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Abstract
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1 Introduction
Steffensen [12] proved the following inequality: if f , h : [α,β] → R, 0 ≤ h ≤ 1, and f is
decreasing, then

∫ β

α

f (t)h(t) dt ≤
∫ α+γ

α

f (t) dt, where γ =
∫ β

α

h(t) dt. (1)

Since then, a generalization and an improvement of Steffensen’s inequality has been a
topic of interest of several mathematicians, for example see [10] and the references therein.
One generalization of Steffensen’s inequality is given by Pečarić [8].

Theorem 1 Consider any non-decreasing real valued functions g on [a, b] and f on inter-
val I (where I is such that it contains all a, b, g(a) and g(b)) such that g is differentiable.
Consider the conditions (i) g(x) ≤ x and (ii) g(x) ≥ x.

(a) If (i) holds, then

∫ b

a
f (t)g ′(t) dt ≤

∫ g(b)

g(a)
f (t) dt. (2)

(b) If (ii) holds, then inequality in part (a) is reversed.

Remark 1 In Theorem 1 one may take g as an absolutely continuous function instead of
differentiable function because if f is non-decreasing then the function F(x) =

∫ x
a f (t) dt is
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well defined and F ′ = f holds almost everywhere on I . Then if g is any absolutely contin-
uous and non-decreasing function then the substitution z = g(t) in the integral is justified
(see [5, Corollary 20.5]), so

F
(
g(b)

)
– F

(
g(a)

)
=

∫ g(b)

g(a)
f (z) dz =

∫ b

a
f
(
g(t)

)
g(1)(t) dt ≤

∫ b

a
f (t)g(1)(t) dt, (3)

where the last inequality holds when g satisfies condition (i).

Recently, Fahad, Pečarić and Praljak proved a generalization [4] of (1) by improving the
results given in [8] and [11]. The following is a consequence of a result given in [4].

Corollary 1 Consider any non-decreasing, differentiable and real valued functions g and
f on [a, b] and interval I , respectively, (where I is such that it contains all a, b, g(a) and
g(b)). If f is convex, then:

(a) If g satisfies condition (i) given in Theorem 1, then

f
(
g(b)

) ≤ f
(
g(a)

)
+

∫ b

a
f ′(t)g ′(t) dt. (4)

(b) If g satisfies condition (ii) given in Theorem 1, then the reverse of the above inequality
holds.

The above corollary gives (3) and consequently Steffensen’s inequality. Now, we present
some other consequences from results in [4].

Corollary 2 Let f : [0, b] → R be a differentiable convex function with f (0) = 0 and let
h : [0, b] → [0, +∞) be another function.

(a) If
∫ x

0 h(t) dt ≤ x for every x ∈ [0, b], then

f
(∫ b

0
h(t) dt

)
≤

∫ b

0
f ′(t)h(t) dt. (5)

(b) If x ≤ ∫ x
0 h(t) dt for every x ∈ [0, b], then the reverse of the above inequality holds.

Corollary 3 Let f and h be as in Corollary 2 and let k : [0, b] → [0, +∞) and denote K (t) =∫ b
t k(x) dx.
(a) If

∫ x
0 h(t) dt ≤ x for every x ∈ [0, b], then

∫ b

0
k(x)f

(∫ x

0
h(t) dt

)
dx ≤

∫ b

0
K(t)f ′(t)h(t) dt. (6)

(b) If x ≤ ∫ x
0 h(t) dt for every x ∈ [0, b], then the reverse of the above inequality holds.

The goal of this paper is to obtain generalized Steffensen’s inequality by proving general-
ization of (4). Moreover, inequalities (5) and (6) can be used to obtain classical Hardy-type
inequalities; see [4]. Keeping in view the importance of (5) and (6) we obtain their gener-
alizations as well. In our construction, we use Green’s function, Montogomery’s identity
and Lidstone interpolation. The following lemma is given in [7].
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Lemma 1 For a function f ∈ C2([a, b]), see [13], we have

f (x) =
b – x
b – a

f (a) +
x – a
b – a

f (b) +
∫ b

a
G∗,1(x, s)f ′′(s) ds, (7)

f (x) = f (a) + (x – a)f ′(b) +
∫ b

a
G∗,2(x, s)f ′′(s) ds, (8)

f (x) = f (b) + (b – x)f ′(a) +
∫ b

a
G∗,3(x, s)f ′′(s) ds, (9)

f (x) = f (b) – (b – a)f ′(b) + (x – a)f ′(a) +
∫ b

a
G∗,4(x, s)f ′′(s) ds, (10)

f (x) = f (a) + (b – a)f ′(a) – (b – x)f ′(b) +
∫ b

a
G∗,5(x, s)f ′′(s) ds, (11)

where

G∗,1(x, s) =

⎧⎨
⎩

(x–b)(s–a)
b–a if a ≤ s ≤ x,

(s–b)(x–a)
b–a if x < s ≤ b,

(12)

G∗,2(x, s) =

⎧⎨
⎩

a – s if a ≤ s ≤ x,

a – x if x < s ≤ b,
(13)

G∗,3(x, s) =

⎧⎨
⎩

x – b if a ≤ s ≤ x,

s – b if x < s ≤ b,
(14)

G∗,4(x, s) =

⎧⎨
⎩

x – a if a ≤ s ≤ x,

s – a if x < s ≤ b,
(15)

and

G∗,5(x, s) =

⎧⎨
⎩

b – s if a ≤ s ≤ x,

b – x if x < s ≤ b.
(16)

Consider the following functions on [a, b] × [a, b]:

p1(x, s) =

⎧⎨
⎩

s–a
b–a if a ≤ s ≤ x,
s–b
b–a if x < s ≤ b,

(17)

p2(x, s) =

⎧⎨
⎩

0 if a ≤ s ≤ x,

–1 if x < s ≤ b,
(18)

p3(x, s) =

⎧⎨
⎩

1 if a ≤ s ≤ x,

0 if x < s ≤ b.
(19)
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Clearly,

pi(x, s) = G∗,ix(x, s) for all i = 1, 2, 3,

p2(x, s) = G∗,5x(x, s) and p3(x, s) = G∗,4x(x, s).
(20)

Throughout the calculations in the main results, we will use pi(x, s) corresponding to
G∗,i(x, s) for i = 1, 2, 3 and for G4(x, s), and G5(x, s), p3(x, s) and p2(x, s), respectively.

