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Abstract
Consider the equation

ut = div(dα|∇u|p–2∇u) +
∂bi(u, x, t)

∂xi
, (x, t) ∈ � × (0, T ),

where � is a bounded domain, d(x) is the distance function from the boundary ∂�.
Since the nonlinearity, the boundary value condition cannot be portrayed by the
Fichera function. If α < p – 1, a partial boundary value condition is portrayed by a new
way, the stability of the weak solutions is proved by this partial boundary value
condition. If α > p – 1, the stability of the weak solutions may be proved independent
of the boundary value condition.
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1 Introduction and the main results
Benedikt et al. [1] considered the equation

ut = div
(|∇u|p–2∇u

)
+ q(x)|u|γ –1u, (x, t) ∈ QT = � × (0, T), (1.1)

and showed that the uniqueness of the solution is not true [1]. Here, 0 < γ < 1, � is a
bounded domain in RN with appropriately smooth boundary, q(x) ≥ 0 and at least there
is a x0 ∈ � such that q(x0) > 0. Zhan [2] had shown that the stability of the solutions to the
equation

ut = div
(
dα|∇u|p–2∇u

)
+ f (u, x, t), (x, t) ∈ QT , (1.2)

is true, where d(x) = dist(x, ∂�) is distance function, α > 0 is a constant. The result of [2]
is in complete antithesis to that of [1]. So, when the well-posedness of the solutions is
considered, the degeneracy of the diffusion coefficient dα plays an important role.

Yin and Wang [3, 4] studied the equation

ut = div
(
dα|∇u|p–2∇u

)
, (x, t) ∈ QT , (1.3)

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1820-x
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1820-x&domain=pdf
mailto:huashuizhan@163.com


Zhan Journal of Inequalities and Applications  (2018) 2018:227 Page 2 of 18

and showed that there is a constant γ > 1 such that, if α < p – 1, then
∫∫

QT

|∇u|γ dx dt < ∞. (1.4)

Recently, Zhan [5] had generalized the Yin and Wang result to the equation

ut = div
(
dα|∇u|p–2∇u

)
+

N∑

i=1

∂bi(u)
∂xi

, (x, t) ∈ QT . (1.5)

In this paper, we continue to consider a more general equation,

ut = div
(
dα|∇u|p–2∇u

)
+

N∑

i=1

∂bi(u, x, t)
∂xi

, (x, t) ∈ QT , (1.6)

and study the well-posedness of the weak solutions. As usual, the initial value

u(x, 0) = u0(x), x ∈ �, (1.7)

is necessary. But, since the coefficient dα is degenerate on the boundary, when α < p – 1,
though (1.4) is true, and the boundary value condition

u(x, t) = 0, (x, t) ∈ ∂� × (0, T), (1.8)

can be imposed in the sense of the trace, it may be overdetermined. While α ≥ p – 1, it
is almost impossible to prove (1.4). How to impose a suitable boundary value condition
to match up with Eq. (1.6) becomes very troublesome [4]. Stated succinctly, instead of the
Dirichlet boundary value condition (1.8), only a partial boundary value condition,

u(x, t) = 0, (x, t) ∈ �p × (0, T), (1.9)

is needed, where �p ⊆ ∂� is a relatively open subset. The main difficulty comes from the
fact that, since Eq. (1.6) is a nonlinear parabolic equation, �p cannot be expressed by the
Fichera function (one can refer to Sect. 6 of this paper). In this paper, we will try to depict
the geometric characteristic of �1, and establish the stability of the weak solutions based
on the partial boundary value condition (1.9).

We denote

W 1,p
α =

{
u ∈ W 1,p

loc (�) :
∫

�

dα|∇u|p dx < ∞
}

.

Definition 1.1 Let

u ∈ L∞(QT ), ut ∈ L2(QT ), dα|∇u|p ∈ L∞(
0, T ; L1(�)

)
, (1.10)

and

∫∫

QT

[

ut(ϕ1ϕ2) + dα|∇u|p–2∇u · ∇(ϕ1ϕ2) +
N∑

i=1

bi(u, x, t)(ϕ1ϕ2)xi

]

dx dt = 0. (1.11)
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Here ϕ1 ∈ C1
0(QT ), ϕ2(x, t) ∈ W 1,p

α for any given t, and |ϕ2(x, t)| ≤ c for any given x. If the
initial value (1.7) is satisfied in the sense of

lim
t→0

∫

�

∣∣u(x, t) – u0(x)
∣∣dx = 0, (1.12)

then we say u(x, t) is a solution of Eq. (1.6) with the initial condition (1.7).

