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Abstract
In this paper, we introduce a new family of generalized Bernstein operators based on
q integers, called (α,q)-Bernstein operators, denoted by Tn,q,α (f ). We investigate a
Kovovkin-type approximation theorem, and obtain the rate of convergence of Tn,q,α (f )
to any continuous functions f . The main results are the identification of several
shape-preserving properties of these operators, including their monotonicity- and
convexity-preserving properties with respect to f (x). We also obtain the monotonicity
with n and q of Tn,q,α (f ).
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1 Introduction
A generalization of Bernstein polynomials based on q-integers was proposed by Lupaş
in 1987 in [1]. However, the Lupaş q-Bernstein operators are rational functions rather
than polynomials. In 1997, Phillips [2] proposed the Phillips q-Bernstein polynomials,
and for decades thereafter the application of q integers in positive linear operators be-
came a hot topic in approximation theory, such as generalized q-Bernstein polynomials
[3–6], Durrmeyer-type q-Bernstein operators [7–9], Kantorovich-type q-Bernstein oper-
ators [10–13], etc. As we know, q integers play important roles not only in approxima-
tion theory, but also in CAGD. Based on the Phillips q-Bernstein polynomials [2], which
are generalizations of Bernstein polynomials, generalized Bézier curves and surfaces were
introduced in [14–16]. In [14], Oruç and Phillips constructed q-Bézier curves using the
basis functions of Phillips q-Bernstein polynomials. Dişibüyük and Oruç [15, 16] defined
the q generalization of rational Bernstein–Bézier curves and tensor product q-Bernstein–
Bézier surfaces. Moreover, Simeonov et al. [17] introduced a new variant of the blossom,
the q blossom, which is specifically adapted to developing identities and algorithms for q-
Bernstein bases and q-Bézier curves. In 2014, Han et al. [18] proposed a generalization of
q-analog Bézier curves with one shape parameter, and established degree evaluation and
de Casteljau algorithms and some other properties. In 2016, Han et al. [19] introduced a
new generalization of weighted rational Bernstein–Bézier curves based on q integers, and
investigated the generalized rational Bézier curve from a geometric point of view, obtain-
ing degree evaluation and de Casteljau algorithms, etc.
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Recently, Chen et al. [20] introduced a new family of α-Bernstein operators, and investi-
gated some approximation properties, such as the rate of convergence, Voronovskaja-type
asymptotic formulas, etc. They also obtained the monotonic and convex properties. For
f (x) ∈ [0, 1], n ∈ N, and any fixed real α, the α-Bernstein operators they introduced are
defined as

Tn,α =
n∑

i=0

fip(α)
n,i (x), (1)

where fi = f ( i
n ). For i = 0, 1, . . . , n, the α-Bernstein polynomial pα

n,i(x) of degree n is defined
by p(α)

1,0(x) = 1 – x, p(α)
1,1(x) = x and

p(α)
n,i (x) =

[(
n – 2

i

)
(1 – α)x +

(
n – 2
i – 2

)
(1 – α)(1 – x) +

(
n
i

)
αx(1 – x)

]

× xi–1(1 – x)n–1–i, (2)

where n ≥ 2.
Motivated by above research, in this paper we propose the q analogue of α-Bernstein

operators, called (α, q)-Bernstein operators, which are defined as

Tn,q,α(f ; x) =
n∑

i=0

fip(α)
n,q,i(x), (3)

where q ∈ (0, 1], fi = f ( [i]q
[n]q

), i = 0, 1, 2, . . . , n, p(α)
1,q,0(x) = 1 – x, p(α)

1,q,1(x) = x, and

p(α)
n,q,i(x) =

⎛

⎝
[

n – 2
i

]

q

(1 – α)x +

[
n – 2
i – 2

]

q

(1 – α)qn–i–2(1 – qn–i–1x
)

+

[
n
i

]

q

αx
(
1 – qn–i–1x

)
⎞

⎠xi–1(1 – x)n–i–1
q (n ≥ 2). (4)

By simple computations, we can also express the (α, q) operators (3) as

Tn,q,α(f ; x)