Now, we consider the following simple lemma.

Lemma 2 Let f ∈ C1[a, b] and pi(x, s), for i = 1, 2, 3 be as defined above then

f (x) =
1

b – a

∫ b

a
f (s) ds +

∫ b

a
p1(x, s)f ′(s) ds, (21)

f (x) = f (b) +
∫ b

a
p2(x, s)f ′(s) ds, (22)

and

f (x) = f (a) +
∫ b

a
p3(x, s)f ′(s) ds. (23)

Proof For fix i = 1, 2, 3 consider

∫ b

a
pi(x, s)f ′(s) ds =

∫ x

a
pi(x, s)f ′(s) ds +

∫ b

x
pi(x, s)f ′(s) ds.

By replacing specific value of pi(x, s) and simplifying we get the required identities. �

We conclude the section by recalling the Lidstone interpolation and some of its prop-
erties. The details related to the Lidstone interpolation can be found in [1]. We start with
the following lemma given in [1].

Lemma 3 If f ∈ C(2n)([0, 1]), then

f (x) = PL(x) + eL(x) =
n–1∑
k=0

[
f (2k)(0)�k(1 – x) + f (2k)(1)�k(x)

]
+

∫ 1

0
Gn(x, s)f (2n)(s) ds, (24)

where �k is a Lidstone polynomial; see [1]. Moreover,

G1(x, s) = G(x, s) =

⎧⎨
⎩

(x – 1)s if s ≤ x,

(s – 1)x if x ≤ s,
(25)

is a homogeneous Green’s function of the differential operator d2

ds2 on [0, 1], and with the
successive iterates of G(x, s)

Gn(x, s) =
∫ 1

0
G1(x, u)Gn–1(u, s) du, n ≥ 2. (26)
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From the lemma it is not difficult to conclude that a function f ∈ C(2n)([a, b]) can be rep-
resented by using a Lidstone interpolation in the following way:

f (s) =
n–1∑
i=0

(b – a)2if (2i)(a)�i

(
b – s
b – a

)
+

n–1∑
i=0

(b – a)2if (2i)(b)�i

(
s – a
b – a

)

+ (b – a)2n–1
∫ b

a
Gn

(
s – a
b – a

,
ξ – a
b – a

)
f (2n)(ξ ) dξ . (27)

The following remark describes the positivity of the Green’s function of the Lidstone
interpolation.

Remark 2 Clearly G1(x, s) ≤ 0 and (26) yields Gn(x, s) ≥ 0 for even n and Gn(x, s) ≤ 0 for
odd n for every x, s ∈ [0, 1].

The next section contains the main results of the paper.

2 Main results
Throughout this section we use the following notations: S1(f , g, a, b) = f (g(a)) – f (g(b)) +∫ b

a f ′(t)g ′(t) dt, S2(f , h, b) =
∫ b

0 f ′(t)h(t) dt – f (
∫ b

0 h(t) dt) and S3(f , h, k, b) =
∫ b

0 K(t)f ′(t) ×
h(t) dt –

∫ b
0 k(x)f (

∫ x
0 h(t) dt) dx. We start the section with the following theorem which

enables us to obtain a generalization of (4).

Theorem 2 Let n ∈ N with n ≥ 2 and f : [a, b] → R be 2n times differentiable function.
Let g : [a, b] →R be a non-decreasing function with g(a), g(b) ∈ [a, b] then:

(a) For j = 1, 2, 4, 5, we have

S1(f , g, a, b)

=
n–2∑
i=0

(b – a)2i
[

f (2i+2)(a)
∫ b

a
S1

(
G∗,j(·, s), g, a, b

)
�i

(
b – s
b – a

)
ds

+ f (2i+2)(b)
∫ b

a
S1

(
G∗,j(·, s), g, a, b

)
�i

(
s – a
b – a

)
ds

]

+ (b – a)2n–3
∫ b

a
S1

(
G∗,j(·, s), g, a, b

)∫ b

a
Gn–1

(
s – a
b – a

,
ξ – a
b – a

)
f (2n)(ξ ) dξ ds.

(b) If f ′(a) = 0 then

S1(f , g, a, b)

=
n–2∑
i=0

(b – a)2i
[

f (2i+2)(a)
∫ b

a
S1

(
G∗,3(·, s), g, a, b

)
�i

(
b – s
b – a

)
ds

+ f (2i+2)(b)
∫ b

a
S1

(
G∗,3(·, s), g, a, b

)
�i

(
s – a
b – a

)
ds

]

+ (b – a)2n–3
∫ b

a
S1

(
G∗,3(·, s), g, a, b

)∫ b

a
Gn–1

(
s – a
b – a

,
ξ – a
b – a

)
f (2n)(ξ ) dξ ds,

where G∗,j(x, s) is given by (12)–(16).
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Proof
(a) We prove it for the case when j = 1, the other cases j = 2, 4, 5 are similar to this proof.

By using (7) and (21) for f and f ′, respectively, we have

S1(f , g, a, b) = f
(
g(a)

)
– f

(
g(b)

)
+

∫ b

a
f ′(t)g ′(t) dt

=
b – g(a)

b – a
f (a) +

g(a) – a
b – a

f (b)

+
∫ b

a
G∗,1

(
g(a), s

)
f ′′(s) ds –

b – g(b)
b – a

f (a) –
g(b) – a

b – a
f (b)

–
∫ b

a
G∗,1

(
g(b), s

)
f ′′(s) ds

+
∫ b

a

[
f (b) – f (a)

b – a
+

∫ b

a
p1(t, s)f ′′(s) ds

]
g ′(t) dt.