Theorem 1.2 If p > 2 and α < p–2
2 , for any i ∈ {1, 2, . . . , N}, bi(s, x, t) is a C1 function, and

there are constants β , c such that

∣∣bi(s, x, t)
∣∣ ≤ c|s|1+β ,

∣
∣∣
∣
∂bi(s, x, t)

∂s

∣
∣∣
∣ ≤ c|s|β ,

∣
∣∣
∣
bi(s, x, t)

∂xi

∣
∣∣
∣ ≤ c,

i = 1, 2, . . . , N , (1.13)

u0 ∈ L∞(�) ∩ W 1,p(�), (1.14)

then there is a solution of Eq. (1.6) with the initial value (1.7).

Certainly, we suggest that the conditions in Theorem 1.2 are not the optimal, we only
provide a basic result of the existence here. The main aim of this paper is to research the
stability of the weak solutions.

Theorem 1.3 Let α > p – 1 > 0, bi satisfy

∣∣bi(u, x, t) – bi(v, x, t)
∣∣ ≤ cd

α
p |u – v|, i = 1, 2, . . . , N . (1.15)

If u and v are two solutions of Eq. (1.6) with the initial values u0(x) and v0(x), respectively,
then

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

�

∣∣u0(x) – v0(x)
∣∣, ∀t ∈ [0, T). (1.16)

Remark 1.4 If α < p – 1, we can prove the stability of the weak solutions for the initial-
boundary value problem (1.6), (1.7), and (1.8) in a standard way [6]. We ask whether the
spatial variable x in the nonlinear convection term bi(u, x, t) can bring about the essential
change. In particular, when bi(s, x, t) ≡ 0, then only if α ≥ p – 1, Yin and Wang [3] had
shown that

∫

�

∣∣u(x, t) – v(x, t)
∣∣2 dx ≤

∫

�

∣∣u0(x) – v0(x)
∣∣2 dx.

Without the condition (1.15), we can prove a result of the local stability of the weak
solutions. This is the following theorem.

Theorem 1.5 Let p > 1, bi(s, x, t) be a Lipschitz function. If u and v are two solutions of
Eq. (1.6), then there exists a constant β large enough such that

∫

�

dβ
∣∣u(x, t) – v(x, t)

∣∣2 dx ≤
∫

�

dβ
∣∣u0(x) – v0(x)

∣∣2 dx. (1.17)
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Theorem 1.5 implies that the uniqueness of the weak solutions is true only if α > 0. When
bi(u, x, t) = bi(x)Diu, i.e., the convection term is just linear, Theorem 1.5 had been proved
in paper [7]. When bi(u, x, t) = bi(u), Theorem 1.5 had been proved in [8] very recently.
For the sake of simplicity, we will not give the details of the proof of Theorem 1.5 in this
paper.

Once more, by introducing a new kind of the weak solutions, choosing a suitable test
function, we can prove the following theorems.

Theorem 1.6 Let α > p – 1, p > 2, bi satisfying

∣∣bi(u, x, t) – bi(v, x, t)
∣∣ ≤ cd(x)|u – v|, i = 1, 2, . . . , N . (1.18)

If u and v are two solutions of Eq. (1.6) with the initial values u0(x) and v0(x), respectively,
then

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx, ∀t ∈ [0, T). (1.19)

Theorem 1.6 seems just a minor version of Theorem 1.3. However, on the right hand
side of (1.19), there is no constant c as in (1.16).

Last but no the least, we will prove the stability of the solutions based on a partial bound-
ary value condition.

Theorem 1.7 Let b(s, x, t) be a Lipschitz function, u and v be two weak solutions of Eq. (1.6)
with the same partial homogeneous boundary value

u|�p×(0,T) = 0 = v|�p×(0,T). (1.20)

If

p > 3, p – 1 > α ≥ p – 1
p – 2

, (1.21)

and there is nonnegative function ai(x) such that

∣∣bi(u, v, t) – bi(v, x, t)
∣∣ ≤ ai(x)|u – v|, (1.22)

then
∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤

∫

�

∣∣u0(x) – v0(x)
∣∣dx, ∀t ∈ [0, T). (1.23)

Here,

�p =

{

x ∈ ∂� :
N∑

i=1

ai(x) �= 0

}

. (1.24)

The paper is arranged as follows. In Sect. 1, we have given the basic definition and in-
troduced the main results. In Sect. 2, we prove the existence of the solution to Eq. (1.6)
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with initial value (1.7). In Sect. 3, we prove Theorem 1.3. In Sect. 4, we give another kind
of the weak solutions. By this new definition, we can prove Theorem 1.6. In Sect. 5, we
will prove Theorem 1.7. In Sect. 7, we will give an explanation of the reasonableness of the
partial boundary value condition.