= (1 – α)
n–1∑

i=0

gi

[
n – 1

i

]

q

xi(1 – x)n–1–i
q + α

n∑

i=0

fi

[
n
i

]

q

xi(1 – x)n–i
q , (5)

where

gi =
(

1 –
qn–1–i[i]q

[n – 1]q

)
fi +

qn–1–i[i]q

[n – 1]q
fi+1. (6)

Here, we mention some definitions based on q integers, the details of which can be found
in [21, 22]. For any fixed real number 0 < q ≤ 1 and each non-negative integer k, we denote
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q-integers by [k]q, where

[k]q :=

⎧
⎨

⎩

1–qk

1–q , q �= 1,

k, q = 1.

Also, q-factorial and q-binomial coefficients are defined as follows:

[k]q! :=

⎧
⎨

⎩
[k]q[k – 1]q · · · [1]q, k = 1, 2, . . . ,

1, k = 0,
[

n
k

]

q

:=
[n]q!

[k]q![n – k]q!
(n ≥ k ≥ 0).

The q-analog of (1 + x)n is defined by (1 + x)n
q :=

∏n–1
s=0 (1 + qsx). The q derivative and

q derivative of the product are defined as Dqf (x) := dqf (x)
dqx = f (qx)–f (x)

(q–1)x and Dq(f (x)g(x)) :=
f (qx)Dqg(x) + g(x)Dqf (x), respectively. We also have Dqxn = [n]qxn–1 and Dq(1 – x)n

q =
–[n]q(1 – qx)n–1

q .
The rest of this paper is organized as follows. In the next section, we give some ba-

sic properties of the operators Tn,q,α(f ), such as the moments and central moments for
proving the convergence theorems, the forward difference form of Tn,q,α(f ) for proving
shape-preserving properties, etc. In Sect. 3, we obtain the convergence property and the
rate of convergence theorem. In Sect. 4, we investigate some shape-preserving properties,
such as monotonicity- and convexity-preserving properties with respect to f (x), and also
we study the monotonicity with n and q of Tn,q,α(f ).

2 Auxiliary results
For proving the main results, we require the following lemmas.

Lemma 2.1 We have the following equalities:

Tn,q,α(1; x) = 1, Tn,q,α(t; x) = x. (7)

Proof By (5), we have

Tn,q,α(1; x) = (1 – α)
n–1∑

i=0

[
n – 1

i

]

q

xi(1 – x)n–1–i
q + α

n∑

i=0

[
n
i

]

q

xi(1 – x)n–i
q

= 1.

However,

Tn,q,α(t; x)

= (1 – α)
n–1∑

i=0

[(
1 –

qn–1–i[i]q

[n – 1]q

)
[i]q

[n]q
+

qn–1–i[i]q

[n – 1]q

[i + 1]q

[n]q

][
n – 1

i

]

q

xi(1 – x)n–1–i
q

+ α

n∑

i=0

[i]q

[n]q

[
n
i

]

q

xi(1 – x)n–i
q
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= (1 – α)
n–1∑

i=0

[i]q

[n – 1]q

[
n – 1

i

]

q

xi(1 – x)n–1–i
q + α

n∑

i=0

[i]q

[n]q

[
n
i

]

q

xi(1 – x)n–i
q

= (1 – α)x + αx = x.

Lemma 2.1 is proved. �

Remark 2.2 From Lemma 2.1, we know that the (α, q)-Bernstein operators Tn,q,α(f ; x) re-
produce linear functions; that is,

Tn,q,α(at + b; x) = ax + b,

for all real numbers a and b.

We immediately obtain Lemma 2.3 from (5) and Lemma 2.1.

Lemma 2.3 For all functions f and g defined in [0, 1], x ∈ [0, 1], real numbers λ, μ defined
in [0, 1], and q ∈ (0, 1], the following statements hold true.

(i) Endpoint interpolation: Tn,q,α(f ; 0) = f (0) and Tn,q,α(f ; 1) = f (1).
(ii) Linearity: Tn,q,α(λf + μg; x) = λTn,q,α(f ; x) + μTn,q,α(g; x).

