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Abstract
The purpose of this article is to propose a modified viscosity implicit-type proximal
point algorithm for approximating a common solution of a monotone inclusion
problem and a fixed point problem for an asymptotically nonexpansive mapping in
Hadamard spaces. Under suitable conditions, some strong convergence theorems of
the proposed algorithms to such a common solution are proved. Our results extend
and complement some recent results in this direction.
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1 Introduction
One of the most important parts in nonlinear and convex analysis is monotone operator
theory. The following zero problem is one of the most important problems in monotone
operator theory:

to find x ∈ D(A) such that 0 ∈ A(x), (1.1)

where A is a monotone operator. This problem includes, as special cases, convex program-
ming, variational inequalities, split feasibility problem and minimization problem. To be
more precise, some concrete problems in machine learning, image processing and linear
inverse problem can be modelled mathematically as this form [1, 2].

A popular method for approximation of a zero of a monotone operator A is the proximal
point algorithm, which was introduced in Hilbert space H by Martinet [1] and Rockafellar
[2] as follows:

xn+1 – xn ∈ λnA(xn), x0 ∈ H , (1.2)

where {λn} is a sequence of positive real numbers. Rockafellar [2] (see, also Bruck and
Reich [3]) proved that the sequence generated by the proximal point algorithm is weakly
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convergent to a zero of the monotone operator A provided λn ≥ λ > 0, for each n ≥ 1.
Güler’s counterexample [4] (see, also Bauschke [5]) showed that the sequence generated
by (1.2) does not necessarily converge strongly even if the maximal monotone operator is
the subdifferential of a convex, proper, and lower semicontinuous function.

Another algorithm for approximation a zero of the monotone operator A is the viscosity
approximation method which was proposed by Takahashi [6] in Banach spaces

xn+1 = αnf (xn) + (1 – αn)JA
λn xn, (1.3)

where f is a contractive mapping and JA
λ = (I + λA)–1, λ > 0 is the resolvent of A. Under

suitable conditions, he proved strong convergence of (1.3) in Banach spaces.
In 2006, Maingé [7] also studied the following more general iteration:

xn+1 = αnTn(xn) + (1 – αn)JA
λn xn, (1.4)

where {Tn} is a family of nonexpansive mappings. Under suitable conditions he proved
strong convergence of (1.4) in Banach spaces.

In 2013, Bačák [8] proved the �-convergence of proximal point algorithm in CAT(0)
spaces when the operator A is the subdifferential of a convex, proper, and lower semi-
continuous function. Recently, some more general modified proximal point algorithms in
CAT(0) have been considered by Li et al. [9], Cholamjiak [10], Chang et al. [11–13], Khati-
bzadeh et al. [14–16], Cholamjiak et al. [17], Suparatulatorn et al. [18] and Bačak and Reich
[19], Sahu [20].

Very recently, Ranjbar and Khatibzadeh [16] introduced the concept of monotone oper-
ator in Hadamard space X, and considered some properties of a monotone operator and
its resolvent operator, then proposed the following proximal point algorithm:

{
xn+1 = Jλn xn,
x0 ∈ X,

(1.5)

where A : X → 2X∗ is a multi-valued monotone operator, {λn} is a sequence of positive
real numbers and Jλ is the resolvent of A defined by (2.8) (see, Sect. 2). Under suitable
conditions they proved that the sequence {xn} �-converges or converges strongly to a
zero of A.

Motivated and inspired by the research going on in this direction, the purpose of this
article is to propose a modified viscosity implicit-type proximal point algorithm for ap-
proximating a common solution of monotone inclusion problem and fixed point problem
for an asymptotically nonexpansive mapping in Hadamard space which is also a unique
solution of some variational inequality problems. Our results extend and complement the
main results of Bačák [8], Khatibzadeh et al. [14–16].

2 Preliminaries and Hadamard spaces
Let (X, d) be a metric space and x, y ∈ X. A geodesic path joining x to y is an isometry
c : [0, d(x, y)] → X such that c(0) = x and c(d(x, y)) = y. The image of a geodesic path joining
x to y is called a geodesic segment between x and y. The metric space (X, d) is said to be a
geodesic space, if every two points of X are joined by a geodesic. X is said to be uniquely
geodesic space, if there is exactly one geodesic joining x and y for each x, y ∈ X.