2 The proof of existence
Consider the regularized equation

ut = div
((

dα + ε
)|∇u|p–2∇u

)
+

N∑

i=1

∂bi(u, x, t)
∂xi

, (x, t) ∈ QT , (2.1)

with the initial boundary conditions

u(x, 0) = u0ε(x), x ∈ �, (2.2)

u(x, t) = 0, (x, t) ∈ ∂� × (0, T). (2.3)

Here, u0ε ∈ C∞
0 (�) and u0ε converges to u0 in W 1,p

0 (�).

Proof of Theorem 1.2 Similar to [9], we can easily prove that there exists a weak solution
uε ∈ L∞(0, T ; W 1,p

0 (�)) of the initial-boundary value problem (2.1)–(2.3),

‖uε‖L∞(QT ) ≤ c. (2.4)

Multiplying (2.1) by uε and integrating it over QT , by the fact

∫∫

QT

uε

∂bi(uε , x, t)
∂xi

dx dt

= –
∫∫

QT

∂uε

∂xi
bi(uε , x, t) dx dt

= –
∫∫

QT

∂

∂xi

∫ uε

0
bi(s, x, t) ds dx dt +

∫∫

QT

∫ uε

0
bixi (s, x, t) ds dx dt

=
∫∫

QT

∫ uε

0
bixi (s, x, t) ds dx dt

= 0,

we are able to deduce that
∫∫

QT

dα|∇uε|p dx dt ≤
∫∫

QT

(
dα + ε

)|∇uε|p dx dt ≤ c. (2.5)

Then

∫ T

0

∫

�λ

|∇uε|p dx dt ≤ c(λ) (2.6)

for any �λ = {x ∈ �, d(x, ∂�) > λ} ⊆ �, λ being a small constant.
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Multiplying (2.5) by uεt , integrating it over QT , then it yields

∫∫

QT

(uεt)2 dx dt =
∫∫

QT

div
((

dα + ε
)|∇uε|p–2∇uε

) · uεt dx dt

+
N∑

i=1

∫∫

QT

uεt
∂bi(uε , x, t)

∂xi
dx dt. (2.7)

Notice that

|∇uε|p–2∇uε · ∇uεt =
1
2

d
dt

∫ |∇uε |2

0
s

p–2
2 ds.

Thus,

∫∫

QT

div
((

dα + ε
)|∇uε|p–2∇uε

) · uεt dx dt

= –
∫∫

QT

(
dα + ε

)|∇uε|p–2∇uε∇uεt dx dt

= –
1
2

∫∫

QT

(
dα + ε

) d
dt

∫ |∇uε |2

0
s

p–2
2 ds dx dt. (2.8)

By condition (1.13),

∫∫

QT

uεt
∂

∂xi
bi(uε , x, t) dx dt

≤
∫∫

QT

∣
∣∣
∣
bi(uε , x, t)

∂u

∣
∣∣
∣|uεxi ||uεt|dx dt +

∫∫

QT

∣
∣∣
∣
bi(uε , x, t)

∂xi

∣
∣∣
∣|uεxi ||uεt|dx dt

≤ 1
4

∫∫

QT

(uεt)2 dx dt + c
∫∫

QT

|uε|2β |∇uε|2 dx dt

+
1
4

∫∫

QT

(uεt)2 dx dt + c
∫∫

QT

|∇uε|2 dx dt. (2.9)

By Hölder’s inequality and α ≤ p–2
2 ,

∫∫

QT

|uε|2β |∇uε|2 dx dt

≤ c
∫∫

QT

|∇uε|2 dx dt

= c
∫∫

QT

d– 2α
p · d

2α
p |∇uε|2 dx dt

≤ c
(∫∫

QT

d– 2α
p–2 dx dt

) p–2
p–

·
(∫∫

QT

da|∇uε|p dx dt
) 2

p

≤ c. (2.10)
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Combining (2.7)–(2.10), we have

