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Abstract
In this paper, we prove Hyers–Ulam–Rassias stability of C∗-algebra homomorphisms
for the following generalized Cauchy–Jensen equation:

αμf
(x + y

α
+ z

)
= f (μx) + f (μy) + αf (μz),

for all μ ∈ S := {λ ∈ C | |λ| = 1} and for any fixed positive integer α ≥ 2, which was
introduced by Gao et al. [J. Math. Inequal. 3:63–77, 2009], on C∗-algebras by using
fixed poind alternative theorem. Moreover, we introduce and investigate
Hyers–Ulam–Rassias stability of generalized θ -derivation for such functional
equations on C∗-algebras by the same method.
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1 Introduction and preliminaries
Throughout this paper, let N, R and C be the set of natural numbers, the set of real num-
bers, the set of complex numbers, respectively. The stability problem of functional equa-
tions was initiated by Ulam in 1940 [2] arising from concern over the stability of group ho-
momorphisms. This form of asking the question is the object of stability theory. In 1941,
Hyers [3] provided a first affirmative partial answer to Ulam’s problem for the case of ap-
proximately additive mapping in Banach spaces. In 1978, Rassias [4] gave a generalization
of Hyers’ theorem for linear mapping by considering an unbounded Cauchy difference.
A generalization of Rassias’ result was developed by Găvruţa [5] in 1994 by replacing the
unbounded Cauchy difference by a general control function.

In 2006, Baak [6] investigated the Cauchy–Rassis stability of the following Cauchy–
Jensen functional equations:

f
(

x + y
2

+ z
)

+ f
(

x – y
2

+ z
)

= f (x) + 2f (z),

f
(

x + y
2

+ z
)

– f
(

x – y
2

+ z
)

= f (y),
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or

2f
(

x + y
2

+ z
)

= f (x) + f (y) + 2f (z)

for all x, y, z ∈ X, in Banach spaces.
The fixed point method was applied to study the stability of functional equations by

Baker in 1991 [7] by using the Banach contraction principle. Next, Radu [8] proved a sta-
bility of functional equation by the alternative of fixed point which was introduced by Diaz
and Margolis [9]. The fixed point method has provided a lot of influence in the develop-
ment of stability.

In 2008, Park and An [10] proved the Hyers–Ulam–Rassias stability of C∗-algebra ho-
momorphisms and generalized derivations on C∗-algebras by using alternative of fixed
point theorem for the Cauchy–Jensen functional equation 2f ( x+y

2 + z) = f (x) + f (y) + 2f (z),
which was introduced and investigated by Baak [6]

The definition of the generalized Cauchy–Jensen equation was given by Gao et al.[1] in
2009 as follows.

Definition 1.1 ([1]) Let G be an n-divisible abelian group where n ∈N (i.e. a �→ na | G →
G is a surjection) and X be a normed space with norm ‖· ‖X . For a mapping f : G → X, the
equation

nf
(

x + y
n

+ z
)

= f (x) + f (y) + nf (z)

for all x, y, z ∈ G and for any fixed positive integer n ≥ 2 is said to be a generalized Cauchy–
Jensen equation (GCJE, shortly).

In particular, when n = 2, it is called a Cauchy–Jensen equation. Moreover, they gave the
following useful properties.

Corollary 1.2 ([1]) For a mapping f : G → X, the following statements are equivalent.
(i) f is additive.

(ii) nf ( x+y
n + z) = f (x) + f (y) + nf (z), for all x, y, z ∈ G.

(iii) ‖nf ( x+y
n + z)‖X ≥ ‖f (x) + f (y) + nf (z)‖X , for all x, y, z ∈ G.

It is obvious that a vector space is n-divisible abelian group, so Corollary 1.2 works for
a vector space G.

All over this paper, A and B are C∗-algebras with norm ‖· ‖A and ‖· ‖B, respectively.
We recall a fundamental result in fixed point theory. The following is the definition of a
generalized metric space which was introduced by Luxemburg in 1958 [11].

Definition 1.3 ([11]) Let X be a set. A function d : X × X → [0,∞] is called a generalized
metric on X if d satisfies the following conditions:

(i) d(x, y) = 0 if and only if x = y,
(i) d(x, y) = d(y, x), for all x, y ∈ X ,

(iii) d(x, z) ≤ d(x, y) + d(y, z), for all x, y, z ∈ X .
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The following fixed point theorem will play important roles in proving our main results.

Theorem 1.4 ([9]) Let (X, d) be a complete generalized metric space and T : X → X be a
strictly contractive mapping, that is,

d(Tx, Ty) ≤ kd(x, y)

for all x, y ∈ X and for some Lipschitz k < 1. Then, for each given element x ∈ X, either

d
(
Tnx, Tn+1x

)
= ∞

for all nonnegative integer n or there exists a positive integer n0 such that
(i) d(Tnx, Tn+1x) < ∞ for all n ≥ n0,

(ii) the sequence {Tnx} converges to a fixed point y∗ of T ,
(iii) y∗ is the unique fixed point of T in the set Y = {y ∈ X | d(Tn0 x, y) < ∞},
(iv) d(y, y∗) ≤ 1

1–k d(y, Ty), for all y ∈ Y .

The following lemma is useful for proving our main results.

Lemma 1.5 ([12]) Let f : A → B be an additive mapping such that f (μx) = μf (x) for all
x ∈A and all μ ∈ S := {λ ∈C | |λ| = 1}. Then the mapping f is C-linear.