Chang et al. Journal of Inequalities and Applications  (2018) 2018:235 Page 3 of 14

A geodesic space (X, d) is a CAT(0) space, if and only if the following “CN-inequality”
holds:

d2((1 – t)x ⊕ ty, z
) ≤ (1 – t)d2(x, z) + td2(y, z) – t(1 – t)d2(x, y) (2.1)

for all x, y, z ∈ X and all t ∈ [0, 1] [21].
It is well known that any complete and simply connected Riemannian manifold having

nonpositive sectional curvature is a CAT(0) space. The Hilbert ball with the hyperbolic
metric is an important example of a CAT(0) space [22]. Other examples of CAT(0) spaces
include pre-Hilbert spaces, R-trees, Euclidean buildings [23].

A complete CAT(0) space is often called an Hadamard space. We write (1 – t)x ⊕ ty for
the unique point z in the geodesic segment joining from x to y such that d(x, z) = td(x, y)
and d(y, z) = (1 – t)d(x, y). We also denote by [x, y] the geodesic segment joining x to y, that
is, [x, y] = {(1 – t)x ⊕ ty : 0 ≤ t ≤ 1}. A subset C of a CAT(0) space is convex if [x, y] ⊂ C for
all x, y ∈ C.

Berg and Nikolaev [24] introduced the following concept of quasilinearization in CAT(0)
space X.

• Denote a pair (a, b) ∈ X × X by
−→
ab and call it a vector.

• Quasi-linearization in CAT(0) space X is defined as a mapping
〈·, ·〉 : (X × X) × (X × X) → R such that

〈−→ab,
−→
cd〉 =

1
2
(
d2(a, d) + d2(b, c) – d2(a, c) – d2(b, d)

)
(2.2)

for all a, b, c, d ∈ X .
It can easily be verified that 〈−→ab,

−→
ab〉 = d2(a, b), 〈−→ba,

−→
cd〉 = –〈−→ab,

−→
cd〉 and

〈−→ab,
−→
cd〉 = 〈−→ae ,

−→
cd〉 + 〈−→eb ,

−→
cd〉 for all a, b, c, d, e ∈ X .

• We say that X satisfies the Cauchy–Schwarz inequality if

〈−→ab,
−→
cd〉 ≤ d(a, b)d(c, d), ∀a, b, c, d ∈ X. (2.3)

It is well known [24, Corollary 3] that a geodesically connected metric space is a
CAT(0) space if and only if it satisfies the Cauchy–Schwarz inequality.

The following inequalities can be proved easily.

Lemma 2.1 Let X be a CAT(0) space. For all x, y, z ∈ X and t, s ∈ [0, 1], we have the follow-
ing:

(1) d(tx ⊕ (1 – t)y, z) ≤ td(x, z) + (1 – t)d(y, z),
(2) d(tx ⊕ (1 – t)y, sx ⊕ (1 – s)y) = |t – s|d(x, y),
(3) d(tx ⊕ (1 – t)y, tu ⊕ (1 – t)w) ≤ td(x, u) + (1 – t)d(y, w),
(4) by using equality (2.2), inequality (2.1) can be written as

d2((1 – t)x ⊕ ty, z
) ≤ (1 – t)d2(x, z) + td2(y, z) – t(1 – t)d2(x, y)

= (1 – t)2d2(x, z) + t2d2(y, z) + 2t(1 – t)〈−→xz ,−→yz 〉. (2.4)

• By using quasilinearization, Kakavandi and Amini [25] introduced the concept of dual
space of a Hadamard space X as follows.
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Consider the mapping � : R × X × X → C(X, R) defined by

�(t, a, b)(x) = t〈−→ab,−→ax〉 (t ∈ R, a, b, x ∈ X),

where C(X, R) is the space of all continuous real-valued functions on X . Then the
Cauchy–Schwarz inequality implies that �(t, a, b) is a Lipschitz function with
Lipschitz semi-norm L(�(t, a, b)) = |t|d(a, b) (t ∈ R, a, b ∈ X), where

L(φ) = sup

{
φ(x) – φ(y)

d(x, y)
: x, y ∈ X, x = y

}

is the Lipschitz semi-norm for any function φ : X → R. A pseudometric D on
R × X × X is defined by

D
(
(t, a, b), (s, c, d)

)
= L

(
�(t, a, b) – �(s, c, d)

)
(t, s ∈ R, a, b, c, d ∈ X).

