)

∫

Rd K2(u) du.

Theorem 3.2 Let the conditions of Theorem 3.1 be fulfilled, where Assumption 2.3 is re-
placed by Assumption 2.3∗. Then (3.1) holds.

Remark 3.1 The choice of a positive bandwidth h is easy to design. For example, with d ≥
1, if h = n–β and β ∈ ( 1

d+4 , 1
d ), then the conditions 0 < hd → 0, nhd → ∞, and nhd+4 → 0

are satisfied as n → ∞.

4 Conclusion
Linton and Jacho-Chávez [6] obtained some asymptotic normality results of the inter-
nal estimator m̃n(x) under independent data. Comparing Theorem 1 and Corollary 1 of
Linton and Jacho-Chávez [6], our asymptotic normality results on the internal estimator
m̂n(x) in Theorems 3.1 and 3.2 are relatively simple. Meanwhile, we use the method of
Bernstein’s big-block and small-block and the inequalities of ϕ-mixing random variables
to investigate the asymptotic normality of the internal estimator m̂n(x) for m(x), and we
also obtain the asymptotic normality result of (3.1). Obviously, α-mixing is weaker than
ϕ-mixing, but some moment inequalities of α-mixing are more complicated than those of
ϕ-mixing [16, 17]. For simplicity, we study the asymptotic normality of internal estimator
m̂n(x) under ϕ-mixing and obtain the asymptotic normality result of Theorem 3.2.

5 Some lemmas and the proofs of main results
Lemma 5.1 (Liptser and Shiryayev [18], Theorem 9 in Sect. 5) Let (ξnk ,H n

k )k≥1 be mar-
tingale differences (i.e. H n

0 = {∅,	}, H n
k ⊂ H n

k+1, ξnk is an H n
k -measurable random vari-

able, E(ξnk|H n
k–1) = 0 a.s., for all k ≥ 1 and n ≥ 1) with Eξ 2

nk < ∞ for all k ≥ 1 and n ≥ 1.
Let (γn)n≥1 be a sequence of Markov times with respect to (H n

k )k≥0, taking values in the set
{0, 1, 2, . . .}. If

γn
∑

k=1

E
(

ξ 2
nkI

(|ξnk| > δ
)|H n

k–1
) P−−→ 0, ∀δ ∈ (0, 1],

γn
∑

k=1

E
(

ξ 2
nk|H n

k–1
) P−−→ σ 2,

then
γn

∑

k=1

ξnk
D−−→ N

(

0,σ 2).

Lemma 5.2 (Billingsley [10], Lemma 1) If ξ is measurable with respect to M k
–∞ and η is

measurable with respect to M ∞
k+n (n ≥ 0), then

E|ξ |r < ∞, E|η|s < ∞, r, s > 1, r–1 + s–1 = 1,
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implies

∣

∣E(ξη) – E(ξ )E(η)
∣

∣ ≤ 2ϕ
1
r (n)

(

E|ξ |r) 1
r
(

E|η|s) 1
s .

Lemma 5.3 (Yang [16], Lemma 2) Let p ≥ 2, and let {Xn}n≥1 be a ϕ-mixing sequence with
∑∞

n=1 ϕ1/2(n) < ∞. If EXn = 0 and E|Xn|p < ∞ for all n ≥ 1, then

E

∣

∣

∣

∣

∣

n
∑

i=1

Xi

∣

∣

∣

∣

∣

p

≤ C

( n
∑

i=1

E|Xi|p +

( n
∑

i=1

EX2
i

)p/2)

,

where C is a positive constant depending only on ϕ(·).

Lemma 5.4 (Fan and Yao [13], Proposition 2.6) Let F
j
i and α(·) be the same as in (2.57) of

Fan and Yao [13]. Let ξ1, ξ2, . . . , ξk be complex-valued random variables measurable with
respect to the σ -algebras F

j1
i1 , . . . ,F jk

ik , respectively. Suppose il+1 – jl ≥ n for l = 1, . . . , k – 1
and jl ≥ il and P(|ξl| ≤ 1) = 1 for l = 1, 2, . . . , k. Then

∣

∣E(ξ1 · · · ξk) – E(ξ1) · · ·E(ξk)
∣

∣ ≤ 16(k – 1)α(n).