2 Stability of C∗-algebra homomorphisms
Let f be a mapping of A into B. We define

Eμf (x, y, z) := αμf
(

x + y
α

+ z
)

– f (μx) – f (μy) – αf (μz), (2.1)

for all μ ∈ S, for all x, y, z ∈ A and for any fixed positive integer α ≥ 2.
We prove the Hyers–Ulam–Rassias stability of C∗-algebra homomorphisms for the

functional equation Eμf (x, y, z) = 0.

Theorem 2.1 Let φ : A3 → [0,∞) be a function such that there exists a k < 1 satisfying

φ(x, y, z) ≤ 2 + α

α
kφ

(
α

2 + α
x,

α

2 + α
y,

α

2 + α
z
)

(2.2)

for all x, y, z ∈A. Let f be a mapping of A into B satisfying

∥∥Eμf (x, y, z)
∥∥
B

≤ φ(x, y, z), (2.3)
∥∥f (xy) – f (x)f (y)

∥∥
B

≤ φ(x, y, 0), (2.4)
∥∥f

(
x∗) – f (x)∗

∥∥
B

≤ φ(x, x, x), (2.5)

for all μ ∈ S and for all x, y, z ∈ A. Then there exists a unique C∗-algebra homomorphism
F : A → B such that

∥∥f (x) – F(x)
∥∥
B

≤ 1
(1 – k)(2 + α)

φ(x, x, x) (2.6)

for all x ∈ A.
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Proof Consider the set

X := {g |A → B}

and introduce the generalized metric on X as follows:

d(g, h) = inf
{

M ∈ (0,∞) | ∥∥g(x) – h(x)
∥∥
B

≤ Mφ(x, x, x),∀x ∈A
}

. (2.7)

It is easy to show that (X, d) is complete.
Now, we consider the linear mapping T : X → X such that

Tg(x) :=
α

2 + α
g
(

2 + α

α
x
)

for all x ∈ A. Next, we will show that T is a strictly contractive self-mapping of X with the
Lipschitz constant k. For any g, h ∈ X, let d(g, h) = K for some K ∈ R+. Then we have

∥∥g(x) – h(x)
∥∥
B

≤ Kφ(x, x, x) ∀x ∈A,

⇒
∥∥∥∥g

(
2 + α

α
x
)

– h
(

2 + α

α
x
)∥∥∥∥

B

≤ Kφ

(
2 + α

α
x,

2 + α

α
x,

2 + α

α
x
)

∀x ∈A,

⇒
∥∥∥∥

α

2 + α
g
(

2 + α

α
x
)

–
α

2 + α
h
(

2 + α

α
x
)∥∥∥∥

B

≤ α

2 + α
Kφ

(
2 + α

α
x,

2 + α

α
x,

2 + α

α
x
)

∀x ∈A.

By (2.2), we obtain

∥∥Tg(x) – Th(x)
∥∥
B

≤ α

2 + α
K

2 + α

α
kφ

(
α

2 + α
· 2 + α

α
x,

α

2 + α
· 2 + α

α
x,

α

2 + α
· 2 + α

α
x
)

⇒ ∥∥Tg(x) – Th(x)
∥∥
B

≤ Kkφ(x, x, x) ∀x ∈A.

⇒ d(Tg, Th) ≤ Kk.

Hence, we obtain

d(Tg, Th) ≤ kd(g, h).

Letting μ = 1 and x = y = z in (2.1), we get

Eμf (x, x, x) = αf
(

x + x
α

+ x
)

– f (x) – f (x) – αf (x) = αf
(

2 + α

α
x
)

– (2 + α)f (x)

for all x ∈A. By (2.3), we have

∥∥Eμf (x, x, x)
∥∥
B

=
∥∥∥∥αf

(
2 + α

α
x
)

– (2 + α)f (x)
∥∥∥∥
B

≤ φ(x, x, x),
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which implies that

∥∥∥∥f (x) –
α

2 + α
f
(

2 + α

α
x
)∥∥∥∥

B

≤ 1
2 + α

φ(x, x, x)

for all x ∈A, that is,

∥∥f (x) – Tf (x)
∥∥
B

≤ 1
2 + α

φ(x, x, x)

for all x ∈A. It follows from (2.7) that we have

d(f , Tf ) ≤ 1
2 + α

.

By Theorem 1.4, there exists a mapping F : A → B such that the following conditions
hold.

(1) F is a fixed point of T , that is, TF(x) = F(x) for all x ∈A. Then we have

F(x) = TF(x) =
α

2 + α
F
(

2 + α

α
x
)

⇒ F
(

2 + α

α
x
)

=
2 + α

α
F(x)

for all x ∈A. Moreover, the mapping F is a unique fixed point of T in the set

Y =
{

g ∈ X | d(f , g) < ∞}
.

From (2.7), there exists C ∈ (0,∞) satisfying

∥∥f (x) – F(x)
∥∥
B

≤ Cφ(x, x, x),

for all x ∈A.
(2) The sequence {Tnf } converges to F . This implies that we have the equality

F(x) = lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

x
)

(2.8)

for all x ∈A.
(3) We obtain d(f , F) ≤ 1

1–k d(f , Tf ), which implies that

d(f , F) ≤ 1
1 – k

d(f , Tf ) ≤ 1
(1 – k)(2 + α)

. (2.9)

Therefore, inequality (2.6) holds.
From (2.2), for any j ∈N, we have

(
α

2 + α

)j

·φ
((

2 + α

α

)j

x,
(

2 + α

α

)j

y,
(

2 + α

α

)j

z
)