By simplifying and using Fubini’s theorem, we have

S1(f , g, a, b)

=
g(b) – g(a)

b – a
f (a) –

g(b) – g(a)
b – a

f (b)

+
∫ b

a

[
G∗,1

(
g(a), s

)
– G∗,1

(
g(b), s

)]
f ′′(s) ds +

f (b) – f (a)
b – a

(
g(b) – g(a)

)

+
∫ b

a

∫ b

a
p1(t, s)g ′(t)f ′′(s) dt ds

=
∫ b

a
S1

(
G∗,1(·, s), g, a, b

)
f ′′(s) ds.

Further, by substituting n with n – 1 in (27) for f ′′, we get

S1(f , g, a, b) =
∫ b

a
S1

(
G∗,1(·, s), g, a, b

)( n–2∑
i=0

(b – a)2if (2i+2)(a)�i

(
b – s
b – a

)

+
n–2∑
i=0

(b – a)2if (2i+2)(b)�i

(
s – a
b – a

)

+ (b – a)2n–3
∫ b

a
Gn–1

(
s – a
b – a

,
ξ – a
b – a

)
f (2n)(ξ ) dξ

)
ds,

which upon simplification gives the required identities.
(b) The proof is similar to part (a) except the use of the assumption f ′(a) = 0.

�

The following theorem gives a generalized Steffensen’s inequality.

Theorem 3 Let n ∈ N with n ≥ 2 and let f : [a, b] → R be 2n times differentiable and
g : [a, b] →R be a non-decreasing with g(a), g(b) ∈ [a, b].
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(a) If f is 2n-convex and n is odd, then

S1(f , g, a, b) ≥
n–2∑
i=0

(b – a)2i
[

f (2i+2)(a)
∫ b

a
S1

(
G∗,j(·, s), g, a, b

)
�i

(
b – s
b – a

)
ds

+ f (2i+2)(b)
∫ b

a
S1

(
G∗,j(·, s), g, a, b

)
�i

(
s – a
b – a

)
ds

]

for j = 1, 2, . . . , 5, where f ′(a) = 0 for j = 3.
(b) If f is 2n-convex and n is even, then the reverse of the inequality in part (a) holds.
(c) If –f is 2n-convex and n is odd, then the reverse of the inequality in part (a) holds.
(d) If –f is 2n-convex and n is even, then inequality in part (a) holds.

Proof
(a) For fix s and any j ∈ {1, 2, 3, 4, 5}, the function G∗,j(·, s) is convex and differentiable

and since g is non-decreasing, therefore Corollary 1(a) gives S1(G∗,j(·, s), g, a, b) ≥ 0.
Moreover, 2n-convexity of f implies f (2n)(x) ≥ 0 for x ∈ [a, b]. Since n – 1 is even,
Remark 2 implies Gn–1( s–a

b–a , ξ–a
b–a ) ≥ 0. Thus, we have

(b–a)2n–3
∫ b

a
S1

(
G∗,j(·, s), g, a, b

)∫ b

a
Gn–1

(
s – a
b – a

,
ξ – a
b – a

)
f (2n)(ξ ) dξ ds ≥ 0. (28)

Using this fact in Theorem 2 we get the desired inequality.
(b) The proof is similar to the part (a) except the fact that f is 2n-convex, therefore,

f (2n)(x) ≥ 0, n – 1 odd implies Gn–1( s–a
b–a , ξ–a

b–a ) ≤ 0. Therefore, the reverse of (28)
holds, which proves part (b).

(c) It follows from the facts that, under the assumptions, f (2n)(x) ≤ 0 and
Gn–1( s–a

b–a , ξ–a
b–a ) ≥ 0, which give the reverse of (28) and prove (c).

(d) It follows from the facts that, under the assumptions, f (2n)(x) ≤ 0 and
Gn–1( s–a

b–a , ξ–a
b–a ) ≤ 0, which yield (28) and complete the proof. �

In particular, the above theorem gives S1(f , g, a, b) ≥ 0 and S1(f , g, a, b) ≤ 0, which give
(4) and its reverse. Consequently, Theorem 3 produces a generalization of Steffensen’s
inequality and its reverse. Now, we prove the following theorem, which enables us to prove
the generalization of (5).

Theorem 4 Let n ∈N with n ≥ 2 and let f : [0, b] →R be 2n times differentiable function
with f (0) = 0. If h : [0, b] → [0, +∞) be an integrable function then:

(a)

S2(f , h, b) =
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S2

(
G∗,j(·, s), h, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S2

(
G∗,j(·, s), h, b

)
�i

(
s
b

)
ds

]

+ b2n–3
∫ b

0
S2

(
G∗,j(·, s), h, b

)(∫ b

0
Gn–1

(
s
b

,
ξ

b

)
f (2n)(ξ ) dξ

)
ds

for j = 1, 2.
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(b) If f ′(0) = 0 then

S2(f , h, b) + f (b)

=
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S2

(
G∗,3(·, s), h, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S2

(
G∗,3(·, s), h, b

)
�i

(
s
b

)
ds

]

+ b2n–3
∫ b

0
S2

(
G∗,3(·, s), h, b

)(∫ b

0
Gn–1

(
s
b

,
ξ

b

)
f (2n)(ξ ) dξ

)
ds.

(c)

S2(f , h, b) + f (b) – bf ′(b)

=
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S2

(
G∗,4(·, s), h, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S2

(
G∗,4(·, s), h, b

)
�i

(
s
b

)
ds

]

+ b2n–3
∫ b

0
S2

(
G∗,4(·, s), h, b

)(∫ b

0
Gn–1

(
s
b

,
ξ

b

)
f (2n)(ξ ) dξ

)
ds.

