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1 Introduction
In the last decades Shepard operators have been object of several papers, thanks to their
properties interesting in classical approximation theory and in scattered data interpola-
tion problems. In particular Shepard operators are linear, positive, rational operators, of
interpolatory-type, preserving constants and achieving approximation results not possible
by polynomials. Pointwise and uniform approximation error estimates, converse results,
bridge theorems, saturation statements, simultaneous approximation results can be found
for example in [1–7]. Applications of Shepard operators to scattered data interpolation
problems, image compression and CAGD can be found for example in [8–17].

On the other hand Gupta introduced a variant of classical Bernstein operator and similar
modifications of well-known positive operators of Bernstein-type were studied by him, his
collaborators and other researchers (see e.g. [18–25]).

It was an open problem to consider variants of Gupta-type for Shepard operators.
The aim of the present paper is to give a positive answer to the above question, intro-

ducing a generalization of Gupta-type of Shepard operator depending on a real positive
parameter. Convergence results and uniform and pointwise approximation error estimates
for such operator are given in Theorems 2.1–2.2 in Sect. 2.1. As a particular case, we ob-
tain the first pointwise approximation error estimate for the original Shepard operator on
equispaced mesh. Theorem 2.3 settles converse results and saturation statements for our
operator. The corresponding proofs are based on direct estimates for the Shepard–Gupta-
type operators.

In Sect. 2.2 an application to image compression is examined improving an analogous
algorithm in [9] and numerical experiments confirming the outperformance of such tech-
nique compared with other algorithms are also shown.
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2 Results
For n ∈ N consider the nodes matrix X = (xn,k = xk = k/n, k = 0, . . . , n) ⊆ [0, 1]. Then, for
any function f ∈ C([0, 1]) we denote by Ss

n the Shepard operator defined by

Ss
n(X; f ; x) = Ss

n(f ; x) =

∑n
k=0

f (xk )
|x–xk |s

∑n
k=0

1
|x–xk |s

, (1)

with x ∈ [0, 1] and s > 0 (cf. [26]). From (1) we deduce that Ss
n is a positive, linear operator,

preserving constants, interpolating f at xk , k = 0, . . . , n, and Ss
n(f ) is a rational function of

degree (sn, sn) for s even. Here we assume s > 2 because of theoretical complications for
s ≤ 2 (see, e.g., [3, 4]).

The approximation behavior of Ss
n operator is well known and direct and converse re-

sults, saturation statements and simultaneous approximation estimates not possible by
polynomials and corresponding to several nodes meshes distributions can be found for ex-
ample in [1, 2, 4–7, 13, 27]. Applications to scattered data interpolation problems, CAGD
and image compression were also examined (see e.g. [8–16]).

On the other hand Gupta introduced variants of Bernstein-type operators, studying the
approximation properties of such operators (see e.g. [17–25]).

In the following subsection we extend such an approach to Ss
n and study Shepard–

Gupta-type operators.

2.1 Approximation by Shepard–Gupta-type operators
For any α ≥ 1 and s > 2 let

Gα,s
n (X; f ; x) = Gα,s

n (f ; x)

=

∑n
k=0 f (xk)[(

∑n
l=0

1
|x–xl|sα ) 1

α – (
∑n

l=0
l �=k

1
|x–xl|sα ) 1

α ]
∑n

k=0[(
∑n

l=0
1

|x–xl |sα ) 1
α – (

∑n
l=0
l �=k

1
|x–xl |sα ) 1

α ]
, (2)

with x ∈ [0, 1]. From the definition it follows immediately that G1,s
n = Ss

n, i.e. for α = 1, we
find back the original Shepard operator (1). Moreover, Gα,s

n is a positive, linear operator of
interpolatory-type and is stable in the Fejér sense, i.e., ∀x ∈ [0, 1],

min
0≤x≤1

∣
∣f (x)

∣
∣ ≤ ∣

∣Gα,s
n (f ; x)

∣
∣ ≤ max

0≤x≤1

∣
∣f (x)

∣
∣.