≤
(

α

2 + α

)j

·
(

2 + α

α

)
kφ

(
α

2 + α

(
2 + α

α

)j

x,
α

2 + α

(
2 + α

α

)j

y,
α

2 + α

(
2 + α

α

)j

z
)

= k
(

α

2 + α

)j–1

φ

((
2 + α

α

)j–1

x,
(

2 + α

α

)j–1

y,
(

2 + α

α

)j–1

z
)
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≤ k
(

α

2 + α

)j–1(2 + α

α

)
kφ

(
α

2 + α

(
2 + α

α

)j–1

x,

α

2 + α

(
2 + α

α

)j–1

y,
α

2 + α

(
2 + α

α

)j–1

z
)

= k2
(

α

2 + α

)j–2

φ

((
2 + α

α

)j–2

x,
(

2 + α

α

)j–2

y,
(

2 + α

α

)j–2

z
)

≤ · · · ≤ kjφ(x, y, z)

for all x, y, z ∈A. Since 0 < k < 1, we obtain

lim
j→∞

(
α

2 + α

)j

·φ
((

2 + α

α

)j

x,
(

2 + α

α

)j

y,
(

2 + α

α

)j

z
)

= 0 (2.10)

for all x, y, z ∈A.
It follows from (2.3), (2.8) and (2.10) that

∥∥∥∥αF
(

x + y
α

+ z
)

– F(x) – F(y) – αF(z)
∥∥∥∥
B

=
∥∥∥∥α lim

n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n(x + y
α

+ z
))

– lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

x
)

– lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

y
)

– α lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

z
)∥∥∥∥

B

= lim
n→∞

(
α

2 + α

)n∥∥∥∥αf
( ( 2+α

α
)nx + ( 2+α

α
)ny

α
+

(
2 + α

α

)n

z
)

– f
((

2 + α

α

)n

x
)

– f
((

2 + α

α

)n

y
)

– αf
((

2 + α

α

)n

z
)∥∥∥∥

B

≤ lim
n→∞

(
α

2 + α

)n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

y,
(

2 + α

α

)n

z
)

= 0

for all x, y, z ∈A. Hence, we have

αF
(

x + y
α

+ z
)

= F(x) + F(y) + αF(z) (2.11)

for all x, y, z ∈A. From Corollary 1.2 and (2.11), we see that F is additive, that is,

F(x + y) = F(x) + F(y) (2.12)

for all x, y ∈ A. Next, we can show that F : A → B is C-linear. Firstly, we will show that,
for any x ∈ A, F(μx) = μF(x) for all μ ∈ S. For each μ ∈ S, substituting x, y, z in (2.1) by
( 2+α

α
)nx, we obtain

Eμf
((

2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

= αμf
( ( 2+α

α
)nx + ( 2+α

α
)nx

α
+

(
2 + α

α

)n

x
)

– f
(

μ

(
2 + α

α

)n

x
)

– f
(

μ

(
2 + α

α

)n

x
)
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– αf
(

μ

(
2 + α

α

)n

x
)

= αμf
(

(2 + α)
α

·
(

2 + α

α

)n

x
)

– (2 + α)f
(

μ

(
2 + α

α

)n

x
)

for all x ∈A. By (2.3), we have

∥∥∥∥Eμf
((

2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)∥∥∥∥

B

=
∥∥∥∥αμf

(
2 + α

α
·
(

2 + α

α

)n

x
)

– (2 + α)f
(

μ

(
2 + α

α

)n

x
)∥∥∥∥

B

≤ φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

(2.13)

for all x ∈A. From (2.13), in the case μ = 1, we obtain the fact that

∥∥∥∥αf
(

(2 + α)
α

·
(

2 + α

α

)n

x
)

– (2 + α)f
((

2 + α

α

)n

x
)∥∥∥∥

B

≤ φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

(2.14)

for all x ∈A. It follows from (2.3), (2.13) and (2.14) that

∥∥∥∥(2 + α)f
(

μ

(
2 + α

α

)n

x
)

– (2 + α)μf
((

2 + α

α

)n

x
)∥∥∥∥

B

=
∥∥∥∥(2 + α)f

(
μ

(
2 + α

α

)n

x
)

– αμf
(

2 + α

α
·
(

2 + α

α

)n

x
)

+ αμf
(

2 + α

α
·
(

2 + α

α

)n

x
)

– (2 + α)μf
((

2 + α

α

)n

x
)∥∥∥∥

B

≤
∥∥∥∥(2 + α)f

(
μ

(
2 + α

α

)n

x
)

– αμf
(

2 + α

α
·
(

2 + α

α

)n

x
)∥∥∥∥

B

+
∥∥∥∥αμf

(
2 + α

α
·
(

2 + α

α

)n

x
)

– (2 + α)μf
((

2 + α

α

)n

x
)∥∥∥∥

B

≤
∥∥∥∥(2 + α)f

(
μ

(
2 + α

α

)n

x
)

– αμf
(

2 + α

α
·
(

2 + α

α

)n

x
)∥∥∥∥

B

+ |μ|
∥∥∥∥αf

(
2 + α

α
·
(

2 + α

α

)n

x
)

– (2 + α)f
((

2 + α

α

)n

x
)∥∥∥∥

B

≤ 2φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

for all x ∈A. This implies that

∥∥∥∥
(

α

2 + α

)n

f
(

μ

(
2 + α

α

)n

x
)

–
(

α

2 + α

)n

μf
((

2 + α

α

)n

x
)∥∥∥∥

B

≤ 2
2 + α

(
α

2 + α

)n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)
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≤
(