(iii) Non-negative: For 0 ≤ α ≤ 1 and 0 < q < 1, if f is non-negative on [0, 1], so is
(α, q)-Bernstein operators Tn,q,α(f ; x).

(iv) Monotone: For fixed 0 ≤ α ≤ 1 and 0 < q < 1, if f ≥ g , then Tn,q,α(f ; x) ≥ Tn,q,α(g; x).

Lemma 2.4
(i) The (α, q)-Bernstein operators may be expressed in the form

Tn,q,α(f ; x) =
n∑

r=0

⎛

⎝(1 – α)

[
n – 1

r

]

q

�r
qg0 + α

[
n
r

]

q

�r
qf0

⎞

⎠xr , (8)

where [ n–1
n ]q = 0, �r

qfj = �r–1
q fj+1 – qr–1�r–1

q fj, r ≥ 1, with �0
qfj = fj = f ( [j]q

[n]q
).

(ii) The higher-order forward difference of gi may be expressed in the form

�r
qgi =

(
1 –

qn–i–1[i]q

[n – 1]q

)
�r

qfi +
qn–i–1–r[i + r]q

[n – 1]q
�r

qfi+1, (9)

where �0
qgi = gi, which is defined in (6).

Proof We can obtain (8) easily by [2]. Next, in order to prove (9), we use induction on r. It
is clear that (9) holds for r = 0. Let us assume that (9) holds for some r = k ≥ 0. For r = k + 1,
we have

�k+1
q gi

= �k
qgi+1 – qk�k

qgi

=
(

1 –
qn–i–2[i + 1]q

[n – 1]q

)
�k

qfi+1 +
qn–i–2–k[i + k + 1]q

[n – 1]q
�k

qfi+2
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– qk
[(

1 –
qn–i–1[i]q

[n – 1]q

)
�k

qfi +
qn–i–k–1[i + k]q

[n – 1]q
�k

qfi+1

]

=
[

1 –
qn–i–2(1 + q[i]q)

[n – 1]q

]
�k

qfi+1 –
(

1 –
qn–i–1[i]q

[n – 1]q

)
qk�k

qfi

–
qn–i–1[i + k]q

[n – 1]q
�k

qfi+1 +
qn–i–2–k[i + k]q

[n – 1]q
�k

qfi+2

=
(

1 –
qn–i–1[i]q

[n – 1]q

)
�k+1

q fi –
qn–i–2

[n – 1]q
�k

qfi+1 –
qn–i–1[i + k]q

[n – 1]q
�k

qfi+1

+
qn–i–2–k[i + k + 1]q

[n – 1]q
�k

qfi+2

=
(

1 –
qn–i–1[i]q

[n – 1]q

)
�k+1

q fi –
qn–i–2[i + k + 1]q

[n – 1]q
�k

qfi+1 +
qn–i–1–k[i + k + 1]q

[n – 1]q
�k

qfi+2

=
(

1 –
qn–i–1[i]q

[n – 1]q

)
�k+1

q fi +
qn–i–k–2[i + k + 1]q

[n – 1]q

(�k
qfi+2 – qk�k

qfi+1
)

=
(

1 –
qn–i–1[i]q

[n – 1]q

)
�k+1

q fi +
qn–i–k–2[i + k + 1]q

[n – 1]q
�k+1

q fi+1.

This shows that (9) holds when k is replaced by k + 1, and this completes the proof of
Lemma 2.4. �

Since f [ [j]q
[n]q

, [j+1]q
[n]q

, . . . , [j+k]q
[n]q

] = [n]k
q�k

qfj

q
k(2j+k–1)

2 [k]q !
= f (k)(ξ )

k! , where ξ ∈ ( [j]q
[n]q

, [j+k]q
[n]q

), the q differ-

ences of the monomial xk of order greater than k are zero. We see from Lemma 2.4 that,
for all n ≥ k, Tn,q,α(tk ; x) is a polynomial of degree k. Actually, the (α, q)-Bernstein oper-
ators are degree-reducing on polynomials; that is, if f is a polynomial of degree m, and
then Tn,q,α(f ) is a polynomial of degree ≤ min{m, n}. In particular, we have the following
results.