We remark that Gupta variants of Bernstein-type operators depend on a positive pa-
rameter, not appearing in the kernel basis; here the parameter α appears both in the kernel
basis |x – xl|–sα , both in the exponents in the inner summations at the r.h.s. in (2).

If we denote by xj the closest knot to x, with xj ≤ x ≤ xj+1, then f (xj) (and also of f (xj+1)
if x = (xj + xj+1)/2) influences Gα,s

n (f ; x) in a small neighborhood of x strongly—the “strong
local control property”—as a consequence of the large value of 1/(x – xj)sα in that range
compared with the other terms. Consequently for n and s fixed and α increasing, Gα,s

n (f ; x)
tends continuously to the step function

S(x) =

⎧
⎪⎪⎨

⎪⎪⎩

f (xj), xj ≤ x < xj+1/2;
f (xj)+f (xj+1)

2 , x = xj+1/2;

f (xj+1), xj+1/2 < x ≤ xj+1,

(3)
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with xj+1/2 = (j + 1/2)/n. Analogously we can work for xj the closest knot to x, with xj–1 ≤
x ≤ xj.

By such asymptotic behavior we can use the operator Gα,s
n to successfully compress im-

ages expressed by piecewise constants (see Sect. 2.2).
Now we show that we can use Gα,s

n to approximate functions from C([0, 1]). Indeed, let
‖f ‖ be the usual supremum norm on [0, 1] of f ∈ C([0, 1]) and ω(f ) the usual modulus
of continuity of f . Moreover, C, C1 are positive constants possibly having different values
even in the same formula; we say that a ∼ b iff |a/b| ≤ C and |b/a| ≤ C1.

Theorem 2.1 Let α ≥ 1. Then, for any f ∈ C([0, 1]) and n ∈N,

∥
∥f – Gα,s

n (f )
∥
∥ ≤ Cω

(

f ;
1
n

)

. (4)

Remark 2.1 Estimate (4) yields the uniform convergence, as n → ∞, of Gα,s
n (f ) to f ,∀f ∈

C([0, 1]),∀α ≥ 1.

Proof Since the Gα,s
n operator interpolates at xk , k = 0, . . . , n, let x �= xk , k = 0, . . . , n. Then

assume xj to be the closest knot to x, with xj < x < xj+1 (the case when xj+1 is the closest
knot to x can be treated analogously). Therefore

|x – xj| ≤ 1
2n

.

We have

∣
∣f (x) – Gα,s

n (f ; x)
∣
∣ =

|∑n
k=0[f (x) – f (xk)][(

∑n
l=0

1
|x–xl|sα ) 1

α – (
∑n

l=0
l �=k

1
|x–xl|sα ) 1

α ]|
∑n

k=0[(
∑n

l=0
1

|x–xl|sα ) 1
α – (

∑n
l=0
l �=k

1
|x–xl|sα ) 1

α ]

≤
ω(f ; |x – xj|)[(∑n

l=0
1

|x–xl |sα ) 1
α – (

∑n
l=0
l �=j

1
|x–xl|sα ) 1

α ]
∑n

k=0[(
∑n

l=0
1

|x–xl|sα ) 1
α – (

∑n
l=0
l �=k

1
|x–xl|sα ) 1

α ]

+

∑n
k=0
k �=j

ω(f ; |x – xk|)[(∑n
l=0

1
|x–xl|sα ) 1

α – (
∑n

l=0
l �=k

1
|x–xl|sα ) 1

α ]
∑n

k=0[(
∑n

l=0
1

|x–xl |sα ) 1
α – (

∑n
l=0
l �=k

1
|x–xl |sα ) 1

α ]
.