α

2 + α

)n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

for all x ∈A. By (2.10), we have

lim
n→∞

∥∥∥∥
(

α

2 + α

)n

f
(

μ

(
2 + α

α

)n

x
)

–
(

α

2 + α

)n

μf
((

2 + α

α

)n

x
)∥∥∥∥

B

= 0,

which implies that

F(μx) = μF(x) (2.15)

for all x ∈A. It follows from (2.12), (2.15) and Lemma 1.5 that F : A → B is C-linear. Next,
we will show that F is a C∗-algebra homomorphism. It follows from (2.4) that

∥∥F(xy) – F(x)F(y)
∥∥
B

=
∥∥∥∥ lim

n→∞

(
α

2 + α

)2n

f
((

2 + α

α

)2n

xy
)

– lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

x
)

· lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

y
)∥∥∥∥

B

= lim
n→∞

(
α

2 + α

)2n∥∥∥∥f
((

2 + α

α

)2n

xy
)

– f
((

2 + α

α

)n

x
)

f
((

2 + α

α

)n

y
)∥∥∥∥

B

≤ lim
n→∞

(
α

2 + α

)2n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

y, 0
)

≤ lim
n→∞

(
α

2 + α

)n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

y, 0
)

= 0

for all x, y ∈ A. Hence

F(xy) = F(x)F(y)

for all x, y ∈ A.
Finally, it follows from (2.5) that

∥∥F
(
x∗) –

(
F(x)

)∗∥∥
B

=
∥∥∥∥ lim

n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

x∗
)

–
(

lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

x
))∗∥∥∥∥

B

=
∥∥∥∥ lim

n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

x∗
)

– lim
n→∞

((
α

2 + α

)n

f
((

2 + α

α

)n

x
))∗∥∥∥∥

B

=
∥∥∥∥ lim

n→∞

(
α

2 + α

)n

f
(((

2 + α

α

)n

x
)∗)

– lim
n→∞

(
α

2 + α

)n(
f
((

2 + α

α

)n

x
))∗∥∥∥∥

B

= lim
n→∞

(
α

2 + α

)n∥∥∥∥f
(((

2 + α

α

)n

x
)∗)

–
(

f
((

2 + α

α

)n

x
))∗∥∥∥∥

B

≤ lim
n→∞

(
α

2 + α

)n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

= 0
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for all x ∈A, which implies that

F
(
x∗) =

(
F(x)

)∗

for all x ∈A. Therefore, F : A → B is a C∗-algebra homomorphism. �

Corollary 2.2 Let p ∈ [0, 1), ε ∈ [0,∞) and f be a mapping of A into B such that

∥∥Eμf (x, y, z)
∥∥
B

≤ ε
(‖x‖p

A
+ ‖y‖p

A
+ ‖z‖p

A

)
, (2.16)

∥∥f (xy) – f (x)f (y)
∥∥
B

≤ ε
(‖x‖p

A
+ ‖y‖p

A

)
, (2.17)

∥∥f
(
x∗) – f (x)∗

∥∥
B

≤ 3ε‖x‖p
A

(2.18)

for all μ ∈ S and for all x, y, z ∈ A. Then there exists a unique C∗-algebra homomorphism
F : A → B such that

∥∥f (x) – F(x)
∥∥
B

≤ 3ε

(1 – ( 2+α
α

)p–1)(2 + α)
‖x‖p

A

for all x ∈ A.

Proof The proof follows from Theorem 2.1 by taking

φ(x, y, z) = θ
(‖x‖p

A
+ ‖y‖p

A
+ ‖z‖p

A

)

for all x, y, z ∈A. Then k = ( 2+α
α

)p–1 and we get the desired results. �

Theorem 2.3 Let φ : A3 → [0,∞) be a function such that there exists a k < 1 such that

φ(x, y, z) ≤
(

α

2 + α

)2

kφ

(
2 + α

α
x,

2 + α

α
y,

2 + α

α
z
)

(2.19)

for all x, y, z ∈A. Let f be a mapping of A into B satisfying (2.3), (2.4) and (2.5). Then there
exists a unique C∗-algebra homomorphism F : A → B such that

∥∥f (x) – F(x)
∥∥
B

≤ αk
(1 – k)(2 + α)2 φ(x, x, x) (2.20)

for all x ∈ A.

Proof We consider the linear mapping T : X → X such that

Tg(x) :=
2 + α

α
g
(

α

2 + α
x
)

(2.21)

for all x ∈A. By a similar proof to Theorem 2.1, T is a strictly contractive self-mapping of
X with the Lipschitz constant k. Letting μ = 1 and substituting x, y, z in (2.3) by α

2+α
x, we
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have
∥∥∥∥Eμf

(
α

2 + α
x,

α

2 + α
x,

α

2 + α
x
)∥∥∥∥

B

=
∥∥∥∥αf (x) – (2 + α)f

(
α

2 + α
x
)∥∥∥∥

B

≤ φ

(
α

2 + α
x,

α

2 + α
x,

α

2 + α
x
)

(2.22)

for all x ∈A. From inequality (2.22) we get

∥∥∥∥f (x) –
2 + α

α
f
(

α

2 + α
x
)∥∥∥∥

B

≤ 1
α

φ

(
α

2 + α
x,

α

2 + α
x,

α

2 + α
x
)

≤ 1
α

·
(

α

2 + α

)2

kφ

(
2 + α

α
· α

2 + α
x,

2 + α

α
· α

2 + α
x,

2 + α

α
· α

2 + α
x
)

=
αk

(2 + α)2 ·φ(x, x, x)

for all x ∈A, that is,

∥∥Tf (x) – f (x)
∥∥
B

≤ αk
(2 + α)2 φ(x, x, x)

for all x ∈A. Hence, we obtain

d(f , Tf ) ≤ αk
(2 + α)2 .