Lemma 2.5 Letting f (t) = tk , n – 1 ≥ k ≥ 2, we have

Tn,q,α
(
tk ; x

)
= akxk + ak–1xk–1 + · · · + a1x + a0,

where ak = q
k(k–1)

2 [n–2]q !
[n–k]q ![n]k

q
{(1 – α)[n – k]q[n – 1 + k]q + α[n]q[n – 1]q}.

Proof Indeed, from (9) and �k
qfj = q

k(2j+k–1)
2 [k]q !f (k)(ξ )

k![n]k
q

, we have

�k
qg0 = �k

qf0 +
qn–1–k[k]q

[n – 1]q
�k

qf1, �k
qf0 =

q
k(k–1)

2 [k]q!
[n]k

q
, �k

qf1 =
q

k(k+1)
2 [k]q!
[n]k

q
.

Thus, we obtain

�k
qg0 =

(
1 +

qn–1[k]q

[n – 1]q

)
q

k(k–1)
2 [k]q!
[n]k

q
=

[n – 1 + k]q

[n – 1]q

q
k(k–1)

2 [k]q!
[n]k

q
.
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Hence, using (8), we have

ak =

⎡

⎣(1 – α)

[
n – 1

k

]

q

[n – 1 + k]q

[n – 1]q
+ α

[
n
k

]

q

⎤

⎦ q
k(k–1)

2 [k]q!
[n]k

q
.

We then obtain the proof of Lemma 2.5 by simple computations. �

Lemma 2.6 The following equalities hold true:

Tn,q,α
(
t2; x

)
= x2 +

x(1 – x)
[n]q

+
(1 – α)qn–1[2]qx(1 – x)

[n]2
q

, (10)

Tn,q,α
(
(t – x)2; x

)
=

x(1 – x)
[n]q

+
(1 – α)qn–1[2]qx(1 – x)

[n]2
q

. (11)

Proof For f (t) = t2, we have �0
qf0 = f0 = 0, �1

qf0 = f1 – f0 = 1
[n]2

q
, �1

qf1 = f2 – f1 = 2q+q2

[n]2
q

, �2
qf0 =

�1
qf1 – q�1

qf0 = f2 – [2]qf1 + qf0 = q[2]q
[n]2

q
, and �2

qf1 = f3 – [2]qf2 + qf1 = q3+q4

[n]2
q

. By (9), we have
�0

qg0 = 0, and

�1
qg0 = �1

qf0 +
qn–2

[n – 1]q
�1

qf1 =
1

[n]2
q

+
2qn–1 + qn

[n – 1]q[n]2
q

,

�2
qg0 = �2

qf0 +
qn–3[2]q

[n – 1]q
�2

qf1 =
q[2]q

[n]2
q

+
[2]q(qn + qn+1)

[n – 1]q[n]2
q

.

From (8), we have

Tn,q,α
(
t2; x

)

= (1 – α)�0
qg0 + α�0

qf0 +
[
(1 – α)[n – 1]q�1

qg0 + α[n]q�1
qf0

]
x

+
[

(1 – α)
[n – 1]q[n – 2]q

[2]q
�2

qg0 + α
[n]q[n – 1]q

[2]q
�2

qf0

]
x2

=
[

(1 – α)[n – 1]q

[n]2
q

+
(1 – α)(2qn–1 + qn)

[n]2
q

+
α

[n]q

]
x

+
[

(1 – α)q[n – 1]q[n – 2]q

[n]2
q

+
(1 – α)[n – 2]q(qn + qn+1)

[n]2
q

+
αq[n – 1]q

[n]q

]
x2

=
[n]q + (1 – α)qn–1[2]q

[n]2
q

x +
(

1 –
1

[n]q
–

(1 – α)qn–1[2]q

[n]2
q

)
x2

= x2 +
x(1 – x)

[n]q
+

(1 – α)qn–1[2]qx(1 – x)
[n]2

q
.

Hence, (10) is proved. Finally, using Lemma 2.1, we obtain

Tn,q,α
(
(t – x)2; x

)
= Tn,q,α

(
t2; x

)
– 2xTn,q,α(t; x) + x2Tn,q,α(1; x) = Tn,q,α

(
t2; x

)
– x2.