Proof of Theorem 3.1 It is easy to see that

√
nhd

(

m̂n(x) – m(x)
)

=
√

nhd
([

m̂n(x) – Em̂n(x)
]

+
[

Em̂n(x) – m(x)
])

. (5.1)

Combining Assumption 2.2 with the proof of Lemma 2 of Shen and Xie [7], we obtain that

∣

∣Em̂n(x) – m(x)
∣

∣ = O
(

h2), x ∈ Sf .

Then, it follows from nhd+4 → 0 that

√
nhd

[

Em̂n(x) – m(x)
]

= O
(
√

nhd+4
) → 0, x ∈ Sf . (5.2)

For x ∈ Sf , let Zi :=
√

hd YiKh(x–Xi)
f (Xi)

, 1 ≤ i ≤ n. Denote

√
nhd

[

m̂n(x) – Em̂n(x)
]

=
1√
n

n
∑

i=1

√
hd

[

YiKh(x – Xi)
f (Xi)

– E
YiKh(x – Xi)

f (Xi)

]

=
1√
n

n
∑

i=1

(Zi – EZi). (5.3)

To prove (3.1), we apply (5.1)–(5.3) and have to show that

√
nhd

[

m̂n(x) – Em̂n(x)
]

=
1√
n

n
∑

i=1

(Zi – EZi)
D−−→ N

(

0,σ 2(x)
)

, (5.4)

where σ 2(x) is defined by (3.1).
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Combining the independent and identically distributed stochastic sequence of {(Xi, Yi),
i ≥ 1} with Lemma 5.1, to prove (5.4), we have to show that

1
n

n
∑

i=1

E(Zi – EZi)2 = Var(Z1) → σ 2(x) (5.5)

and, for all λ ∈ (0, 1],

1
n

n
∑

i=1

E
(

(Zi – EZi)2I
( |Zi – EZi|√

n
> λ

))

→ 0. (5.6)

Obviously, for any 1 ≤ r ≤ 2 + δ (0 < δ ≤ 1), by (2.1) and (2.3) we have

hd(r–1)E
∣

∣

∣

∣

Kh(x – X1)Y1

f (X1)

∣

∣

∣

∣

r

= hd(r–1)E
( |Kh(x – X1)|r

f r(X1)
E
(|Y1|r|X1

)

)

=
∫

Sf

∣

∣

∣

∣

K
(

x – u
h

)∣

∣

∣

∣

r

E
(|Y1|r|X1 = u

) 1
hd

f (u)
f r(u)

du

≤
∫

Sf

∣

∣

∣

∣

K
(

x – u
h

)∣

∣

∣

∣

r
(

E
(|Y1|2+δ|X1 = u

)

f (u)
) r

2+δ
1

hd
1

f
(3+δ)r

2+δ
–1(u)

du

≤ (B0)
r

2+δ K̄ r–1μ

(infx∈Sf f (x))
(3+δ)r

2+δ
–1

:= μ̄(r) < ∞. (5.7)

By (5.7) with r = 1 this yields

(EZ1)2 = hd
(

E
Kh(x – X1)Y1

f (X1)

)2

≤ chd → 0. (5.8)

Define

g(x) =

⎧

⎨

⎩

E(Y 2
1 |X1=x)
f (x) if x ∈ Sf ,

0 otherwise.

In view of condition (2.3), we have

∫

Rd
g(x) dx =

∫

Sf

E(Y 2
1 |X1 = x)
f (x)

dx =
∫

Sf

E(Y 2
1 |X1 = x)f

2
2+δ (x)

f
4+δ
2+δ (x)

dx

≤
∫

Sf

(E(|Y1|2+δ|X1 = x))
2

2+δ f
2

2+δ (x)

f
4+δ
2+δ (x)

dx

≤ B
2

2+δ
0

(infx∈Sf f (x))
6+2δ
2+δ

∫

Rd
f (x) dx =

B
2

2+δ
0

(infx∈Sf f (x))
6+2δ
2+δ

< ∞.
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So we have g(x) ∈ L1. Since that E(Y 2
1 |X1=x)
f (x) is positive and continuous at a point x ∈ Sf and

lim‖u‖→∞ ‖u‖dK(u) = 0, we obtain by Bochner lemma [14] that

E
(

Z2
1
)

= hdE
(

Kh(x – X1)Y1

f (X1)

)2

=
∫

Sf

K2
(

x – u
h

)

E
(

Y 2
1 |X1 = u

) 1
hd

1
f (u)

du

=
∫

Rd
K2

(

x – u
h

)