For an Hadamard space (X, d), the pseudometric space (R × X × X, D) can be
considered as a subspace of the pseudometric space of all real-valued Lipschitz
functions (Lip(X, R), L). By [25, Lemma 2.1], D((t, a, b), (s, c, d)) = 0 if and only if

t〈−→ab,−→xy〉 = s〈−→cd ,−→xy〉, ∀x, y ∈ X Thus, D induces an equivalence relation on
R × X × X , where the equivalence class of (t, a, b) is

[t
−→
ab] =

{
s
−→
cd : D

(
(t, a, b), (s, c, d)

)
= 0

}
.

The set X∗ = {[t−→ab] : (t, a, b) ∈ R × X × X} is a metric space with metric

D
(
[t

−→
ab], [s

−→
cd]

)
:= D

(
(tab), (scd)

)
,

which is called the dual space of (X, d). It is clear that [−→aa] = [
−→
bb] for all a, b ∈ X . Fix

x ∈ X , we write 0 = [−→xx] as the zero of the dual space.

Example In [25], it is shown that the dual of a closed and convex subset of a Hilbert space

H with nonempty interior is H and t(b – a) ≡ [t
−→
ab] for all t ∈ R, a, b ∈ H .

Note that X∗ acts on X × X by

〈
x∗,−→xy

〉
= t〈−→ab,−→xy〉 (

x∗ = [t
−→
ab] ∈ X∗, x, y ∈ X

)
.

Also, we use the following notation:

〈
αx∗ + βy∗,−→xy

〉
= α

〈
x∗,−→xy

〉
+ β

〈
y∗, ,−→xy

〉 (
α,β ∈ R, x, y ∈ X, x∗, y∗ ∈ X∗).

Let {xn} be a bounded sequence in a Hadamard space X. For x ∈ X, define r(x, {xn}) :=
lim supn→∞ d(x, xn). The asymptotic radius r({xn}) of {xn} is defined by r({xn}) =
inf{r(x, {xn}) : x ∈ X}, and the asymptotic center A({xn}) of {xn} is the set A({xn}) =
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{x ∈ X : r(x, {xn})} = r({xn}). It is well known that in a CAT(0) space, A({xn}) consists of
exactly one point (see [26, Proposition 7]). A sequence {xn} in X is said to be �-convergent
to a point w, if w is the unique asymptotic center of every subsequence {un} of {xn}. This
is written as �- limn→∞ xn = w. (We denote it by {xn} ⇀ w).

Lemma 2.2 Let X be an Hadamard space. The following statements hold.
(1) [27] Every bounded sequence in a Hadamard space always has a �-convergent

subsequence.
(2) [28] A sequence {xn}�-converges to x ∈ X if and only if

lim sup
n→∞

〈−→xxn,−→xy〉 ≤ 0, ∀y ∈ X.

• Let C be a nonempty closed convex subset of an Hadamard space X . The metric
projection PC : X → C is defined by

u = PC(x) ⇐⇒ d(u, x) = inf
{

d(y, x) : y ∈ C
}

, x ∈ X. (2.5)

Lemma 2.3 ([24]) Let C be a nonempty closed and convex subset of an Hadamard space
X, x ∈ X and u ∈ C. Then u = PC(x) if and only if

〈−→yu,−→ux〉 ≥ 0, ∀y ∈ C. (2.6)

Definition 2.4 Let X be an Hadamard space with dual X∗ and A : X → 2X∗ be a multi-
valued mapping with domain D(A) := {x ∈ X : A(x) = ∅}.

(1) A is said to be monotone [15], if for all x, y ∈ D(A), x∗ ∈ Ax and y∗ ∈ Ay

〈
x∗ – y∗,−→yx

〉 ≥ 0. (2.7)

The multi-valued monotone operator A : X → 2X∗ is maximal if there exists no
monotone operator B : X → 2X∗ such that graph(B) properly contains graph(A).

(2) Let λ > 0 and A : X → 2X∗ be a set-valued operator. The resolvent of A of order λ is
the set-valued mapping Jλ : X → 2X defined by

Jλ(x) :=
{

z ∈ X :
[

1
λ

−→zx
]

∈ Az
}

. (2.8)

(3) A is said to satisfy the range condition [15] if, for each λ > 0 D(Jλ) = X , where Jλ is
the resolvent of A defined by (2.8).

Remark It has shown in [9] if A is a maximal monotone operator on an Hadamard space,
then A satisfies the range condition.