Then (11) is proved by (10). This completes the proof of Lemma 2.6. �
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3 Convergence properties
We now state the well-known Bohman–Korovkin theorem, followed by a proof based on
that given by Cheney [23].

Theorem 3.1 Let {Ln} denote a sequence of monotone linear operators that map a function
f ∈ C[a, b] to a function Lnf ∈ C[a, b], and let Lnf → f uniformly on [a, b] for f = 1, t and
t2. Then Lnf → f uniformly on [a, b] for all f ∈ C[a, b].

Theorem 3.1 leads to the following theorem on the convergence of (α, q)-Bernstein op-
erators.

Theorem 3.2 Let q := {qn} denote a sequence such that qn ∈ (0, 1) and limn→∞ qn = 1.
Then, for any f ∈ C[0, 1] and α ∈ [0, 1], Tn,q,α(f ; x) converges uniformly to f (x) on [0, 1].

Proof From Lemma 2.1, we see that Tn,q,α(f ; x) = f (x) for f (t) = 1 and f (t) = t. Since
limn→∞ qn = 1, we see from (10) that Tn,q,α(f ; x) converges uniformly to f (x) for f (t) = t2 as
n → ∞. It also follows that Tn,q,α is a monotone operator by Lemma 2.3; the proof is then
completed by applying the Bohman–Korovkin theorem 3.1. �

As we know, the space C[0, 1] of all continuous functions on [0, 1] is a Banach space
with sup-norm ‖f ‖ := supx∈[0,1] |f (x)|. Letting f ∈ C[0, 1], the Peetre K functional is defined
by K2(f ; δ) := infg∈C2[0,1]{‖f – g‖ + δ‖g ′′‖}, where δ > 0 and C2[0, 1] := {g ∈ C[0, 1] : g ′, g ′′ ∈
C[0, 1]}. By [24], there exists an absolute constant C > 0, such that

K2(f ; δ) ≤ Cω2(f ;
√

δ), (12)

where ω2(f ; δ) := sup0<h≤δ supx,x+h,x+2h∈[0,1] |f (x + 2h) – 2f (x + h) + f (x)| is the second-order
modulus of smoothness of f ∈ C[0, 1].

Theorem 3.3 For f ∈ C[0, 1], α ∈ [0, 1], q ∈ (0, 1), we have

∣∣Tn,q,α(f ; x) – f (x)
∣∣ ≤ Cω2

(
f ;

√
2[n]q + (1 – α)2[2]qqn–1

4[n]q

)
,

where C is a positive constant.

Proof Letting g ∈ C2[0, 1], x, t ∈ [0, 1], by Taylor’s expansion we have

g(t) = g(x) + g ′(x)(t – x) +
∫ t

x
(t – u)g ′′(u) du.

Using Lemma 2.1, we obtain

Tn,q,α(g; x) = g(x) + Tn,q,α

(∫ t

x
(t – u)g ′′(u) du; x

)
.

Thus, we have

∣∣Tn,q,α(g; x) – g(x)
∣∣ =

∣∣∣∣Tn,q,α

(∫ t

x
(t – u)g ′′(u) du; x

)∣∣∣∣
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≤ Tn,q,α

(∣∣∣∣
∫ t

x
(t – u)

∣∣g ′′(u)
∣∣du

∣∣∣∣; x
)

≤ Tn,q,α
(
(t – x)2; x

)∥∥g ′′∥∥

≤ [n]q + (1 – α)qn–1[2]q

4[n]2
q

∥∥g ′′∥∥. (13)

However, using Lemma 2.1, we have

∣∣Tn,q,α(f ; x)
∣∣ ≤ ‖f ‖. (14)

Now, (13) and (14) imply

∣∣Tn,q,α(f ; x) – f (x)
∣∣ ≤ ∣∣Tn,q,α(f – g; x) – (f – g)(x)

∣∣ +
∣∣Tn,q,α(g; x) – g(x)

∣∣

≤ 2‖f – g‖ +
[n]q + (1 – α)qn–1[2]q

4[n]2
q

∥∥g ′′∥∥.