Since for b < a,η ∈ (b, a) and α ≥ 1,

a1/α – b1/α =
a – b

αη1–1/α ∈
(

a – b
αa1–1/α ,

a – b
αb1–1/α

)

, (5)

working as usual (see e.g. [2]), it follows that

( n∑

l=0

1
|x – xl|sα

) 1
α

–

( n∑

l=0
l �=k

1
|x – xl|sα

) 1
α

≤
1

|x–xk |sα
α(

∑n
l=0
l �=k

1
|x–xl|sα )(α–1)/α

≤ C
α|x – xk|αsnsα–s .
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Moreover,

1
∑n

k=0[(
∑n

l=0
1

|x–xl|sα ) 1
α – (

∑n
l=0
l �=k

1
|x–xl|sα ) 1

α ]
≤ 1

(
∑n

l=0
1

|x–xl|sα ) 1
α – (

∑n
l=0
l �=j

1
|x–xl |sα ) 1

α

.

Again by (5)

( n∑

l=0

1
|x – xl|sα

) 1
α

–

( n∑

l=0
l �=j

1
|x – xl|sα

) 1
α

≥ 1/|x – xj|sα
α(

∑n
l=0

1
|x–xl|sα )(α–1)/α

:= �. (6)

Hence by (6)

1
�

= α|x – xj|sα
( n∑

l=0

1
|x – xl|sα

)1–1/α

≤ α|x – xj|sα(1–1/α+1/α)

(
1

|x – xj|sα +
n∑

l=0
l �=j

1
|x – xl|sα

)(α–1)/α

≤ α|x – xj|s
(

1 + |x – xj|sα
n∑

l=0
l �=j

1
|x – xl|sα

)(α–1)/α

≤ Cα|x – xj|s.

Finally, collecting the above estimations, working as usual (see e.g. [2])

∣
∣f (x) – Gα,s

n (f ; x)
∣
∣ ≤ C

[

ω
(
f ; |x – xj|

)
+

|x – xj|s
nsα–s

n∑

k=0
k �=j

ω(f ; |x – xk|)
|x – xk|αs

]

≤ Cω

(

f ;
1
n

)

. �

Moreover, a pointwise approximation error estimate can be deduced.

Theorem 2.2 Let α ≥ 1. Then, for any f ∈ C([0, 1]), n ∈ N and for any x ∈ [0, 1],

∣
∣f (x) – Gα,s

n (f ; x)
∣
∣ ≤ Cω

(
f ; |x – xj|

)
,

with xj the closest knot to x.

Remark 2.2 From Theorem 2.2, for α = 1, we obtain

∣
∣f (x) – Ss

n(f ; x)
∣
∣ ≤ Cω

(
f ; |x – xj|

)
. (7)

This is the first pointwise estimate for Shepard operator on an equispaced mesh and it
reflects the interpolatory character of Gα,s

n at the knots xk , k = 0, . . . , n and the constants
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preservation property. A similar estimate was obtained for a generalization of Shepard
operator in [9]. The result in (7) is interesting; indeed the Shepard operator is strongly
influenced by the mesh distribution and pointwise error estimates, for Shepard operators
on nonuniformly spaced meshes present a function depending on the mesh thickness at
the r.h.s. (see e.g. [2, 4]); to the contrary for the equispaced case pointwise estimates as in
[2, 4] are against nature.

Proof Following the proof of Theorem 2.1 we have

∣
∣f (x) – Gα,s

n (f ; x)
∣
∣ ≤ C

{

ω
(
f ; |x – xj|

)
+

|x – xj|s
nαs–s

ω(f ; |x – xj+1|)
|x – xj+1|αs

+
|x – xj|s

nαs–s

∑

x �=j
j+1

ω(f ; |x – xk|)
|x – xk|αs

}

.

Obviously

|x – xj|s
nαs–s

ω(f ; |x – xj+1|)
|x – xj+1|αs ≤ C

|x – xj|s
nαs–s

ω(f ; |x – xj|)
|x – xj||x – xj+1|αs–1 ≤ Cω

(
f ; |x – xj|

)
.