Definition 2.5 Let T : X → X be a mapping. T is said to be:
(1) nonexpansive if

d(Tx, Ty) ≤ d(x, y), ∀x, y ∈ X; (2.9)
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(2) firmly nonexpansive if

d2(Tx, Ty) ≤ 〈−−→TxTy,−→xy〉, ∀x, y ∈ X; (2.10)

(3) asymptotically nonexpansive, if there is a sequence {kn} ⊂ [1,∞) with kn → 1 as
n → ∞ such that

d
(
Tnx, Tny

) ≤ knd(x, y), ∀n ≥ 1, x, y ∈ X. (2.11)

Lemma 2.6
(1) (By the definition of firmly nonexpansive mapping and Cauchy–Schwarz inequality,

it is clear that) each firmly nonexpansive mapping T is nonexpansive.
(2) [29] Let C be a closed convex subset of a Hadamard space X and T : C → X be an

asymptotically nonexpansive mapping. Let {xn} be a bounded sequence in C such
that xn ⇀ p and limn→∞ d(xn, Txn) = 0, then Tp = p.

Theorem 2.7 ([15]) Let X be an Hadamard space and Jλ be the resolvent of the operator
A of order λ. Then

(i) for any λ > 0, R(Jλ) ⊂ D(A), Fix(Jλ) = A–1(0), where R(Jλ) is the range of the mapping
Jλ and Fix(Jλ) is the set of fixed points of Jλ;

(ii) if A is monotone, then, for each λ > 0, Jλ is a single-valued and firmly nonexpansive
mapping.

Remark 2.8 It is well known that if C is a nonempty and closed convex subset of a CAT(0)
space and T : C → C is a nonexpansive mapping, then Fix(T) is closed and convex. Thus,
if A is a monotone operator on a CAT(0) space X, then, by the conclusions (i) and (ii) of
Theorem 2.7, A–1(0) is closed and convex.

Lemma 2.9 ([30]) Let {sn} be a sequence of nonnegative real numbers, {αn} and {βn} be se-
quences of real numbers in (0, 1) with

∑∞
n=1 αn = ∞, and {tn} be a sequence of real numbers

such that

sn+1 ≤ (1 – αn)sn + αntn + βn, ∀n ≥ 1.

If lim supn→∞ tn ≤ 0, and
∑∞

n=1 βn < ∞, then limn→∞ sn = 0.

3 The main results
Now, we are in a position to give the main results in this paper.

Theorem 3.1 Let X be an Hadamard space with dual X∗. Let T : X → X be an asymptot-
ically nonexpansive mapping with sequence {kn} ⊂ [1,∞) and limn→∞ kn = 1, A : X → 2X∗

be a multi-valued monotone operator satisfying the range condition and f : X → X be a
contractive mapping with contractive coefficient γ ∈ (0, 1) and, for arbitrary initial point
x1 ∈ X, let {xn} be the sequence generated by

{
yn = Jλ(xn),
xn+1 = αnf (Jλ(xn)) ⊕ (1 – αn)Tn(βnJλ(xn) ⊕ (1 – βn)Jλ(xn+1)),

∀n ≥ 1, (3.1)
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where {αn} and {βn} are real sequences in (0, 1) satisfying the following conditions:
(i) limn→∞ αn = 0;

(ii)
∑∞

n=1 αn = ∞;
(iii) limn→∞ kn–1

αn
= 0;

(iv) |αn–αn–1|
α2

n
→ 0, as n → ∞;

(v) T is uniformly asymptotically regular i.e., for any x ∈ X

lim
n→∞ d

(
Tnx, Tn+1x

)
= 0.

If 
 := Fix(T) ∩ A–1(0) = ∅, then {xn} converges strongly to x∗ ∈ 
 which solves the follow-
ing variational inequality:

〈−−−−→
x∗f

(
x∗),

−→
qx∗〉 ≥ 0, ∀q ∈ 
. (3.2)

Proof (I) First we prove that {xn} defined by (3.1) is well defined.
In fact, for each n ≥ 1, let us define a mapping Tn : X → X by

Tn(x) = αnf
(
Jλ(xn)

) ⊕ (1 – αn)Tn(βnJλ(xn) ⊕ (1 – βn)Jλ(x)
)
.