By Theorem 1.4, there exists a mapping F : A → B such that the following conditions
hold.

(1) F is a fixed point of T , that is, TF(x) = F(x) for all x ∈A. Then we have

F(x) = TF(x) =
2 + α

α
F
(

α

2 + α
x
)

⇒ F
(

α

2 + α
x
)

=
α

2 + α
F(x)

for all x ∈A. Moreover, the mapping F is a unique fixed point of T in the set

Y =
{

g ∈ X | d(f , g) < ∞}
.

From (2.7), there exists C ∈ (0,∞) satisfying

∥∥f (x) – F(x)
∥∥
B

≤ Cφ(x, x, x),

for all x ∈A.
(2) The sequence {Tnf } converges to F . This implies that the equality

F(x) = lim
n→∞

(
2 + α

α

)n

f
((

α

2 + α

)n

x
)

(2.23)

for all x ∈A.
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(3) We obtain d(f , F) ≤ 1
1–k d(f , Tf ), which implies that

d(f , F) ≤ 1
1 – k

d(f , Tf ) ≤ αk
(1 – k)(2 + α)2 .

Therefore, inequality (2.20) holds.
It follows from (2.19) and same argument in Theorem 2.1 that we obtain

lim
j→∞

(
2 + α

α

)2j

·φ
((

α

2 + α

)j

x,
(

α

2 + α

)j

y,
(

α

2 + α

)j

z
)

= 0 (2.24)

for all x, y, z ∈A. It follows from (2.3), (2.23), (2.24) that

∥∥∥∥αF
(

x + y
α

+ z
)

– F(x) – F(y) – αF(z)
∥∥∥∥
B

=
∥∥∥∥α lim

n→∞

(
2 + α

α

)n

f
((

α

2 + α

)n(x + y
α

+ z
))

– lim
n→∞

(
2 + α

α

)n

f
((

α

2 + α

)n

x
)

– lim
n→∞

(
2 + α

α

)n

f
((

α

2 + α

)n

y
)

– α lim
n→∞

(
2 + α

α

)n

f
((

α

2 + α

)n

z
)∥∥∥∥

B

= lim
n→∞

(
2 + α

α

)n∥∥∥∥αf
( ( α

2+α
)nx + ( α

2+α
)ny

α
+

(
α

2 + α

)n

z
)

– f
((

α

2 + α

)n

x
)

– f
((

α

2 + α

)n

y
)

– αf
((

α

2 + α

)n

z
)∥∥∥∥

B

≤ lim
n→∞

(
2 + α

α

)n

φ

((
α

2 + α

)n

x,
(

α

2 + α

)n

y,
(

α

2 + α

)n

z
)

≤ lim
n→∞

(
2 + α

α

)2n

φ

((
α

2 + α

)n

x,
(

α

2 + α

)n

y,
(

α

2 + α

)n

z
)

= 0

for all x, y, z ∈A. Hence, we have

αF
(

x + y
α

+ z
)

= F(x) + F(y) + αF(z)

for all x, y, z ∈ A. From Corollary 1.2 and the above equation, we see that F is additive for
all x, y ∈A. Next, we can show that F : A → B is C-linear. Firstly, we will show that, for any
x ∈ A, F(μx) = μF(x) for all μ ∈ S. For each μ ∈ S, substituting x, y, z in (2.1) by ( α

2+α
)nx,

we obtain

Eμf
((

α

2 + α

)n

x,
(

α

2 + α

)n

x,
(

α

2 + α

)n

x
)

= αμf
( ( α

2+α
)nx + ( α

2+α
)nx

α
+

(
α

2 + α

)n

x
)

– f
(

μ

(
α

2 + α

)n

x
)

– f
(

μ

(
α

2 + α

)n

x
)

– αf
(

μ

(
α

2 + α

)n

x
)

= αμf
(

2 + α

α

(
α

2 + α

)n

x
)

– (2 + α)f
(

μ

(
α

2 + α

)n

x
)
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for all x ∈A. By (2.3), we have

∥∥∥∥Eμf
((

α

2 + α

)n

x,
(

α

2 + α

)n

x,
(

α

2 + α

)n

x
)∥∥∥∥

B

=
∥∥∥∥αμf

(
2 + α

α

(
α

2 + α

)n

x
)

– (2 + α)f
(

μ

(
α

2 + α

)n

x
)∥∥∥∥

B

≤ φ

((
α

2 + α

)n

x,
(

α

2 + α

)n

x,
(

α

2 + α

)n

x
)

(2.25)

for all x ∈A. From (2.25), in the case μ = 1, we obtain the fact that

∥∥∥∥αf
(

2 + α

α

(
α

2 + α

)n

x
)

– (2 + α)f
((

α

2 + α

)n

x
)∥∥∥∥

B

≤ φ

((
α

2 + α

)n

x,
(

α

2 + α

)n

x,
(

α

2 + α

)n

x
)

(2.26)

for all x ∈A. It follows from (2.3), (2.25) and (2.26) that

∥∥∥∥(2 + α)f
(

μ

(
α

2 + α

)n

x
)

– (2 + α)μf
((

α

2 + α

)n

x
)∥∥∥∥

B

=
∥∥∥∥(2 + α)f

(
μ

(
α

2 + α

)n

x
)

– αμf
(

2 + α

α

(
α

2 + α

)n

x
)

+ αμf
(

2 + α

α

(
α

2 + α

)n

x
)