1
hd g(u) du → E(Y 2

1 |X1 = x)
f (x)

∫

Rd
K2(u) du. (5.9)

Then, it follows from (5.8) and (5.9) that, for x ∈ Sf ,

Var(Z1) → E(Y 2
1 |X1 = x)
f (x)

∫

Rd
K2(u) du = σ 2(x), (5.10)

which implies (5.6). Meanwhile, for some δ ∈ (0, 1] and any λ ∈ (0, 1], by Cr inequality and
(5.7) we get that

1
n

n
∑

i=1

E
(

(Zi – EZi)2I
( |Zi – EZi|√

n
> λ

))

= E
(

(Z1 – EZ1)2I
( |Z1 – EZ1|√

n
> λ

))

≤ 1
n δ

2 λδ
E|Z1 – EZ1|2+δ ≤ c1

n δ
2 λδ

E|Z1|2+δ

≤ c2

(nhd) δ
2

→ 0, (5.11)

since nhd → ∞. Thus, (5.6) follows from (5.11). Consequently, the proof of the theorem
is completed. �

Proof of Theorem 3.2 We use the same notation as in the proof of Theorem 3.1. Under the
conditions of Theorem 3.2, by (5.1), (5.2), and (5.3), to prove (3.1), we need to show that

√
nhd

[

m̂n(x) – Em̂n(x)
]

=
1√
n

n
∑

i=1

(Zi – EZi)
D−−→ N

(

0,σ 2(x)
)

, (5.12)

where σ 2(x) is defined by (3.1). By the second-order stationarity, {(Xi, Yi), i ≥ 1} are iden-
tically distributed. Then, for 1 ≤ i ≤ n, we have by (5.8) and (5.9) that

Var(Zi – EZi) = Var(Z1) → E(Y 2
1 |X1 = x)
f (x)

∫

Rd
K2(u) du = σ 2(x). (5.13)

For j ≥ 1, in view of (2.4), we have

E
∣

∣

∣

∣

Kh(x – X1)Kh(x – Xj+1)Y1Yj+1

f (X1)f (Xj+1)

∣

∣

∣

∣

= E
( |Kh(x – X1)Kh(x – Xj+1)|

f (X1)f (Xj+1)
E
(|Y1Yj+1||X1, Xj+1

)

)

=
∫

Sf

∫

Sf

∣

∣

∣

∣

K
(

x – u1

h

)

K
(

x – uj+1

h

)∣

∣

∣

∣

E
(|Y1Yj+1||X1 = u1, Xj = uj+1

)

× 1
h2d

1
f (u1)f (uj+1)

fj(u1, uj+1) du1 duj+1
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≤ B1

(infx∈Sf f (x))2

∫

Rd

∫

Rd

∣

∣

∣

∣

K
(

x – u1

h

)

K
(

x – uj+1

h

)∣

∣

∣

∣

1
h2d du1 duj+1

≤ B1μ
2

(infx∈Sf f (x))2 < ∞. (5.14)

So it follows from (5.7) and (5.14) that

∣

∣Cov(Z1, Zj)
∣

∣ ≤ E|Z1Zj| +
(

E|Z1|
)2 ≤ c1hd, j > 1. (5.15)

Obviously, by the stationarity we establish that

1
n

Var

( n
∑

i=1

(Zi – EZi)

)

=
1
n

Var

( n
∑

i=1

Zi

)

= Var(Z1) +
2
n

∑

1≤i<j≤n

Cov(Zi, Zj)

= Var(Z1) +
2
n

{[

∑

1≤i<j≤n
1≤j–i≤rn

+
∑

1≤i<j≤n
j–i>rn

]

Cov(Zi, Zj)
}

. (5.16)

For hd , we can choose rn satisfying that rn → ∞ and hdrn → 0 as n → ∞. So, by (5.15),

2
n

∑

1≤i<j≤n
1≤j–i≤rn

∣

∣Cov(Zi, Zj)
∣

∣ ≤ chdrn → 0. (5.17)

By Lemma 5.2 with s = r = 2, the condition
∑∞

n=1 ϕ1/2(n) < ∞, and (5.9), we can show that

2
n

∑

1≤i<j≤n
j–i>rn

∣

∣Cov(Zi, Zj)
∣

∣ ≤ c1

n
∑

1≤i<j≤n
j–i>rn

ϕ1/2(j – i) ≤ c2
∑

k>rn

ϕ1/2(k) → 0. (5.18)

Therefore, by (5.13), (5.16), (5.17), and (5.18), we get that

1
n

Var

( n
∑

i=1

Zi

)

= σ 2(x)
(

1 + o(1)
)

.