Since T is asymptotically nonexpansive and Jλ is nonexpansive, we have

d(Tnx, Tny) = d
(
αnf

(
Jλ(xn)

) ⊕ (1 – αn)Tn(βnJλ(xn) ⊕ (1 – βn)Jλ(x)
)
,

αnf
(
Jλ(xn)

) ⊕ (1 – αn)Tn(βnJλ(xn) ⊕ (1 – βn)Jλ(y)
))

≤ (1 – αn)d
(
Tn(βnJλ(xn) ⊕ (1 – βn)Jλ(x)

)
, Tn(βnJλ(xn) ⊕ (1 – βn)Jλ(y)

))
≤ (1 – αn)knd

(
βnJλ(xn) ⊕ (1 – βn)Jλ(x),βnJλ(xn) ⊕ (1 – βn)Jλ(y)

)
≤ (1 – αn)kn(1 – βn)d

(
Jλ(x), Jλ(y)

)
≤ (1 – αn)kn(1 – βn)d(x, y)

≤ (1 – αn)knd(x, y).

By condition (iii), for any given 0 < ε < 1 –γ there exists n0 ≥ 1 such that for any n ≥ n0 we
have kn – 1 < αnε < αn(1 – γ ) ≤ αn(kn – γ ), i.e., (1 – αn)kn < 1 – αnγ < 1. Therefore for any
n ≥ n0, Tn : X → X is a contractive mapping. By the Banach contraction principle, there
exists a unique fixed point xn+1 ∈ X of Tn for each n ≥ n0. Without loss of generality, in
the sequel, we can assume that the following is true for all n ≥ 1:

⎧⎪⎨
⎪⎩

kn – 1 < αnε,
kn–1
αn

< 1 – γ ,
(1 – αn)kn < 1 – αnγ < 1,

∀n ≥ 1. (3.3)

Therefore {xn} is well defined.
(II) Next we prove that {xn} is bounded.
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In fact, for each p ∈ 
 := Fix(t) ∩ A–1(0) we have

d(xn+1, p) = d
(
αnf (yn) ⊕ (1 – αn)Tn(βnyn ⊕ (1 – βn)yn+1

)
, p

)
≤ αnd

(
f (yn), p

)
+ (1 – αn)d

(
Tn(βnyn ⊕ (1 – βn)yn+1

)
, p

)
≤ αn

{
d
(
f
(
Jλ(xn)

)
, f (p)

)
+ d

(
f (p), p

)}
+ (1 – αn)knd

(
βnyn ⊕ (1 – βn)yn+1, p

)
≤ αnγ d

(
Jλ(xn), p

)
+ αnd

(
f (p), p

)
+ (1 – αn)knd

(
βnyn ⊕ (1 – βn)yn+1, p

)
≤ αnγ d(xn, p) + αnd

(
f (p), p

)
+ (1 – αn)kn

{
βnd(xn, p) + (1 – βn)d(xn+1, p)

}
.

After simplifying, and by using (3.3) we have

d(xn+1, p) ≤ αnγ + knβn – αnknβn

1 – (1 – αn – βn + αnβn)kn
d(xn, p)

+
αn

1 – (1 – αn – βn + αnβn)kn
d
(
f (p), p

)

=
(

1 +
(kn – 1) – αnkn + αnγ

1 – (1 – αn – βn + αnβn)kn

)
d(xn, p)

+
αn

1 – (1 – αn – βn + αnβn)kn
d
(
f (p), p

)

≤
(

1 +
(αnε – αnkn + αnγ )

1 – (1 – αn – βn + αnβn)kn

)
d(xn, p)

+
αn

1 – (1 – αn – βn + αnβn)kn
d
(
f (p), p

)

=
(

1 –
kn – ε – γ

1 – (1 – αn – βn + αnβn)kn

)
αnd(xn, p)

+
αn

1 – (1 – αn – βn + αnβn)kn
d
(
f (p), p

)

≤
{

1 –
(1 – ε – γ )αn

αn + βn – αnβn

}
d(xn, p)

+
(1 – γ – ε)αn

(1 – γ – ε)(αn + βn – αnβn)
d
(
f (p), p

)

≤ max

{
d(xn, p),

d(f (p), p)
1 – γ – ε

}
.

By induction we can prove that

d(xn, p) ≤ max

{
d(x1, p),

d(f (p), p)
1 – γ – ε

}
.

This implies that the sequence {xn} is bounded, so {yn}, {f (yn)} and {Tn(βnyn ⊕
(1 – βn)yn+1)} are also bounded.
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(III) Next we define a sequence {wn} by

wn = αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn), ∀n ≥ 1. (3.4)

By a similar method to the proof of Sect. 1, we can also prove that the sequence {wn} is
well defined and bounded.