– (2 + α)μf
((

α

2 + α

)n

x
)∥∥∥∥

B

≤
∥∥∥∥(2 + α)f

(
μ

(
α

2 + α

)n

x
)

– αμf
(

2 + α

α

(
α

2 + α

)n

x
)∥∥∥∥

B

+
∥∥∥∥αμf

(
2 + α

α

(
α

2 + α

)n

x
)

– (2 + α)μf
((

α

2 + α

)n

x
)∥∥∥∥

B

=
∥∥∥∥(2 + α)f

(
μ

(
α

2 + α

)n

x
)

– αμf
(

2 + α

α

(
α

2 + α

)n

x
)∥∥∥∥

B

+ |μ|
∥∥∥∥αf

(
2 + α

α

(
α

2 + α

)n

x
)

– (2 + α)f
((

α

2 + α

)n

x
)∥∥∥∥

B

≤ 2φ

((
α

2 + α

)n

x,
(

α

2 + α

)n

x,
(

α

2 + α

)n

x
)

for all x ∈A. This implies that

∥∥∥∥
(

2 + α

α

)n

f
(

μ

(
α

2 + α

)n

x
)

–
(

2 + α

α

)n

μf
((

α

2 + α

)n

x
)∥∥∥∥

B

≤ 2
2 + α

(
2 + α

α

)n

φ

((
α

2 + α

)n

x,
(

α

2 + α

)n

x,
(

α

2 + α

)n

x
)

≤
(

2 + α

α

)n

φ

((
α

2 + α

)n

x,
(

α

2 + α

)n

x,
(

α

2 + α

)n

x
)

≤
(

2 + α

α

)2n

φ

((
α

2 + α

)n

x,
(

α

2 + α

)n

x,
(

α

2 + α

)n

x
)
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for all x ∈A. By (2.24), we have

lim
n→∞

∥∥∥∥
(

2 + α

α

)n

f
(

μ

(
α

2 + α

)n

x
)

–
(

2 + α

α

)n

μf
((

α

2 + α

)n

x
)∥∥∥∥

B

= 0,

which implies that

F(μx) = μF(x)

for all x ∈ A. By Lemma 1.5, we see that F is C-linear. The fact that F(xy) = F(x)F(y) and
F(x∗) = F(x)∗ for all x, y ∈A can be obtained in a similar method as in the proof of Theorem
2.1. �

Corollary 2.4 Let p ∈ (2,∞), ε ∈ [0,∞) and f be a mapping of A into B satisfying (2.16),
(2.17) and (2.18). Then there exists a unique C∗-algebra homomorphism F : A → B such
that

∥∥f (x) – F(x)
∥∥
B

≤ 3αε

(( 2+α
α

)p–2 – 1)(2 + α)2
‖x‖p

A
(2.27)

for all x ∈ A.

Proof The proof follows from Theorem 2.3 and Corollary 2.2 by taking

φ(x, y, z) = ε
(‖x‖p

A
+ ‖y‖p

A
+ ‖z‖p

A

)

for all x, y, z ∈A. Then k = ( α
2+α

)p–2 and we get the desired results. �

Remark 2.5 If α = 2, then Theorem 2.1, Corollary 2.2 and Theorem 2.3 we recover Theo-
rem 2.1, Corollary 2.2 and Theorem 2.3 in [10], respectively.

3 Stability of generalized θ -derivations on C∗-algebras
Let f be a mapping of A into A. We define

Eμf (x, y, z) := αμf
(

x + y
α

+ z
)

– f (μx) – f (μy) – αf (μz),

for all μ ∈ S and all x, y, z ∈A and for any fixed positive integer α ≥ 2.

Definition 3.1 A generalized θ -derivation δ : A →A is a C-linear map satisfying

δ(xyz) = δ(xy)θ (z) – θ (x)δ(y)θ (z) + θ (x)δ(yz).

for all x, y, z ∈A, where θ : A →A is a C-linear mapping.

We prove the Hyers–Ulam–Rassias stability of generalized θ -derivation on C∗-algebras
for the functional equation Eμf (x, y, z) = 0.
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Theorem 3.1 Let φ : A3 → [0,∞) be a function such that there exists a k < 1 satisfying
(2.2). Let f , h be mappings of A into itself satisfying

∥∥Eμf (x, y, z)
∥∥
A

≤ φ(x, y, z), (3.1)
∥∥f (xyz) – f (xy)h(z) + h(x)f (y)h(z) – h(x)f (yz)

∥∥
A

≤ φ(x, y, z), (3.2)
∥∥∥∥μh

(
2 + α

2α
(x + y)

)
–

2 + α

2α

(
h(μx) + h(μy)

)∥∥∥∥
A

≤ φ(x, y, x), (3.3)

∥∥f
(
x∗) – f (x)∗

∥∥
A

≤ φ(x, x, x), (3.4)

for all μ ∈ S and for all x, y, z ∈ A. Then there exist unique C-linear mappings δ, θ : A →A

such that

∥∥f (x) – δ(x)
∥∥
A

≤ 1
(1 – k)(2 + α)

φ(x, x, x), (3.5)

∥∥h(x) – θ (x)
∥∥
A

≤ α

(1 – k)(2 + α)
φ(x, x, x), (3.6)

for all x ∈ A. Moreover, δ : A →A is a generalized θ -derivation on A.