Moreover, since x – xk > (j – k)/n, k = 0, . . . , j – 1,

|x – xj|s
nαs–s

j–1∑

k=0

ω(f ; |x – xk|)
|x – xk|αs ≤ C|x – xj|sω

(

f ;
1
n

) j–1∑

k=0

(j – k)ns

(j – k)αs

≤ C|x – xj|snsω

(

f ;
1
n

)

≤ C|x – xj|snsω

(

f ;
|x – xj|

n|x – xj|
)

≤ C|x – xj|sns
(

1 +
1

n|x – xj|
)

ω
(
f ; |x – xj|

)

≤ Cω
(
f ; |x – xj|

)
.

Similarly we work for k = j + 1, . . . , n.
Collecting all estimates, the assertion follows. �

Finally, we present the converse results for our operators.

Theorem 2.3 If f �= constant

lim sup
n→∞

‖Gα,s
n (f ) – f ‖

ω(f ; 1/n)
∼ 1, (8)

where the sign ∼ does not depend on f . Moreover

∥
∥Gα,s

n (f ) – f
∥
∥ = o

(
1
n

)

⇐⇒ f = constant, (9)

∥
∥Gα,s

n (f ) – f
∥
∥ = O

(
1
n

)

⇐⇒ ω(f ; t) ≤ Ct. (10)
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Remark 2.3 First we observe that estimation (8) is a counterpart of (4) and is the analogous
in some senses of the relation by Totik [28],

∥
∥Bn(f ) – f

∥
∥ ∼ ω2

ψ

(

f ;
1√
n

)

,

with Bn the classical Bernstein operator, f ∈ C([0, 1]) and ω2
ψ the second order modulus

of smoothness of Ditzian and Totik where ψ(x) =
√

x(1 – x). On the other hand, due to
the interpolating behavior of Gα,s

n , we cannot have the estimation (8) with “lim” (instead
of “lim sup”) because of a result stated in [3, p. 77] (cf. also [7, Theorem 2.1, p. 310]).

From (8) we deduce that direct estimate (4) cannot be improved.
Combining estimation (8) with the equivalence relation (see, e.g. [29]) ω(f ; t) ∼ K(f ; t),

with K(f ) the K-functional allows one to characterize such K-functionals.
Finally, the saturation problem for Gα,s

n is settled by Eqs. (9)–(10).

Proof We start to prove (8). From (2) we can write the operator Gα,s
n as

Gα,s
n (f ; x) =

n∑

k=0

gk(x)f (xk),

gk(x) =
[(
∑n

l=0
1

|x–xl|sα ) 1
α – (

∑n
l=0
l �=k

1
|x–xl |sα ) 1

α ]
∑n

k=0[(
∑n

l=0
1

|x–xl |sα ) 1
α – (

∑n
l=0
l �=k

1
|x–xl |sα ) 1

α ]
.

Now if we verify that

Gα,s
n (f ; x) = f (x), if f = constant, (11)
∑

|x–xk |≥d0

∣
∣gk(x)

∣
∣ = o

(
1
n

)

, d0 > 0 arbitrarily fixed, (12)

gj(x) > 1/2, if |x – xj| ≤ δ

n
, 0 ≤ δ < d1 < 1, (13)

∑

k �=j

|x – xk|
∣
∣gk(x)

∣
∣ ≤ d2

δ1+ε

n
, δ as above, (14)

with xj again the closest knot to x and with certain positive fixed reals d1, d2, ε, then by
using ([30, Theorem 2.1]) it follows that

lim sup
n→∞

n
∥
∥Gα,s

n (f ) – f
∥
∥ > CM(f ), (15)

M(f ) = sup
x

(

M(f ; x); M(f ; x) := lim sup
τ→x

|f (τ ) – f (x)|
|τ – x|

)

.