Next, we employ Bernstein’s big-block and small-block procedure (see Fan and Yao [13]
and Masry [19]). Partition the set {1, 2, . . . , n} into 2kn + 1 subsets with large block of size
μ = μn and small block of size ν = νn and set

k = kn =
⌊

n
μn + νn

⌋

. (5.19)

Define μ = μn = 

√

n
hd � and ν = νn = 
√nhd�. So we have by hd → 0 and nhd → ∞ that

μn → ∞, νn → ∞,
μn

n
→ 0,

νn

n
→ 0,

νn

μn
→ 0, kn = O

(
√

nhd
)

.
(5.20)
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Define ηj, ξj, and ζj as follows:

ηj :=
j(μ+ν)+μ

∑

i=j(μ+ν)+1

(Zi – EZi), 0 ≤ j ≤ k – 1, (5.21)

ξj :=
(j+1)(μ+ν)

∑

i=j(μ+ν)+μ+1

(Zi – EZi), 0 ≤ j ≤ k – 1, (5.22)

ζk :=
n

∑

i=k(μ+ν)+1

(Zi – EZi). (5.23)

In view of

Sn :=
n

∑

i=1

(Zi – EZi) =
k–1
∑

j=0

ηj +
k–1
∑

j=0

ξj + ζk := S′
n + S′′

n + S′′′
n , (5.24)

we have to show that

1
n

E
(

S′′
n
)2 → 0,

1
n

E
(

S′′′
n
)2 → 0, (5.25)

∣

∣

∣

∣

∣

E
(

exp
(

itn–1/2S′
n
))

–
k–1
∏

j=0

E
(

exp
(

itn–1/2ηj
))

∣

∣

∣

∣

∣

→ 0, (5.26)

1
n

k–1
∑

j=0

E
(

η2
j
) → σ 2(x), (5.27)

1
n

k–1
∑

j=0

E
(

η2
j I

(|ηj| > εσ (x)
√

n
)) → 0, ∀ε > 0. (5.28)

Relation (5.25) implies that S′′
n√
n and S′′′

n√
n are asymptotically negligible, (5.26) shows that the

summands {ηj} in S′
n are asymptotically independent, and (5.27)–(5.28) are the standard

Lindeberg–Feller conditions for the asymptotic normality of S′
n under independence.

First, we prove (5.25). By (5.22) and (5.24) we have

E
(

S′′
n
)2 = Var

( k–1
∑

j=0

ξj

)

=
k–1
∑

j=0

Var(ξj) + 2
∑

0≤i<j≤k–1

Cov(ξi, ξj) := F1 + F2. (5.29)

By the stationarity and (5.10), similarly to the proof of (5.17) and (5.18), for 0 ≤ j ≤ k – 1,
we have

Var(ξj) = νn Var(Z1) + 2
∑

1≤i<j≤νn

Cov(Zi, Zj) = νnσ
2(x)

(

1 + o(1)
)

. (5.30)

Thus it follows from (5.19) and (5.20) that

F1 = knνnσ
2(x)

(

1 + o(1)
) ∼ nνn

μn + νn
∼ nνn

μn
= o(n). (5.31)
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We consider the term F2 in (5.29). With λj = j(μn + νn) + μn,

F2 = 2
∑

0≤i<j≤k–1

νn
∑

l1=1

νn
∑

l2=1

Cov(Zλi+l1 , Zλj+l2 ),

but since i �= j, |λi – λj + l1 – l2| ≥ μn for 0 ≤ i < j ≤ k – 1, 1 ≤ l1 ≤ νn, and 1 ≤ l2 ≤ νn,
similarly to the proof of (5.18), it follows that

|F2| ≤ 2
∑

1≤i<j≤n
j–i≥μn

∣

∣Cov(Zi, Zj)
∣

∣ = o(n). (5.32)

Hence by (5.29), (5.31), and (5.32) we have

1
n

E
(

S′′
n
)2 → 0.