Now we prove that

lim
n→∞ d(xn+1, wn) = 0. (3.5)

In fact, it follows from (3.1) and (3.4) that

d(xn+1, wn) = d
(
αnf

(
Jλ(xn)

) ⊕ (1 – αn)Tn(βnJλ(xn) ⊕ (1 – βn)Jλ(xn+1)
)
,

αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn)
)

≤ αnd
(
f
(
Jλ(xn)

)
, f (Jλwn)

)
+ (1 – αn)d

(
Tn(βnJλ(xn) ⊕ (1 – βn)Jλ(xn+1)

)
, Tn(Jλwn)

)
≤ αnγ d(xn, wn)

+ (1 – αn)kn
{
βnd

(
Jλ(xn), Jλwn

)
+ (1 – βn)d

(
Jλ(xn+1), Jλwn

)}
≤ αnγ d(xn, wn) + (1 – αn)kn

{
βnd(xn, wn) + (1 – βn)d(xn+1, wn)

}
.

After simplifying, and using (3.3), we have

d(xn+1, wn) ≤ αnγ + βnkn – αnβnkn

1 – (1 – αn – βn + αnβn)kn
d(xn, wn)

=
{

1 –
–(kn – 1 – αnkn + αnγ )

1 – (1 – αn – βn + αnβn)kn

}
d(xn, wn)

≤
{

1 –
–(αnε – αnkn + αnγ )

1 – (1 – αn – βn + αnβn)kn

}
d(xn, wn)

=
{

1 –
(kn – γ – ε)αn

1 – (1 – αn – βn + αnβn)kn

}
d(xn, wn)

≤
(

1 –
(1 – γ – ε)αn

αn + βn – αnβn

)
d(xn, wn)

≤ (
1 – (1 – γ – ε)αn

)[
d(xn, wn–1) + d(wn–1, wn)

]
. (3.6)

In order to use Lemma 2.9, it should be proved that

lim sup
n→∞

d(wn–1, wn)
(1 – γ – ε)αn

= 0. (3.7)

Indeed, it follows from Lemma 2.1 that

d(wn, wn–1) = d
(
αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn),

αn–1f (Jλwn–1) ⊕ (1 – αn–1)Tn–1(Jλwn–1)
)
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≤ d
(
αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn),αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn–1)

)
+ d

(
αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn–1),αnf (Jλwn–1) ⊕ (1 – αn)Tn(Jλwn–1)

)
+ d

(
αnf (Jλwn–1) ⊕ (1 – αn)Tn(Jλwn–1),

αn–1f (Jλwn–1) ⊕ (1 – αn–1)Tn–1(Jλwn–1)
)

≤ (1 – αn–1)d
(
Tn(Jλwn), Tn(Jλwn–1)

)
+ αnd

(
f (Jλwn), f (Jλwn–1)

)
+ |αn – αn–1|d

(
f (Jλwn–1), Tn(Jλwn–1)

)
≤ (1 – αn–1)knd(wn, wn–1) + αnγ d(wn, wn–1) + |αn – αn–1|M∗,

where M∗ = supn≥1 d(f (Jλwn–1), Tn(Jλwn–1)). After simplifying and using (3.3) we have

d(wn, wn–1) ≤ 1
–(kn – 1 – αnkn + αnγ )

|αn – αn–1|M∗

≤ 1
–(ε – kn + γ )αn

|αn – αn–1|M∗

≤ 1
(1 – ε – γ )αn

|αn – αn–1|M∗.

By the condition (iv) we have

lim sup
n→∞

d(wn, wn–1)
(1 – ε – γ )αn

≤ lim sup
n→∞

|αn – αn–1|
(1 – ε – γ )2α2

n
M∗ = 0.

This implies that (3.7) is true. By Lemma 2.9 and (3.6), we get

lim
n→∞ d(xn+1, wn) = 0. (3.8)

(IV) Next we prove that {xn} converges strongly to some point x∗ ∈ 
 := Fix(T) ∩ A–1(0)
which is also the unique solution of the following variational inequality:

〈−−−−→
x∗f

(
x∗),

−→
qx∗〉 ≥ 0, ∀q ∈ 
. (3.9)

By (3.8), in order to prove {xn} converges strongly to some point x∗ ∈ 
, it suffices to
prove that {wn} converges strongly to this point x∗ ∈ 
.