First we prove (11)–(14). We deduce Eq. (11) immediately by definition. Following the
proofs of Theorems 2.1–2.2 we obtain

∑

|x–xk |>d0

gk(x) ≤ C
nαs

∑

|x–xk |>d0

1
|x – xk|αs ≤ C

nαs
n + 1
dαs

0
= o

(
1
n

)

,
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that is (12). Now we verify (13). Again working as in the proofs of Theorems 2.1–2.2,

∑

k �=j

gk(x) ≤
[ ∑

|x–xk |≤1

+
∑

|x–xk |≥1

]

gk(x)

≤ C
δsnαs

nαs + C
δsn
nαs

≤ Cδs
(

1 +
1

nαs–1

)

≤ 1
2

and by gk(x) ≥ 0 and
∑

gk(x) = 1, (13) follows. Now we prove (14). Indeed

∑

k �=j

|x – xk|gk(x) ≤ C
|x – xj|s

nαs–s

[ ∑

|x–xk |≤1

+
∑

|x–xk |>1

] |x – xk|
|x – xk|αs

≤ C
δs

nαs

[
nαs–1 + n

]

≤ C
δ1+ε

n
,

i.e. we deduce (14). From (15) and (4) we have (cf. [7, p. 315])

C1M(f ) ≤ n
∥
∥Gα,s

n (f ) – f
∥
∥ ≤ C2nω

(

f ;
1
n

)

≤ C2 sup
τ �=t

|f (τ ) – f (t)|
|τ – t| := C2N(f ). (16)

Now we recall that ([7, Lemma 3.1, p. 315])

M(f ) = N(f ).

Therefore

C1M(f ) ≤ C2nω

(

f ;
1
n

)

≤ C2M(f ) (17)

and from (4), (16) and (17) we deduce (8). The proofs of (9) and (10) are omitted since they
are analogous to the proof of Theorem 2.2 p. 316 in [7]. �

2.2 Application to image compression
In this Section we apply the Gα,s

n operator to a problem of image compression. An image
can be considered from a mathematical point of view as a matrix of size M × N pixels,
where the number of pixels affects resolution of an image and the size of he file that stores
it (the higher the number of pixels, the better its resolution, the larger the file). As a de-
graded (compressed) image, we split the original image into consecutive blocks of size
B ×B, choosing only the left-upper pixel from each block. We obtain a new image with a
lower number of pixels (M/B×N/B pixels), and therefore a worse resolution and a smaller
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size of the file. The resulting compression ratio is ρ � B2. We aim at decompressing the
reduced image to rebuild the full resolution one. Since the sensors of the cameras are
uniformly distributed according to a bidimensional grid, we need a bidimensional inter-
polation process based on equispaced mesh; in addition, for physical reasons related to the
range of the color intensity of the red, green and blue components ([0, 1]), it is preferable
to rely on a positive operator. Therefore we consider the bidimensional operator Gα,s

M,N (f )
defined by

Gα,s
M,N (f ; x, y) =

M∑

k=1

N∑

i=1

gk,M(x)gi,N (y)f (xk , yi),

gk,M(x) =
(
∑M

l=1
1

|x–xl |sα ) 1
α – (

∑M
l=1
l �=k

1
|x–xl |sα ) 1

α

∑M
k=1[(

∑M
l=1

1
|x–xl|sα ) 1

α – (
∑M

l=1
l �=k

1
|x–xl|sα ) 1

α ]

=
(
∑M

l=1
∏

j �=l |x – xj|sα) 1
α – (

∑M
l=1
l �=k

∏
j �=l |x – xj|sα) 1

α

∑M
k=1[(

∑M
l=1

∏
j �=l |x – xj|sα) 1

α – (
∑M

l=1
l �=k

∏
j �=l |x – xj|sα) 1

α ]
,

gi,N (y) =
(
∑N

l=1
1

|y–yl |sα ) 1
α – (

∑N
l=1
l �=i

1
|x–xl|sα ) 1

α

∑N
k=1[(

∑N
l=1

1
|y–yl |sα ) 1

α – (
∑N

l=1
l �=i

1
|y–yl|sα ) 1

α ]