By (5.13), (5.20), and (5.23), similarly to the proofs of (5.17) and (5.18), we can find that

1
n

E
(

S′′′
n
)2 ≤ 1

n
(

n – kn(μn + νn)
)

Var(Z1) +
2
n

∑

1≤i<j≤n–kn(μn+νn)

∣

∣Cov(Zi, Zj)
∣

∣

≤ C
μn + νn

n
σ 2(x) + o(1) → 0.

Thus

1√
n

Sn =
1√
n

(

S′
n + S′′

n + S′′′
n
)

=
1√
n

S′
n + op(1). (5.33)

Second, it is easy to see that ϕ1/2(n) = o( 1
n ) by ϕ(n) ↓ 0 and

∑∞
n=1 ϕ1/2(n) < ∞. Note that

ηa is M
ja
ia -measurable with ia = a(μ + ν) + 1 and ja = a(μ + ν) + μ. Since ϕ-mixing random

variables are strong mixing random variables and α(n) ≤ ϕ(n), letting Vj = exp(itn–1/2ηj),
by Lemma 5.4 we have

∣

∣

∣

∣

∣

E
(

exp
(

itn–1/2S′
n
))

–
k–1
∏

j=0

E
(

exp
(

itn–1/2ηj
))

∣

∣

∣

∣

∣

≤ cknϕ(νn + 1) ≤ c
n

μn + νn

1
ν2

n
≤ c√

nhd
→ 0

by (5.19), (5.20), and the conditions hn → 0 and nhd → ∞ as n → ∞.
Third, we show (5.27), where ηj is defined in (5.21). By the stationarity and (5.30) with

μn replacing νn, we have

E
(

η2
j
)

= Var(ηj) = Var(η0) = μnσ
2(x)

(

1 + o(1)
)

, 0 ≤ j ≤ k – 1, (5.34)

so that

1
n

kn–1
∑

j=0

E
(

η2
j
)

=
knμn

n
σ 2(x)

(

1 + o(1)
) → σ 2(x),

since knμn/n → 1.
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Fourth, it is time to establish (5.28). Obviously, by (5.7) we obtain that

EZ2
i = EZ2

1 ≤ c1 and E|Zi|2+δ = E|Z1|2+δ ≤ c2
(

hd)– δ
2 , 1 ≤ i ≤ n.

We can see that
1

hd
μn

≤ c
hd

√ n
hd

= c

(nhd)
1
2

→ 0, since nhd → ∞ as n → ∞. Therefore, by

Lemma 5.3 with
∑∞

n=1 ϕ1/2(n) < ∞ we have that

E

∣

∣

∣

∣

∣

μn
∑

i=1

(Zi – EZi)

∣

∣

∣

∣

∣

2+δ

≤ c1

(

μn
∑

i=1

E|Zi|2+δ +

(

μn
∑

i=1

EZ2
i

) 2+δ
2

)

≤ c2

(

μn
1

(hd) δ
2

+ μ
1+ δ

2
n

)

≤ c3μ
1+ δ

2
n . (5.35)

Then, for all ε > 0, by (5.34) and (5.35) it is easy to see that

E
(

η2
0I

(|η0| ≥ εσ (x)n1/2)) ≤ 1
(εσ (x)n1/2)δ

E|η0|2+δI
(|η0| ≥ εσ (x)n1/2)

≤ 1
(εσ (x)n1/2)δ

E|η0|2+δ ≤ c1
μ

1+ δ
2

n

n δ
2

.

Similarly, for 0 ≤ j ≤ k – 1, we get that

E
(

η2
j I

(|ηj| ≥ εσ (x)n1/2)) ≤ c2
μ

1+ δ
2

n

n δ
2

.

Therefore, since 0 < δ ≤ 1 and nhd → ∞, we obtain that, for all ε > 0,

1
n

k–1
∑

j=0

E
(

η2
j I

(|ηj| ≥ εσ (x)n1/2)) ≤ ckμ
1+ δ

2
n

n1+ δ
2

≤ cμ1+ δ
2

n
n

μn+νn

n1+ δ
2

≤ cμ
δ
2
n

n δ
2

= c
(

√

n
hd

n

) δ
2

=
c

(nhd) δ
4

→ 0.

Therefore, (5.26), (5.27), and (5.28) hold for S′
n, so that

1√
n

S′
n

D−−→ N
(

0,σ 2(x)
)

. (5.36)

Consequently, (5.12) follows from (5.33) and (5.36). Finally, by (5.1), (5.2), and (5.12) we
obtain (3.1). The proof of theorem is completed. �
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