(d) If f ′(0) = 0 then

S2(f , h, b) – bf ′(b)

=
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S2

(
G∗,5(·, s), h, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S2

(
G∗,5(·, s), h, b

)
�i

(
s
b

)
ds

]

+ b2n–3
∫ b

0
S2

(
G∗,5(·, s), h, b

)(∫ b

0
Gn–1

(
s
b

,
ξ

b

)
f (2n)(ξ ) dξ

)
ds.

Proof First, we prove for j = 1, the proof of other cases are similar. By using (7) and (21)
for f and f ′, respectively, and using the assumption that f (0) = 0, we have

S2(f , h, b) =
∫ b

0
f ′(t)h(t) dt – f

(∫ b

0
h(t) dt

)

=
∫ b

0

1
b

f (b)h(t) dt +
∫ b

0

[∫ b

0
G∗,1t(t, s)f ′′(s) ds

]
h(t) dt –

∫ b
0 h(t) dt

b
f (b)

–
∫ b

0
G∗,1

(∫ b

0
h(t) dt, s

)
f ′′(s) ds

=
∫ b

0
S2

(
G∗,1(·, s), h, b

)
f ′′(s) ds.
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Further, by substituting n with n – 1 in (27) for f ′′ and simplifying we get the required
identities. �

In the next theorem, we prove a generalization of (5) and its reverse.

Theorem 5 Let n ∈N with n ≥ 2 and let f : [0, b] →R be 2n times differentiable function
with f (0) = 0 and h be as in Corollary 2(a).

(a) If f is 2n-convex and n is odd, then:
(i) For j = 1, 2, we have

S2(f , h, b)

≥
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S2

(
G∗,j(·, s), h, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S2

(
G∗,j(·, s), h, b

)
�i

(
s
b

)
ds

]
.

(ii) If f ′(0) = 0 then

S2(f , h, b) + f (b)

≥
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S2

(
G∗,3(·, s), h, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S2

(
G∗,3(·, s), h, b

)
�i

(
s
b

)
ds

]
.

(iii)

S2(f , h, b) + f (b) – bf ′(b)

≥
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S2

(
G∗,4(·, s), h, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S2

(
G∗,4(·, s), h, b

)
�i

(
s
b

)
ds

]
.

(iv) If f ′(0) = 0 then

S2(f , h, b) – bf ′(b)

≥
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S2

(
G∗,5(·, s), h, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S2

(
G∗,5(·, s), h, b

)
�i

(
s
b

)
ds

]
.

(b) If f is 2n-convex and n is even, then for each j the reverse of the inequality in part (a)
holds.

(c) If –f is 2n-convex and n is odd, then for each j the reverse of the inequality in part (a)
holds.

(d) If -f is 2n-convex and n is even, then for each j inequality in part (a) holds.
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Proof The proof can be obtained from Theorem 4 and Corollary 2(a) along the same lines
as Theorem 3 has been proved by using Theorem 2 and Corollary 1(a). �

Now, we prove identities to obtain a generalization of (6).

Theorem 6 Let n ∈N with n ≥ 2 and let f : [0, b] →R be 2n times differentiable function
with f (0) = 0 and k and K be as in Corollary 3. If h : [0, b] → [0, +∞) is integrable then:

(a) For j = 1, 2, we have

S3(f , h, k, b)

=
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S3

(
G∗,j(·, s), h, k, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S3

(
G∗,j(·, s), h, k, b

)
�i

(
s
b

)
ds

]

+ b2n–3
∫ b

0
S3

(
G∗,j(·, s), h, k, b

)(∫ b

0
Gn–1

(
s
b

,
ξ

b

)
f (2n)(ξ ) dξ

)
ds.

(b) If f ′(0) = 0 then

S3(f , h, k, b) + f (b)
∫ b

0
k(x) dx

=
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S3

(
G∗,3(·, s), h, k, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S3

(
G∗,3(·, s), h, k, b

)
�i

(
s
b

)
ds

]

+ b2n–3
∫ b

0
S3

(
G∗,3(·, s), h, k, b

)(∫ b

0
Gn–1

(
s
b

,
ξ

b

)
f (2n)(ξ ) dξ

)
ds.

(c)

S3(f , h, k, b) +
(
f (b) – bf ′(b)

)∫ b

0
k(x) dx

=
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S3

(
G∗,4(·, s), h, k, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S3

(
G∗,4(·, s), h, k, b

)
�i

(
s
b

)
ds

]

+ b2n–3
∫ b

0
S3

(
G∗,4(·, s), h, k, b

)(∫ b

0
Gn–1

(
s
b

,
ξ

b

)
f (2n)(ξ ) dξ

)
ds.

(d) If f ′(0) = 0 then

S3(f , h, k, b) – bf ′(b)
∫ b

0
k(x) dx

=
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S3

(
G∗,5(·, s), h, k, b

)
�i

(
b – s

b

)
ds
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+ f (2i+2)(b)
∫ b

0
S3

(
G∗,5(·, s), h, k, b

)
�i

(
s
b

)
ds

]

+ b2n–3
∫ b

0
S3

(
G∗,5(·, s), h, k, b

)(∫ b

0
Gn–1

(
s
b

,
ξ

b

)
f (2n)(ξ ) dξ

)
ds.