=
(
∑N

l=1
∏

j �=l |y – yj|sα) 1
α – (

∑N
l=1
l �=i

∏
j �=l |y – yj|sα) 1

α

∑N
k=1[(

∑N
l=1

∏
j �=l |y – yj|sα) 1

α – (
∑N

l=1
l �=i

∏
j �=l |y – yj|sα) 1

α ]
,

(18)

with x, y ∈ [0, 1], xi = (i–1)/(M –1), i = 1, . . . , M, yj = (j –1)/(N –1), j = 1, . . . , N . We observe
that for computer calculations the nonbarycentric-type representations at the right hand
side in (18) are suitable. We can write Eq. (18) as

Gα,s
M,N (f ; x, y) =

M∑

k=1

[ N∑

i=1

f (xk , yi)gi,N (y)

]

gk,M(x).

This allows one to develop a two-step procedure, each one involving the same unidmen-
sional operator of the type (2) applied first to the rows of the matrix of pixels and then to
the columns of the matrix resulting after application of the first step (or vice versa).

We will compare the results obtained by the Gα,s
M,N operator with bi-linear, bi-cubic and

bi-spline methods. For the comparison we used the Signal-to-Noise Ratio, SNR, defined
as

SNR = 10 log10
(2B – 1)2

MSE
,

with B denoting the number of bits necessary to represent the intensity of the pixels and

MSE =
1

MN

M∑

i=1

N∑

j=1

(fij – f̂ij)2,

where fij is the original image in the pixels i, j, i = 1, . . . , M, j = 1, . . . , N , and f̂ij is the re-
sulting image after decompression by the original bidimensional Shepard operator, Gα,s

M,N
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operator, bi-linear, bi-cubic and bi-spline functions. The SNR compares the level of the
compression error to the level of the signal: the higher SNR, the better the approximation
of the original image.

By construction of the Gα,s
M,N operators (cf. (3)) there are better approximate images that

can be represented by piecewise constant functions; therefore a synthetic image having
such a feature will be considered. We notice that tuning of the parameter α permits one
to get a better approximation error.

According to the comment above we consider as an example of image a chessboard
(Fig. 1) with 2048 pixels for both coordinates (M = N = 2048) having 20 alternating boxes
for each row or column of the chessboard. The usual 8-bit gray scale representation is
considered for the color, so that B = 8. We generated reduced resolution images at com-
pression ratios ρ = 4, 9, 16, 25, 36 (B = 2, . . . , 6).

The value of SNR for bi-linear, bi-cubic, bi-spline, Shepard (s = 4, 6), Gα,4
M,N , Gα,6

M,N op-
erators, with α = 1.1, 1.3, 2, 3, 5, 10 and compression ratio ρ = 4, 9, 16, 25, 36, is shown in
Table 1.

We can see that the Shepard–Gupta-type operator (18) gives the best results at any com-
pression ratio and that accuracy improves when α increases.

Figure 2 shows the decompressed images for bi-linear, bi-cubic, bi-spline, Shepard (s =
4, 6), Gα,4

M,N , Gα,6
M,N operators, α = 2, 10, obtained for compression ratio 25. We notice the

gray color of the truly white boxes in the chessboard for bi-spline and bi-cubic operators
(middle and right upper plots). It is due to overshoots (pixels having intensities greater
than 1) and undershoots (pixels with intensity less than 0). As is well known these artifacts
are particularly deleterious for images. Bi-linear and Shepard–Gupta-type operators being
stable in the Fejér sense do not suffer from this artifact.