Proof Let (X, d) be the generalized metric space as in the proof of Theorem 2.1. We con-
sider the linear mapping T : X → X such that

Tg(x) :=
α

2 + α
g
(

2 + α

α
x
)

for all x ∈A and for all g ∈ X. Letting μ = 1 and y = x in (3.3), we get

∥∥∥∥h
(

2 + α

α
x
)

–
2 + α

α
h(x)

∥∥∥∥
A

≤ φ(x, x, x)

for all x ∈A, so we have
∥∥∥∥h(x) –

α

2 + α
h
(

2 + α

α
x
)∥∥∥∥

A

≤ α

2 + α
φ(x, x, x)

for all x ∈A. Hence, we obtain

d(h, Th) ≤ α

2 + α
.

It follows from the proof of Theorem 2.1 that

d(f , Tf ) ≤ 1
2 + α

.

By the same reasoning as the proof of Theorem 2.1, there exist a unique involutiveC-linear
mapping δ : A → A and a mapping θ : A → A satisfying (3.5) and (3.6), respectively. The
mappings δ and θ are given by

δ(x) = lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

x
)
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and

θ (x) = lim
n→∞

(
α

2 + α

)n

h
((

2 + α

α

)n

x
)

for all x ∈A, respectively. It follows from (3.2) that

∥∥δ(xyz) – δ(xy)θ (z) + θ (x)δ(y)θ (z) – θ (x)δ(yz)
∥∥
A

=
∥∥∥∥ lim

n→∞

(
α

2 + α

)3n

f
((

2 + α

α

)3n

xyz
)

– lim
n→∞

(
α

2 + α

)2n

f
((

2 + α

α

)2n

xy
)

· lim
n→∞

(
α

2 + α

)n

h
((

2 + α

α

)n

z
)

+ lim
n→∞

(
α

2 + α

)n

h
((

2 + α

α

)n

x
)

· lim
n→∞

(
α

2 + α

)n

f
((

2 + α

α

)n

y
)

· lim
n→∞

(
α

2 + α

)n

h
((

2 + α

α

)n

z
)

– lim
n→∞

(
α

2 + α

)n

h
((

2 + α

α

)n

x
)

· lim
n→∞

(
α

2 + α

)2n

f
((

2 + α

α

)2n

yz
)∥∥∥∥

A

= lim
n→∞

(
α

2 + α

)3n∥∥∥∥f
((

2 + α

α

)3n

xyz
)

– f
((

2 + α

α

)2n

xy
)

·h
((

2 + α

α

)n

z
)

+ h
((

2 + α

α

)n

x
)

· f
((

2 + α

α

)n

y
)

·h
((

2 + α

α

)n

z
)

– h
((

2 + α

α

)n

x
)

· f
((

2 + α

α

)2n

yz
)∥∥∥∥

A

≤ lim
n→∞

(
α

2 + α

)3n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

y,
(

2 + α

α

)n

z
)

≤ lim
n→∞

(
α

2 + α

)n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

y,
(

2 + α

α

)n

z
)

= 0

for all x, y, z ∈A. Hence

δ(xyz) = δ(xy)θ (z) – θ (x)δ(y)θ (z) + θ (x)δ(yz)

for all x, y, z ∈ A. Next, we can show that θ : A → A is C-linear. Firstly, we will show that,
for any x ∈ A, μ(θx) = θ (μx) for all μ ∈ S. For each μ ∈ S, substituting x, y, z in (3.3) by
( 2+α

α
)nx, we obtain

∥∥∥∥μh
((

2 + α

α

)n+1

x
)

–
2 + α

α
h
(

μ

(
2 + α

α

)n

x
)∥∥∥∥

A

≤ φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

(3.7)
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for all x ∈A. For μ = 1, we also have

∥∥∥∥h
((

2 + α

α

)n+1

x
)

–
2 + α

α
h
((

2 + α

α

)n

x
)∥∥∥∥

A

≤ φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

(3.8)

for all x ∈A. It follows from (3.7) and (3.8) that

∥∥∥∥
2 + α

α
h
(

μ

(
2 + α

α

)n

x
)

–
2 + α

α
μh

((
2 + α

α

)n

x
)∥∥∥∥

A

=
∥∥∥∥

2 + α

α
h
(

μ

(
2 + α

α

)n

x
)

– μh
((

2 + α

α

)n+1

x
)

+ μh
((

2 + α

α

)n+1

x
)

–
2 + α

α
μh

((
2 + α

α

)n

x
)∥∥∥∥

A

≤
∥∥∥∥

2 + α

α
h
(

μ

(
2 + α

α

)n

x
)

– μh
((

2 + α

α

)n+1

x
)∥∥∥∥

A

+
∥∥∥∥μh

((
2 + α

α

)n+1

x
)

–
2 + α

α
μh

((
2 + α

α

)n

x
)∥∥∥∥

A

=
∥∥∥∥

2 + α

α
h
(

μ

(
2 + α

α

)n

x
)

– μh
((

2 + α

α

)n+1

x
)∥∥∥∥

A

+ |μ|
∥∥∥∥h

((
2 + α

α

)n+1

x
)

–
2 + α

α
h
((

2 + α

α

)n

x
)∥∥∥∥

A

≤ 2φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

for all x ∈A. This implies that

∥∥∥∥
(

α

2 + α

)n

h
((

2 + α

α

)n

μx
)

–
(

α

2 + α

)n

μh
((

2 + α

α

)n

x
)∥∥∥∥

A

≤ 2α

2 + α

(
α

2 + α

)n

φ

((
2 + α

α

)n

x,
(

2 + α

α

)n

x,
(

2 + α

α

)n

x
)

for all x ∈A. By (2.2), we have

lim
n→∞

∥∥∥∥
(

α

2 + α

)n

h
((

2 + α

α

)n

μx
)