In fact, it follows from (3.1) and (3.4) that

d
(
wn, TnJλ(wn)

)
= d

(
αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn), Tn(Jλ(wn)

))
≤ αnd

(
f (Jλwn), Tn(Jλ(wn)

)) → 0. (3.10)

Also for each p ∈ 
, it follows from (2.4) that

d2(wn, p) = d2(αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn), p
)

≤ αnd2(f (Jλwn), p
)

+ (1 – αn)d2(Tn(Jλwn), p
)

≤ αnd2(f (Jλwn), p
)

+ (1 – αn)k2
nd2(Jλ(wn), p

)
. (3.11)
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After simplifying, we have

–d2(Jλ(wn), p
) ≤ 1

(1 – αn)k2
n

{
αnd2(f (Jλwn), p

)
– d2(wn, p)

}
. (3.12)

Again since Jλ is firmly nonexpansive, we have

d2(Jλ(wn), p
) ≤ 〈−−−−→

Jλ(wn)p,−→wnp
〉

=
1
2
{

d2(Jλ(wn), p
)

+ d2(p, wn) – d2(Jλ(wn), wn
)}

.

This together with (3.12) shows that

d2(Jλ(wn), wn
) ≤ d2(p, wn) – d2(Jλ(wn), p

)
≤ d2(p, wn) +

1
(1 – αn)k2

n

{
αnd2(f (Jλwn), p

)
– d2(wn, p)

} → 0. (3.13)

From (3.10) and (3.13) one gets

lim
n→∞ d

(
Jλ(wn), TnJλ(wn)

)
= 0. (3.14)

By the assumption that T is uniformly asymptotic regularity, from (3.14) we obtain

d
(
Jλ(wn), TJλ(wn)

) ≤ d
(
Jλ(wn), TnJλ(wn)

)
+ d

(
TnJλ(wn), Tn+1Jλ(wn)

)
+ d

(
Tn+1Jλ(wn), TJλ(wn)

)
≤ (1 + k1)d

(
Jλ(wn), TnJλ(wn)

)
+ d

(
TnJλ(wn), Tn+1Jλ(wn)

)
→ 0 (as n → ∞). (3.15)

Since {wn} is bounded, by Lemma 2.2(1) there exists a subsequence {wni} of {wn} which
�-converges to some point x∗. It then follows from (3.13) that there exists a subsequence
{Jλ(wni )} of {Jλ(wn)} which �-converges to x∗. Thus, from (3.13), (3.15), and Lemma 2.6(2),
we obtain x∗ ∈ Fix(T) ∩ A–1(0) = 
.

Next we prove that limn→∞ wn = x∗ which is also the unique solution of the variational
inequality (3.9).

In fact, it follows from Lemma 2.1(4) that

d2(wn, x∗) = d2(αnf (Jλwn) ⊕ (1 – αn)Tn(Jλwn), x∗)
≤ α2

nd2(f (Jλwn), x∗) + (1 – αn)2d2(Tn(Jλwn), x∗)
+ 2αn(1 – αn)

〈−−−−−→
f (Jλwn)x∗,

−−−−−−−→
Tn(Jλwn)x∗〉

≤ α2
nd2(f (Jλwn), x∗) + (1 – αn)2k2

nd2(Jλwn, x∗)
+ 2αn(1 – αn)

{〈−−−−−→
f (Jλwn)x∗,

−−−−−−−−−−−→
Tn(Jλ(wn)

)
Jλ(wn)

〉
+

〈−−−−−−−−→
f (Jλwn)f

(
x∗),

−−−−−→
Jλ(wn)x∗〉 +

〈−−−−→
f
(
x∗)x∗,

−−−−−→
Jλ(wn)x∗〉}
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≤ α2
nd2(f (Jλwn), x∗) + (1 – αn)2k2

nd2(wn, x∗)
+ 2αn(1 – αn)

{
d
(
f (Jλwn), x∗)d

(
Tn(Jλ(wn)

)
, Jλ(wn)

)
+ γ d2(wn, x∗) +

〈−−−−→
f
(
x∗)x∗,

−−−−−→
Jλ(wn)x∗〉}.