Proof We prove the result for j = 1. The proofs of the other parts are similar. By using (7)
and (21) for f and f ′, respectively, we have

S3(f , h, k, b) =
∫ b

0
K(t)f ′(t)h(t) dt –

∫ b

0
k(x)f

(∫ x

0
h(t) dt

)
dx

=
∫ b

0
K(t)h(t)

[
1
b

f (b) +
∫ b

0
G∗,1t(t, s)f ′′(s) ds

]
dt

–
∫ b

0
k(x)

[
1
b

f (b)
∫ x

0
h(t) dt +

∫ b

0
G∗,1

(∫ x

0
h(t) dt, s

)
f ′′(s) ds

]
dx

=
1
b

f (b)
[∫ b

0
K(t)h(t) dt –

∫ b

0
k(x)

∫ x

0
h(t) dt dx

]

+
∫ b

0
K(t)h(t)

∫ b

0
G∗,1t(t, s)f ′′(s) ds dt

–
∫ b

0
k(x)

∫ b

0
G∗,1

(∫ x

0
h(t) dt, s

)
f ′′(s) ds dx.

Since
∫ b

0 k(x)
∫ x

0 h(t) dt dx =
∫ b

0 h(t)(
∫ b

t k(x) dx) dt =
∫ b

0 K(t)h(t) dt,

S3(f , h, k, b) =
∫ b

0

[∫ b

0
K(t)h(t)G∗,1t(t, s) dt –

∫ b

0
k(x)G∗,1

(∫ x

0
h(t) dt, s

)
dx

]
f ′′(s) ds

=
∫ b

0
S3

(
G∗,1(·, s), h, k, b

)
f ′′(s) ds.

The rest follows from (27). �

The following theorem gives a generalization of (6) and its reverse.

Theorem 7 Let n ∈N with n ≥ 2 and let f : [0, b] →R be 2n times differentiable function
with f (0) = 0 and k, K and h be as in Corollary 3(a).

(a) If f is 2n-convex and n is odd, then:
(i) For j = 1, 2, we have

S3(f , h, k, b)

≥
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S3

(
G∗,j(·, s), h, k, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S3

(
G∗,j(·, s), h, k, b

)
�i

(
s
b

)
ds

]
.

(ii) If f ′(0) = 0 then

S3(f , h, k, b) + f (b)
∫ b

0
k(x) dx
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≥
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S3

(
G∗,3(·, s), h, k, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S3

(
G∗,3(·, s), h, k, b

)
�i

(
s
b

)
ds

]
.

(iii)

S3(f , h, k, b) +
(
f (b) – bf ′(b)

)∫ b

0
k(x) dx

≥
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S3

(
G∗,4(·, s), h, k, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S3

(
G∗,4(·, s), h, k, b

)
�i

(
s
b

)
ds

]
.

(iv) If f ′(0) = 0 then

S3(f , h, k, b) – bf ′(b)
∫ b

0
k(x) dx

≥
n–2∑
i=0

b2i
[

f (2i+2)(0)
∫ b

0
S3

(
G∗,5(·, s), h, k, b

)
�i

(
b – s

b

)
ds

+ f (2i+2)(b)
∫ b

0
S3

(
G∗,5(·, s), h, k, b

)
�i

(
s
b

)
ds

]
.

(b) If f is 2n-convex and n is even, then for each j the reverse of the inequality in part (a)
holds.

(c) If –f is 2n-convex and n is odd, then for each j the reverse of the inequality in part (a)
holds.

(d) If -f is 2n-convex and n is even, then for each j inequality in part (a) holds.

Proof The proof follows from Theorem 6 and Corollary 3(a) in a similar way to the proof
of Theorem 3 by using Theorem 2 and Corollary 1(a). �

3 Application to (2n + 1)-convex function at a point
In the present section we prove results related to the following (n + 1)-convex function at
a point introduced in [9]. Let I ⊆ R be an interval, c ∈ I0 and n ∈ N. A function f : I → R

is said to be (n + 1)-convex at point c if there exists a constant Kc such that the function
F(x) = f (x) – Kc

xn

n! is n-concave on I ∩ (–∞, c] and n-convex on I ∩ [c,∞). A function f is
said to be (n + 1)-concave at point c if the function –f is (n + 1)-convex at point c. Pečarić,
Praljak and Witkowski in [9] studied necessary and sufficient conditions on two linear
functionals �1 : C([δ1, c]) → R and 	1 : C([c, δ2] → R so that the inequality �1(f ) ≤ 	1(f )
holds for every function f that is (n + 1)-convex at point c. In this section, we define linear
functionals and obtain such inequalities for defined functionals. Let n ∈ N be odd with
n > 2, f : [a, b] →R be 2n times differentiable function, a1, a2 ∈ [a, b] and c ∈ (a, b), where
a1 < c < a2. Let g1 : [a1, c] → R and g2 : [c, a2] → R be non-decreasing with gi(x) ≤ x for
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i = 1, 2. For j = 1, 2, . . . , 5, we define

�1,j(f ) = S1(f , g1, a1, c)

–
n–2∑
i=0

(c – a1)2i
[

f (2i+2)(a1)
∫ c

a1

S1
(
G∗,j(·, s), g1, a1, c

)
�i

(
c – s

c – a1

)
ds

+ f (2i+2)(c)
∫ c

a1

S1
(
G∗,j(·, s), g1, a1, c

)
�i

(
s – a1

c – a1

)
ds

]
(29)

and

	1,j(f ) = S1(f , g2, c, a2)

–
n–2∑
i=0

(a2 – c)2i
[

f (2i+2)(c)
∫ a2

c
S1

(
G∗,j(·, s), g2, c, a2

)
�i

(
a2 – s
a2 – c

)
ds

+ f (2i+2)(a2)
∫ a2

c
S1

(
G∗,j(·, s), g2, c, a2

)
�i

(
s – c

a2 – c

)
ds

]
. (30)

Similarly let c ∈ (0, b), b1 ∈ (0, b] where c < b1 and let h1 : [0, c] → [0, +∞) and h2 :
[c, b1] → [0, +∞) be as defined in Corollary 2(a) (w.l.o.g. we may assume h2 on [0, b1] by
taking h2(t) = 0 when t ∈ [0, c]). We define the following pair of functionals:

(a)