To better appreciate this artifact and differences among the above methodologies, Fig. 3
shows the (absolute) error of the decompressed images for only bi-cubic and bi-spline op-
erators at different compression ratios (ρ = 9, 25, 49), since the other operators are not af-
fected by the overshoot-undershoot artifact. Overshoots and undershoots are represented
with red and blue color, respectively.

A full assessment of all considered methods is graphically given in Fig. 4 in a partic-
ularization of Fig. 3. The figure shows the smaller error (higher SNR) achieved by the
Shepard–Gupta-type method.

Figure 1 Image of chessboard chosen as a test
example
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Table 1 SNR of the decompressed images for the Chessboard test example at compression ratio
ρ = 4, 9, 16, 25, 36 and for bi-linear, bi-cubic, bi-spline, Shepard (s = 4, 6), Gα,4

M,N , G
α,6
M,N operators,

α = 1.1, 1.3, 2, 3, 5, 10. The higher SNR, the more accurate the methodology

Method ρ = 4 ρ = 9 ρ = 16 ρ = 25 ρ = 36

Original Shepard (s = 4) 79.6 77.4 76.0 75.0 74.0
G1.1,4M,N 80.3 78.1 76.7 75.6 74.6
G1.3,4M,N 81.6 79.2 77.8 76.7 75.7
G2,4M,N 85.3 82.4 80.7 79.5 78.3
G3,4M,N 89.8 85.8 83.7 82.3 81.0
G5,4M,N 98.5 91.7 88.5 86.5 84.7
G10,4M,N 120.4 106.4 99.7 95.5 92.2

Original Shepard (s = 6) 82.0 79.6 78.1 77.0 76.0
G1.1,6M,N 82.9 80.3 78.8 77.7 76.6
G1.3,6M,N 84.4 81.6 80.0 78.8 77.7
G2,6M,N 89.1 85.3 83.3 82.0 80.6
G3,6M,N 95.6 89.8 87.0 85.2 83.6
G5,6M,N 108.8 98.5 93.7 90.7 88.3
Bi-linear 73.3 72.0 70.3 69.4 68.5
Bi-cubic 73.8 72.0 70.8 69.9 69.0
Bi-spline 73.2 71.4 70.2 69.3 68.4

Figure 2 From top to bottom and left to right: the chessboard image decompressed by bi-linear, bi-cubic,
bi-spline, Shepard (s = 4), G2,4M,N , G

10,4
M,N , Shepard (s = 6), G2,6M,N and G10,6M,N operators starting from the image

compressed with ratio 25
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Figure 3 Error of the decompressed images for the chessboard test example for the considered methods
(particular). From top to bottom and left to right bi-cubic and bi-spline for ρ = 9, bi-cubic and bi-spline for
ρ = 25, bi-cubic and bi-spline for ρ = 49. Blue and red colors indicate undershoots and overshoots,
respectively

3 Conclusions
The paper gives a positive answer to the problem to extend the Bézier variant technique in-
troduced and studied by Gupta for the well-known linear positive operators of Bernstein-
type, to the Shepard interpolator operator, widely used in rational approximation and scat-
tered data interpolation problems. The authors construct and study the Shepard–Gupta-
type operator and settle convergence results, uniform and pointwise approximation error
estimates, converse theorems and saturation statements, improving in some sense anal-
ogous results for the original Shepard-type operator. The peculiar asymptotic behavior
of the Shepard–Gupta-type operator allows one to successfully compress images repre-
sented by piecewise constants, improving previous algorithms.
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Figure 4 Error of the decompressed images for the Chessboard test example for the considered methods
(particular). From top to bottom and left to right: bi-linear, bi-cubic, bi-spline, Shepard (s = 4), G2,4M,N , G

10,4
M,N ,

Shepard (s = 6), G2,6M,N , G
10,6
M,N operators for compression ratio ρ = 25. Blue and red colors indicate undershoots

and overshoots, respectively
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