After simplifying, we have

d2(wn, x∗) ≤ αn

1 – 2αn(1 – αn)γ – (1 – αn)2k2
n

{
αnd2(f (Jλwn), x∗)

+ 2(1 – αn)
[
d
(
f (Jλwn), x∗)d

(
Tn(Jλ(wn)

)
, Jλ(wn)

)
+

〈−−−−→
f
(
x∗)x∗,

−−−−−→
Jλ(wn)x∗〉]}. (3.16)

We use

αn

1 – 2αn(1 – αn)γ – (1 – αn)2k2
n

=
1

(2 – αn)k2
n – 2(1 – αn)γ + (1–kn)(1+kn)

αn

→ 1
2(1 – γ )

(as n → ∞). (3.17)

Again since {Jλ(wni )} �-converges to x∗ ∈ 
, by Lemma 2.2(2), we have

lim
ni→∞

〈−−−−→
f
(
x∗)x∗,

−−−−−→
Jλ(wni )x

∗〉 = lim sup
ni→∞

〈−−−−→
f
(
x∗)x∗,

−−−−−→
Jλ(wni )x

∗〉 ≤ 0. (3.18)

It follows from (3.14), (3.16), (3.17) and (3.18) that

lim
ni→∞ d

(
wni , x∗) = 0. (3.19)

Next we prove that x∗ is a solution of variational inequality (3.9). In fact, for any q ∈ 
,
it follows from Lemma 2.1(4) that (for the sake of convenience we denote {wni} by {wi})

d2(wi, q) = d2(αnf (Jλwi) ⊕ (1 – αi)Ti(Jλwi), q
)

≤ αid2(f (Jλwi), q
)

+ (1 – αi)d2(Ti(Jλwi), q
)

– αi(1 – αi)d2(f (Jλwi), Ti(Jλwi)
)

≤ αid2(f (Jλwi), q
)

+ (1 – αi)k2
i d2(wi, q)

– αi(1 – αi)d2(f (Jλwi), Ti(Jλwi)
)
.

After simplifying we have

d2(wi, q) ≤ 1
1–k2

i
αi

+ k2
i

{
d2(f (Jλwi), q

)
– (1 – αi)d2(f (Jλwi), Ti(Jλwi)

)}
. (3.20)

On the other hand, it follows from (3.19) and (3.13) that wi → x∗ and Jλ(wi) → x∗ (as
i → ∞). Hence f (Jλ(wi)) → f (x∗). Again by (3.14) and condition (iii), Ti(Jλwi) → x∗ and



Chang et al. Journal of Inequalities and Applications  (2018) 2018:235 Page 13 of 14

1
1–k2

i
αi

+k2
i

→ 1 (as i → ∞). Letting i → ∞ in (3.20) we have

d2(x∗, q
) ≤ d2(f

(
x∗), q

)
– d2(f

(
x∗), x∗),

i.e.,

0 ≤ d2(f
(
x∗), q

)
– d2(f

(
x∗), x∗) – d2(x∗, q

)
.

Hence we have

〈−−−−→
x∗f

(
x∗),

−→
qx∗〉 =

1
2
{

d2(f
(
x∗), q

)
– d2(f

(
x∗), x∗) – d2(x∗, q

)} ≥ 0, ∀q ∈ 
,

i.e., x∗ is a solution of variational inequality (3.9). If there exists another subsequence {wnk }
of {wn} which �-converges to y∗. By the same argument, we know that y∗ ∈ 
 which solves
the variational inequality (3.9). Therefore we have

〈−−−−→
x∗f

(
x∗),

−−→
y∗x∗〉 ≥ 0,

〈−−−−→
y∗f

(
y∗),

−−→
x∗y∗〉 ≥ 0.

Adding the above two inequalities, we obtain

0 ≤ 〈−−−−→
x∗f

(
x∗),

−−→
y∗x∗〉 –

〈−−−−→
y∗f

(
y∗),

−−→
y∗x∗〉

=
〈−−−−→
x∗f

(
y∗),

−−→
y∗x∗〉 +

〈−−−−−−→
f
(
y∗)f

(
x∗),

−−→
y∗x∗〉

–
〈−−→
y∗x∗,

−−→
y∗x∗〉 –

〈−−−−→
x∗f

(
y∗),

−−→
y∗x∗〉

≤ γ d2(y∗, x∗) – d2(y∗, x∗) < 0.

This is a contradiction, and so x∗ = y∗. Hence {wn} converges strongly to x∗. By (3.8) one
shows that {xn} converges strongly to x∗.

This completes the proof of Theorem 3.1. �
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