�2,j(f ) = S2(f , h1, c) –
n–2∑
i=0

c2i
[

f (2i+2)(0)
∫ c

0
S2

(
G∗,j(·, s), h1, c

)
�i

(
c – s

c

)
ds

+ f (2i+2)(c)
∫ c

0
S2

(
G∗,j(·, s), h1, c

)
�i

(
s
c

)
ds

]

and

	2,j(f ) = S2(f , h2, b1)

–
n–2∑
i=0

b2i
1

[
f (2i+2)(0)

∫ b1

c
S2

(
G∗,j(·, s), h2, b1

)
�i

(
b1 – s

b1

)
ds

+ f (2i+2)(b1)
∫ b1

c
S2

(
G∗,j(·, s), h2, b1

)
�i

(
s

b1

)
ds

]
,

where j = 1, 2.
(b)

�2,3(f ) = S2(f , h1, c) + f (c)

–
n–2∑
i=0

c2i
[

f (2i+2)(0)
∫ c

0
S2

(
G∗,3(·, s), h1, c

)
�i

(
c – s

c

)
ds

+ f (2i+2)(c)
∫ c

0
S2

(
G∗,3(·, s), h1, c

)
�i

(
s
c

)
ds

]
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and

	2,3(f ) = S2(f , h2, b1) + f (b1)

–
n–2∑
i=0

b2i
1

[
f (2i+2)(0)

∫ b1

c
S2

(
G∗,3(·, s), h2, b1

)
�i

(
b1 – s

b1

)
ds

+ f (2i+2)(b1)
∫ b1

c
S2

(
G∗,3(·, s), h2, b1

)
�i

(
s

b1

)
ds

]
.

(c)

�2,4(f ) = S2(f , h1, c) + f (c) – cf ′(c)

–
n–2∑
i=0

c2i
[

f (2i+2)(0)
∫ c

0
S2

(
G∗,4(·, s), h1, c

)
�i

(
c – s

c

)
ds

+ f (2i+2)(c)
∫ c

0
S2

(
G∗,4(·, s), h1, c

)
�i

(
s
c

)
ds

]

and

	2,4(f ) = S2(f , h2, b1) + f (b1) – b1f ′(b1)

–
n–2∑
i=0

b2i
1

[
f (2i+2)(0)

∫ b1

c
S2

(
G∗,4(·, s), h2, b1

)
�i

(
b1 – s

b1

)
ds

+ f (2i+2)(b1)
∫ b1

c
S2

(
G∗,4(·, s), h2, b1

)
�i

(
s

b1

)
ds

]
.

(d)

�2,5(f ) = S2(f , h1, c) – cf ′(c)

–
n–2∑
i=0

c2i
[

f (2i+2)(0)
∫ c

0
S2

(
G∗,5(·, s), h1, c

)
�i

(
c – s

c

)
ds

+ f (2i+2)(c)
∫ c

0
S2

(
G∗,5(·, s), h1, c

)
�i

(
s
c

)
ds

]

and

	2,5(f ) = S2(f , h2, b1) – b1f ′(b1)

–
n–2∑
i=0

b2i
1

[
f (2i+2)(0)

∫ b1

c
S2

(
G∗,5(·, s), h2, b1

)
�i

(
b1 – s

b1

)
ds

+ f (2i+2)(b1)
∫ b1

c
S2

(
G∗,5(·, s), h2, b1

)
�i

(
s

b1

)
ds

]
.

Lastly, we define:
(a)

�3,j(f ) = S3(f , h1, k, c) –
n–2∑
i=0

c2i
[

f (2i+2)(0)
∫ c

0
S3

(
G∗,j(·, s), h1, k, c

)
�i

(
c – s

c

)
ds
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+ f (2i+2)(c)
∫ c

0
S3

(
G∗,j(·, s), h1, k, c

)
�i

(
s
c

)
ds

]

and

	3,j(f ) = S3(f , h2, k, b1)

–
n–2∑
i=0

b2i
1

[
f (2i+2)(0)

∫ b1

c
S3

(
G∗,j(·, s), h2, k, b1

)
�i

(
b1 – s

b1

)
ds

+ f (2i+2)(b1)
∫ b1

c
S3

(
G∗,j(·, s), h2, k, b1

)
�i

(
s

b1

)
ds

]
,

where j = 1, 2.
(b)

�3,3(f ) = S3(f , h1, k, c) + f (c)
∫ c

0
k(x) dx

–
n–2∑
i=0

c2i
[

f (2i+2)(0)
∫ c

0
S3

(
G∗,3(·, s), h1, k, c

)
�i

(
c – s

c

)
ds

+ f (2i+2)(c)
∫ c

0
S3

(
G∗,3(·, s), h1, k, c

)
�i

(
s
c

)
ds

]

and

	3,3(f ) = S3(f , h2, k, b1) + f (b1)
∫ b1

c
k(x) dx

–
n–2∑
i=0

b2i
1

[
f (2i+2)(0)

∫ b1

c
S3

(
G∗,3(·, s), h2, k, b1

)
�i

(
b1 – s

b1

)
ds

+ f (2i+2)(b1)
∫ b1

c
S3

(
G∗,3(·, s), h2, k, b1

)
�i

(
s

b1

)
ds

]
.

(c)

�3,4(f = S3(f , h1, k, c) +
(
f (c) – cf ′(c)

)∫ c

0
k(x) dx

–
n–2∑
i=0

c2i
[

f (2i+2)(0)
∫ c

0
S3

(
G∗,4(·, s), h1, k, c

)
�i

(
c – s

c

)
ds

+ f (2i+2)(c)
∫ c

0
S3

(
G∗,4(·, s), h1, k, c

)
�i

(
s
c

)
ds

]

and

	3,4(f ) = S3(f , h2, k, b1) +
(
f (b1) – b1f ′(b1)

)∫ b1

c
k(x) dx

–
n–2∑
i=0

b2i
1

[
f (2i+2)(0)

∫ b1

c
S3

(
G∗,4(·, s), h2, k, b1

)
�i

(
b1 – s

b1

)
ds
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+ f (2i+2)(b1)
∫ b1

c
S3

(
G∗,4(·, s), h2, k, b1

)
�i

(
s

b1

)
ds

]
.