Hence, taking the infimum on the right-hand side over all g ∈ C2[0, 1], we obtain

∣∣Tn,q,α(f ; x) – f (x)
∣∣ ≤ 2K2

(
f ;

[n]q + (1 – α)qn–1[2]q

8[n]2
q

)
.

By (12), we obtain

∣∣Tn,q,α(f ; x) – f (x)
∣∣ ≤ Cω2

(
f ;

√
2[n]q + (1 – α)2[2]qqn–1

4[n]q

)
,

where C is a positive constant. Theorem 3.3 is proved. �

Remark 3.4 Letting q := {qn} denote a sequence such that qn ∈ (0, 1) and limn→∞ qn = 1,
we know that, under the conditions of theorem 3.3, the convergence rate of the operators
Tn,q,α(f ) to f is 1/

√
[n]q as n → ∞. This convergence rate can be improved depending on

the choice of q, at least as fast as 1/
√

n.

Example 3.5 Letting f (x) = 1 – cos(4ex), the graphs of f (x) and Tn,q,0.9(f ; x) with different
values of n and q are shown in Fig. 1. Figure 2 shows the graphs of f (x) and T10,0.9,α(f ; x)
with α = 0.6 and α = 0.9.

4 Shape-preserving properties
The (α, q)-Bernstein operators Tn,q,α(f ; x) have a monotonicity-preserving property.

Theorem 4.1 Let f ∈ C[0, 1]. If f is a monotonically increasing or monotonically de-
creasing function on [0, 1], so are all its (α, q)-Bernstein operators for fixed q ∈ (0, 1) and
α ∈ [0, 1].

Proof From (5), we have

Tn+1,q,α(f ; x) = (1 – α)
n∑

i=0

gi

[
n
i

]

q

xi(1 – x)n–i
q + α

n+1∑

i=0

fi

[
n + 1

i

]

q

xi(1 – x)n+1–i
q ,
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Figure 1 Convergence of Tn,q,α (f ; x) to f (x) for fixed α = 0.9

Figure 2 Convergence of Tn,q,α (f ; x) to f (x) for fixed q = 0.9
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where fi = [i]q
[n+1]q

, gi = (1 – qn–i[i]q
[n]q

)fi + qn–i[i]q
[n]q

fi+1. Then the q derivative of Tn+1,q,α(f ; x) is

Dq
[
Tn+1,q,α(f ; x)

]

= (1 – α)
n∑

i=0

gi

[
n
i

]

q

Dq
[
xi(1 – x)n–i

q
]

+ α

n+1∑

i=0

fi

[
n + 1

i

]

q

Dq
[
xi(1 – x)n+1–i

q
]
,

and we denote the first and second parts of the right-hand side of the last equation by �1

and �2, respectively. We then have

�1

= (1 – α)
n∑

i=0

gi

[
n
i

]

q

[
[i]qxi–1(1 – qx)n–i

q – [n – i]qxi(1 – qx)n–i–1
q

]

= (1 – α)[n]q

⎡

⎣
n∑

i=1

gi

[
n – 1
i – 1

]

q

xi–1(1 – qx)n–i
q –

n–1∑

i=0

gi

[
n – 1

i

]

q

xi(1 – qx)n–i–1
q

⎤

⎦

= (1 – α)[n]q

n–1∑

i=0

[
n – 1

i

]

q

xi(1 – qx)n–i–1
q �1

qgi.

Using (9), we obtain

�1
qgi =

(
1 –

qn–i[i]q

[n]q

)
�1

qfi +
qn–i–1[i + 1]

[n]q
�1

qfi+1.