–
(

α

2 + α

)n

μh
((

2 + α

α

)n

x
)∥∥∥∥

A

= 0

for all x ∈A. That is,

θ (μx) = μθ (x)

for all x ∈ A. By Lemma 1.5, we obtain that θ is a C-linear mapping. Thus, δ : A → A is
generalized θ -derivation satisfying (3.5). �
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Corollary 3.2 Let p ∈ [0, 1), ε ∈ [0,∞) and f be a mapping of A into itself such that

∥∥Eμf (x, y, z)
∥∥
A

≤ ε
(‖x‖p

A
+ ‖y‖p

A
+ ‖z‖p

A

)
, (3.9)

∥∥f (xyz) – f (xy)θ (z) + θ (x)f (y)θ (z) – θ (x)f (yz)
∥∥
A

≤ ε
(‖x‖p

A
+ ‖y‖p

A
+ ‖z‖p

A

)
, (3.10)

∥∥∥∥μh
(

2 + α

2α
(x + y)

)
–

2 + α

2α

(
h(μx) + h(μy)

)∥∥∥∥
A

≤ ε
(‖x‖p

A
+ ‖y‖p

A
+ ‖x‖p

A

)
, (3.11)

∥∥f
(
x∗) – f (x)∗

∥∥
A

≤ 3ε‖x‖r
A

(3.12)

for all μ ∈ S and for all x, y, z ∈ A. Then there exist unique C-linear mappings δ, θ : A →A

such that

∥∥f (x) – δ(x)
∥∥
A

≤ 3ε

(1 – ( 2+α
α

)p–1)(2 + α)
‖x‖p

A
,

∥∥h(x) – θ (x)
∥∥
A

≤ εα

(1 – ( 2+α
α

)p–1)(2 + α)
‖x‖p

A
,

for all x ∈ A. Moreover, δ : A →A is a generalized θ -derivation on A.

Proof The proof follows from Theorem 3.1 by taking

φ(x, y, z) = ε
(‖x‖p

A
+ ‖y‖p

A
+ ‖z‖p

A

)

for all x, y, z ∈A. Then k = ( 2+α
α

)p–1 and we get the desired results. �

Theorem 3.3 Let φ : A3 → [0,∞) such that there exists a k < 1 satisfying

φ(x, y, z) ≤
(

α

2 + α

)3

kφ

(
2 + α

α
x,

2 + α

α
y,

2 + α

α
z
)

for all x, y, z ∈ A. Let f , h be mappings of A into itself satisfying (3.1), (3.2), (3.3) and (3.4).
Then there exist unique C-linear mappings δ, θ : A →A such that

∥∥f (x) – δ(x)
∥∥
A

≤ α2k
(1 – k)(2 + α)3 φ(x, x, x),

∥∥h(x) – θ (x)
∥∥
A

≤ k
1 – k

(
α

2 + α

)3

φ(x, x, x)

for all x ∈ A. Moreover, δ : A →A is a generalized θ -derivation on A.

Proof The proof is similar to the proofs of Theorem 2.3 and Theorem 3.1. �

Corollary 3.4 Let p ∈ (3,∞], ε ∈ [0,∞) and f be a mapping of A into itself satisfying
(3.9), (3.10), (3.11) and (3.12). Then there exist unique C-linear mappings δ, θ : A → A
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such that

∥∥f (x) – δ(x)
∥∥
A

≤ 3α2ε

(( 2+α
α

)p–3 – 1)(2 + α)3
‖x‖p

A
,

∥∥h(x) – θ (x)
∥∥
A

≤ ε

( 2+α
α

)p–3 – 1
·
(

α

2 + α

)3

‖x‖p
A

for all x ∈ A. Moreover, δ : A →A is a generalized θ -derivation A.

Proof The proof follows from Theorem 3.3 by taking

φ(x, y, z) = ε
(‖x‖p

A
+ ‖y‖p

A
+ ‖z‖p

A

)

for all x, y, z ∈A. Then k = ( α
2+α

)p–3 and we get the desired results. �

We recall definition of generalized derivations on C∗-algebra.

Definition 3.2 ([13]) A generalized derivation δ : A →A is involutive C-linear and satis-
fies

δ(xyz) = δ(xy)z – xδ(y)z + xδ(yz)

for all x, y, z ∈A.

Remark 3.5 According to Definition 3.1, If θ = I , I is identity mapping on A, then a gen-
eralized θ -derivation is a generalized derivation. If the mapping h is identity mapping and
α = 2, Then Theorem 3.1 and Theorem 3.3 we recover Theorem 3.2 and Theorem 3.4
in [10], respectively. Moreover, if we set the mapping h is identity mapping, α = 2 and
φ(x, y, z) = ε· ‖x‖

p
3
A
· ‖y‖

p
3
A
· ‖z‖

p
3
A

in Theorem 3.1 where p ∈ [0, 1) and ε ∈ [0,∞), then Theo-
rem 3.1 one recovers Corollary 3.3 in [10] with k = ( 2+α

α
)p–1.

4 Conclusions
In the first section of main results, we prove Hyers–Ulam–Rassias stability of C∗-algebra
homomorphisms for the generalized Cauchy–Jensen equation C∗-algebras by using fixed
point alternative theorem. In the second section of main results, we introduce and in-
vestigate the Hyers–Ulam–Rassias stability of generalized θ -derivation for such function
C∗-algebras by the same method. By our main results we recover partial results of Park
and An in [10] by Remark 2.5 and Remark 3.5.
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