(d)

�3,5(f ) = S3(f , h1, k, c) – cf ′(c)
∫ c

0
k(x) dx

–
n–2∑
i=0

c2i
[

f (2i+2)(0)
∫ c

0
S3

(
G∗,5(·, s), h1, k, c

)
�i

(
c – s

c

)
ds

+ f (2i+2)(c)
∫ c

0
S3

(
G∗,5(·, s), h1, k, c

)
�i

(
s
c

)
ds

]

and

	3,5(f ) = S3(f , h2, k, b1) – b1f ′(b1)
∫ b1

c
k(x) dx

–
n–2∑
i=0

b2i
1

[
f (2i+2)(0)

∫ b1

c
S3

(
G∗,5(·, s), h2, k, b1

)
�i

(
b1 – s

b1

)
ds

+ f (2i+2)(b1)
∫ b1

c
S3

(
G∗,5(·, s), h2, k, b1

)
�i

(
s

b1

)
ds

]
,

where k is as defined in Corollary 3. If f is 2n-convex then Theorem 3(a), Theorem 5(a) and
Theorem 7(a) implies 	1,j(f ) ≥ 0, 	2,j(f ) ≥ 0 and 	3,j(f ) ≥ 0 for j = 1, 2, . . . , 5 (and f ′(0) = 0
for j = 3), respectively. Moreover, if –f is 2n-convex then Theorem 3(c), Theorem 5(c) and
Theorem 7(c) imply �1,j(f ) ≤ 0, �2,j(f ) ≤ 0 and �3,j(f ) ≤ 0 for j = 1, 2, . . . , 5 (and f ′(0) = 0
for j = 3), respectively.

Theorem 8 Let n ∈N with n > 2 be odd and let f : [a, b] →R be (2n + 1)-convex at a point
c in (a, b). Let g1 : [a1, c] → R and g2 : [c, a2] → R, where a1 < c < a2, be non-decreasing
and differentiable functions. If �1,j(φ0) = 	1,j(φ0), for all j = 1, 2, . . . , 5 and f ′(a) = 0 for j = 3,
where φ0(x) = x2n then

�1,j(f ) ≤ 	1,j(f ),

for j = 1, 2, . . . , 5.

Proof Since f is (2n + 1)-convex at c, there exists a Kc such that F(x) = f (x) – Kcx2n

(2n)! is 2n-
concave (or –F is 2n-convex) on [a1, c] and 2n-convex on [c, a2]. Therefore, for each j =
1, 2, . . . , 5, we have 0 ≥ �1,j(F) = �1,j(f ) – Kc

(2n)!�1,j(φ0). Moreover, since F is 2n-convex on
[c, a2], 0 ≤ 	1,j(F) = 	1,j(f ) – Kc

(2n)!	1,j(φ0). Since �1,j(φ0) = 	1,j(φ0), �1,j(f ) ≤ 	1,j(f ), which
completes the proof. �

Theorem 9 Let n ∈N with n > 2 be odd, let h1 : [0, c] → [0, +∞) and h2 : [c, b1] → [0, +∞)
be as defined in Corollary 2(a) and k : [0, b] → [0, +∞) be as in Corollary 3. If f : [0, b] →R

is (2n + 1)-convex at a point c in (0, b) then:
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(a) (i) If

S2(φ0, h1, c) –
n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S2

(
G∗,j(·, s), h1, c

)
�i

(
s
c

)
ds

= S2(φ0, h2, b1)

–
n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S2

(
G∗,j(·, s), h2, b1

)
�i

(
s

b1

)
ds

then �2,j(f ) ≤ 	2,j(f ) for j = 1, 2, where φ0(x) = x2n.
(ii) If f ′(0) = 0 and

S2(φ0, h1, c) + c2n

–
n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S2

(
G∗,3(·, s), h1, c

)
�i

(
s
c

)
ds

= S2(φ0, h2, b1) + b2n
1

–
n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S2

(
G∗,3(·, s), h2, b1

)
�i

(
s

b1

)
ds

then �2,3(f ) ≤ 	2,3(f ).
(iii) If

S2(φ0, h1, c) + (1 – 2n)c2n

–
n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S2

(
G∗,4(·, s), h1, c

)
�i

(
s
c

)
ds

= S2(φ0, h2, b1) + (1 – 2n)b2n
1

–
n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S2

(
G∗,4(·, s), h2, b1

)
�i

(
s

b1

)
ds

then �2,4(f ) ≤ 	2,4(f ).
(iv) If

S2(φ0, h1, c) – 2nc2n –
n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S2

(
G∗,5(·, s), h1, c

)
�i

(
s
c

)
ds

= S2(φ0, h2, b1) – 2nb2n
1

–
n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S2

(
G∗,5(·, s), h2, b1

)
�i

(
s

b1

)
ds

then �2,5(f ) ≤ 	2,5(f ).
(b) (i) If

S3(φ0, h1, k, c) –
n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S3

(
G∗,j(·, s), h1, k, c

)
�i

(
s
c

)
ds
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= S3(φ0, h2, k, b1)