Thus, we have

�1 = (1 – α)
n–1∑

i=0

[(
[n]q – qn–i[i]q

)�1
qfi + qn–i–1[i + 1]q�1

qfi+1
]
[

n – 1
i

]

q

× xi(1 – qx)n–i–1
q . (15)

Similarly, we can obtain

�2 = α[n + 1]q

n∑

i=0

[
n
i

]

q

xi(1 – qx)n–i
q �1

qfi. (16)

Therefore, by using (15) and (16), the derivative of (α, q)-Bernstein operators Tn,q,α(f ; x)
may be expressed in the form

Dq
[
Tn,q,α(f ; x)

]

= (1 – α)
n–1∑

i=0

[(
[n]q – qn–i[i]q

)�1
qfi + qn–i–1[i + 1]q�1

qfi+1
]
[

n – 1
i

]

q

× xi(1 – qx)n–i–1
q + α[n + 1]q

n∑

i=0

[
n
i

]

q

xi(1 – qx)n–i
q �1

qfi.



Cai and Xu Journal of Inequalities and Applications  (2018) 2018:241 Page 11 of 14

Since if f is monotonically increasing on [0, 1], the forward differences �1
qfi and �1

qfi+1 are
non-negative, and so is Dq[Tn,q,α(f ; x)]. Hence, (α, q)-Bernstein operators Tn,q,α(f ; x) are
monotonically increasing on [0, 1] for fixed q ∈ (0, 1) and α ∈ [0, 1]. On the contrary, if f is
monotonically decreasing on [0, 1], then operators Tn,q,α(f ; x) are monotonically decreas-
ing on [0, 1] for fixed q ∈ (0, 1) and α ∈ [0, 1]. Theorem 4.1 is proved. �

The (α, q)-Bernstein operators Tn,q,α(f ; x) have a convexity-preserving property

Theorem 4.2 Let f ∈ C[0, 1]. If f is convex on [0, 1], so are all of its (α, q)-Bernstein oper-
ators Tn,q,α(f ; x) for fixed q ∈ (0, 1) and α ∈ [0, 1].

Proof From (5), we obtain

Tn+2,q,α(f ; x)

= (1 – α)
n+1∑

i=0

gi

[
n + 1

i

]

q

xi(1 – x)n–i+1
q + α

n+2∑

i=0

fi

[
n + 2

i

]

q

xi(1 – x)n+2–i
q ,

where fi = [i]q
[n+2]q

, gi = (1– qn–i+1[i]q
[n+1]q

)fi + qn–i+1[i]q
[n+1]q

fi+1. The q-derivative of Tn+2,q,α(f ; x) can easily
obtained by the proof theorem 4.1, which may be expressed as

Dq
[
Tn+2,q,α(f ; x)

]
= (1 – α)[n + 1]q

n∑

i=0

[
n
i

]

q

xi(1 – qx)n–i
q (gi+1 – gi)

+ α[n + 2]q

n+1∑

i=0

[
n + 1

i

]

q

xi(1 – qx)n–i+1
q (fi+1 – fi).

Then we have

D2
q
[
Tn+2,q,α(f ; x)

]

= (1 – α)[n + 1]q

n∑

i=0

[
n
i

]

q

(gi+1 – gi)Dq
[
xi(1 – qx)n–i

q
]

+ α[n + 2]q

n+1∑

i=0

[
n + 1

i

]

q

(fi+1 – fi)Dq
[
xi(1 – qx)n–i–1

q
]
.

By some easy computations, we obtain

D2
q
[
Tn+2,q,α(f ; x)

]
= (1 – α)[n + 1]q[n]q

n–1∑

i=0

[
n – 1

i

]

q

xi(1 – q2x
)n–i–1

q �2
qgi

+ α[n + 2]q[n + 1]q

n∑

i=0

[
n
i

]

q

xi(1 – q2x
)n–i

q �2
qfi,

where �2
qgi = (1 – qn–i+1[i]q

[n+1]q
)�2

qfi + qn–i–1[i+2]q
[n+1]q

�2
qfi+1. By the connection between the second-

order q differences and convexity, we know that �2
qfi and �2

qfi+1 are all non-negative since
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f is convex on [0, 1]. Hence, we obtain D2
q[Tn+2,q,α(f ; x)] ≥ 0, and then the convexity-

preserving property of Tn,q,α(f ; x). Theorem 4.2 is proved. �

Next, if f (x) is convex, the (α, q)-Bernstein operators Tn,q,α(f ; x), for n fixed, are mono-
tonic in q.