–
n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S3

(
G∗,j(·, s), h2, k, b1

)
�i

(
s

b1

)
ds

then �3,j(f ) ≤ 	3,j(f ) for j = 1, 2.
(ii) If f ′(0) = 0 and

S3(φ0, h1, k, c) + c2n
∫ c

0
k(x) dx

–
n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S3

(
G∗,3(·, s), h1, k, c

)
�i

(
s
c

)
ds

= S3(φ0, h2, k, b1) + b2n
1

∫ b1

c
k(x) dx

–
n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S3

(
G∗,3(·, s), h2, k, b1

)
�i

(
s

b1

)
ds

then �3,3(f ) ≤ 	3,3(f ).
(iii) If

S3(φ0, h1, k, c) + (1 – 2n)c2n
∫ c

0
k(x) dx

–
n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S3

(
G∗,4(·, s), h1, k, c

)
�i

(
s
c

)
ds

= S3(φ0, h2, k, b1) + (1 – 2n)b2n
1

∫ b1

c
k(x) dx

–
n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S3

(
G∗,4(·, s), h2, k, b1

)
�i

(
s

b1

)
ds

then �3,4(f ) ≤ 	3,4(f ).
(iv) If

S3(φ0, h1, k, c) – 2nc2n
∫ c

0
k(x) dx

–
n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S3

(
G∗,5(·, s), h1, k, c

)
�i

(
s
c

)
ds

= S3(φ0, h2, k, b1) – 2nb2n
1

∫ b1

c
k(x) dx

–
n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S3

(
G∗,5(·, s), h2, k, b1

)
�i

(
s

b1

)
ds

then �3,5(f ) ≤ 	3,5(f ).
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Proof
(a) Since f is (2n + 1)-convex at c, there exists a Kc such that F(x) = f (x) – Kcx2n

(2n)! is
2n-concave (or –F is 2n-convex) on [0, c] and 2n-convex on [c, b1]. Therefore,

0 ≥ �2,j(F)

= �2,j(f )

–
Kc

(2n)!

( n–2∑
i=0

c2iφ
(2i+2)
0 (c)

∫ c

0
S2

(
G∗,j(·, s), h1, c

)
�i

(
s
c

)
ds – S2(φ0, h1, c)

)
.

On the other hand, since F is 2n-convex on [c, b1],

0 ≤ 	2,j(F)

= 	2,j(f )

–
Kc

(2n)!

( n–2∑
i=0

b2i
1 φ

(2i+2)
0 (b1)

∫ b1

c
S2

(
G∗,j(·, s), h2, b1

)
�i

(
s

b1

)
ds

– S(φ0, h2, b1)

)
.

So under the given assumption, we have �2,j(f ) ≤ 	2,j(f ) for j = 1, 2, which
completes the proof of part (i). The proofs of the other parts are similar.

(b) The proof is similar to the proof of part (a). �

4 Further refinements
Theorem 3 can be refined further for some classes of functions, using exponential con-
vexity (for details see [2] and [3]). First, we use linear functional �1,j define in previous
section. Under assumptions of Theorem 3(a), we conclude that, for any odd n and for any
j ∈ {1, 2, . . . , 5}, �1,j acts non-negatively on the class of 2n-convex functions.

Further, let us introduce a family of 2n-convex functions on [0,∞) with

ϕt(x) =

⎧⎨
⎩

xt

t(t–1)···(t–2n+1) , t /∈ {0, 1, . . . , 2n – 1};
xj ln x

(–1)2n–1–j j!(2n–1–j)! , t = j ∈ {0, 1, . . . , 2n – 1}. (31)

This is indeed a family of 2n-convex functions since d2n

dx2n ϕt(x) = xt–2n ≥ 0.
Since t �→ xt–2n = e(t–2n) ln x is an exponentially convex function, the quadratic form

m∑
i,k=1

ξiξk
d2n

dx2n ϕ pi+pk
2

(x) (32)

is positively semi-definite. According to Theorem 3(a),

m∑
i,k=1

ξiξk�1,jϕ pi+pk
2

(33)
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is also positively semi-definite, for any m ∈ N, ξi ∈ R and pi ∈ R, showing the exponential
convexity of the mapping p �→ �1,jϕp. Specially, if we take m = 2 in (33) we see additionally
that p �→ �1,jϕp is also a log-convex mapping, a property that we will need in the next
theorem.

Theorem 10 Under the assumptions of Theorem 3(a) the following statements hold:
(i) The mapping p �→ �1,jϕp is exponentially convex on R.

(ii) For p, q, r ∈R such that p < q < r, we have

(�1,jϕq)r–p ≤ (�1,jϕp)r–q(�1,jϕr)q–p (34)

for j = 1, 2, . . . , 5.

Remark 3 We have outlined the proof of the theorem above. The second part of Theo-
rem 10 is known as the Lyapunov inequality, it follows from log-convexity, and it refines
the lower (upper) bound for the action of the functional on the class of functions given in
(31). This conclusion is a simple consequence of the fact that exponentially convex map-
pings are non-negative and if an exponentially convex mapping attains zero value at some
point it is zero everywhere (see [6]).

A similar estimation technique can be applied for classes of 2n-convex functions given
in [6]. Lastly, a similar construction can be made for the linear functionals �2,j and �3,j to
obtain the inequalities given in Theorem 10 for these functionals.

5 Results and discussion
Steffensen’s inequality first appeared in 1918 and has remained of interest for several math-
ematicians. This paper is devoted to proving a generalization of Steffensen’s inequality
which is related to recent and older developments. We also provide applications of the
obtained results. In the primary step we prove a simple lemma which approximates a con-
tinuously differentiable function in different forms. By using these approximations, we
prove such identities as under the condition of 2n-convexity and 2n-concavity give a gen-
eralization of Steffensen’s inequality and its reverse. Subsequently, we provide applications
of the results to the theory of (2n+1)-convex functions at a point and exponentially convex
functions. We also prove the Lyapunov inequality.

6 Conclusion
Several identities related to recent generalization of Steffensen’s inequality have been
proved. Under the assumption of 2n-convexity and 2n-concavity, a generalization of Stef-
fensen’s inequality and its reverse has been obtained from the identities. Applications of
the results have been presented of the theory of (2n + 1)-convex functions at a point and
exponentially convex functions.
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