Theorem 4.3 For 0 < q1 ≤ q2 ≤ 1, α ∈ [0, 1] and for f (x) convex on [0, 1], then Tn,q2,α(f ; x) ≤
Tn,q1,α(f ; x).

Proof In the following main proof of our results, we must introduce a linear polynomial
function:

g(x) =
fi+1 – fi

[i+1]q
[n]q

– [i]q
[n]q

(
x –

[i]q

[n]q

)
+ fi, (17)

where [i]q
[n]q

≤ x < [i+1]q
[n]q

, fi = f ( [i]q
[n]q

), i = 0, . . . , n – 1. Then it is straightforward to check that

gi = g( [i]q
[n–1]q

). Since f is convex on [0, 1], the intrinsic linear polynomial function g(x) must
be convex on [0, 1] as well. Therefore, by the classical results of q-Bernstein operators (see
[3]), we note that

Tn,q,α(f ; x) = (1 – α)Bq
n–1(g; x) + αBq

n(f ; x). (18)

We have Bq2
n–1(g; x) ≤ Bq1

n–1(g; x) and Bq2
n (f ; x) ≤ Bq1

n (f ; x), and the desired result is obvious.
Theorem 4.3 is proved. �

Finally, if f (x) is convex, we give the monotonicity of (α, q)-Bernstein operators Tn,q,α(f ;
x) with n.

Theorem 4.4 If f (x) is convex on [0, 1], for fixed q ∈ (0, 1) and α ∈ [0, 1], we have

Tn–1,q,α(f ; x) – Tn,q,α(f ; x) ≥ 0 (n ≥ 2).

Proof Combining (17) and (18), and the fact that if f and g are convex on [0, 1], then

Bq
n–2(g; x) ≥ Bq

n–1(g; x), Bq
n–1(f ; x) ≥ Bq

n(f ; x)

(see [25]). The desired result is obvious. �

Example 4.5 Letting the convex function f (x) = 1 – sin(πx), x ∈ [0, 1], the graphs of f (x)
and Tn,0.9,0.9(f ; x) with different values of n = 10, 15, 20, 30 are shown in Fig. 3. Figure 4
shows the graphs of f (x) = 1 – sin(πx) and T10,q,0.9(f ; x) with q = 0.6, 0.7, 0.8, 0.9.

5 Conclusion
In this paper, we proposed a new family of generalized Bernstein operators, named (α, q)-
Bernstein operators, and denoted by Tn,q,α(f ). We study the rate of convergence of these
operators, investigate their monotonicity-, convexity-preserving properties with respect
to f (x), and also obtain their monotonicity with n and q of Tn,q,α(f ).
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Figure 3 Monotonicity of Tn,q,α (f ; x) in the parameter n

Figure 4 Monotonicity of Tn,q,α (f ; x) in the parameter q
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19. Han, L.W., Wu, Y.S., Chu, Y.: Weighted Lupaş q-Bézier curves. J. Comput. Appl. Math. 308, 318–329 (2016)
20. Chen, X., Tan, J., Liu, Z., Xie, J.: Approximation of functions by a new family of generalized Bernstein operators. J. Math.

Anal. Appl. 450, 244–261 (2017)
21. Gasper, G., Rahman, M.: Basic Hypergeometric Series. Encyclopedia of Mathematics and Its Applications, vol. 35.

Cambridge University Press, Cambridge (1990)
22. Kac, V.G., Cheung, P.: Quantum Calculus. Universitext. Springer, New York (2002)
23. Cheney, E.W.: Introduction to Approximation Theory. McGraw-Hill, New York (1966)
24. DeVore, R.A., Lorentz, G.G.: Constructive Approximation. Springer, Berlin (1993)
25. Oruç, H., Phillips, G.M.: A generalization of the Bernstein polynomials. Proc. Edinb. Math. Soc. 42, 403–413 (1999)


	Shape-preserving properties of a new family of generalized Bernstein operators
	Abstract
	MSC
	Keywords

	Introduction
	Auxiliary results
	Convergence properties
	Shape-preserving properties
	Conclusion
	Acknowledgements
	Funding
	Availability of data and materials
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