∫∫

QT

(uεt)2 dx dt +
∫∫

QT

(
dα + ε

) d
dt

∫ |∇uε |2

0
s

p–2
2 ds dx dt ≤ c,

by the inequality, we have
∫∫

QT

(uεt)2 dx dt ≤ c + c
∫

�

(
dα + ε

)|∇u0ε|p dx ≤ c. (2.11)

Hence, by (2.4), (2.6), (2.11), there exist a function u and a n-dimensional vector
−→
ζ =

(ζ1, . . . , ζn) satisfying

u ∈ L∞(QT ),
∂u
∂t

∈ L2(QT ), |−→ζ | ∈ L1(0, T ; L
p

p–1 (�)
)
, (2.12)

and uε → u a.e. ∈ QT ,

uε ⇀ u, weakly star in L∞(QT ),

uε → u, in L2(0, T ; Lr
loc(�)

)
,

∂uε

∂t
⇀

∂u
∂t

in L2(QT ),

dα|∇uε|p–2∇uε ⇀
−→
ζ in L1(0, T ; L

p
p–1 (�)

)
.

Here, if p ≥ 2, r = 2, while 1 < p < 2, 1 < r < Np
N–p .

In order to prove that u is the solution of Eq. (1.6), for any function ϕ ∈ C1
0(QT ), we have

∫∫

QT

[

uεtϕ +
(
dα + ε

)|∇uε|p–2∇uε · ∇ϕ +
N∑

i=1

bi(uε , x, t)ϕxi

]

dx dt = 0,

we let ε → 0.
Since as ε → 0, by d(x) > 0, x ∈ �, then c > supsuppϕ

|∇ϕ|
dα > 0 due to ϕ ∈ C1

0(QT ), we have

ε

∣∣
∣∣

∫∫

QT

|∇uε|p–2∇uε · ∇ϕ dx dt
∣∣
∣∣

≤ ε sup
suppϕ

|∇ϕ|
dα

∫∫

QT

(|∇uε|p + c
)

dx dt → 0.

By this note, we have
∫∫

QT

�ζ · ∇ϕ dx dt

= lim
ε→0

∫∫

QT

dα|∇uε|p–2∇uε · ∇ϕ dx dt

= lim
ε→0

∫∫

QT

(
dα + ε

)|∇uε|p–2∇uε · ∇ϕ dx dt – lim
ε→0

ε

∫∫

QT

|∇uε|p–2∇uε · ∇ϕ dx dt

= lim
ε→0

∫∫

QT

(
dα + ε

)|∇uε|p–2∇uε · ∇ϕ dx dt.
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Now, similar to the general evolutionary p-Laplician equation [6], we are able to prove
that (the details are omitted here)

∫∫

QT

[
uϕt + �ς · ∇ϕ + bi(u, x, t)ϕxi

]
dx dt = 0 (2.13)

and
∫∫

QT

dα|∇u|p–2∇u · ∇ϕ dx dt =
∫∫

QT

−→
ζ · ∇ϕ dx dt, (2.14)

for any function ϕ ∈ C1
0(QT ). Then

∫∫

QT

[

utϕ + dα|∇u|p–2∇u · ∇ϕ +
N∑

i=1

bi(u, x, t)ϕxi

]

dx dt = 0. (2.15)

If for any given t ∈ [0, T), we denote �ϕ = suppϕ, then

∫ T

0

∫

�ϕ

[

utϕ + dα|∇u|p–2∇u · ∇ϕ +
N∑

i=1

bi(u, x, t)ϕxi

]

dx dt = 0. (2.16)

Now, for any ϕ1 ∈ C1
0(QT ), ϕ2(x, t) ∈ W 1,p

α for any given t, and |ϕ2(x, t)| ≤ c for any given x,
it is clear that ϕ2 ∈ W 1,p(�ϕ1 ). By the fact that C∞

0 (�ϕ1 ) is dense in W 1,p(�ϕ1 ), by a process
of limits, we have

∫ T

0

∫

�ϕ1

[

ut(ϕ1ϕ2) + dα|∇u|p–2∇u · ∇(ϕ1ϕ2)

+
N∑

i=1

bi(u, x, t)(ϕ1ϕ2)xi

]

dx dt = 0, (2.17)

which implies that

∫ T

0

∫

�

[
ut(ϕ1ϕ2) + dα|∇u|p–2∇u · ∇(ϕ1ϕ2) + bi(u, x, t)(ϕ1ϕ2)xi

]
dx dt = 0. (2.18)

Then u satisfies Eq. (1.6) in the sense of Definition 1.1. �

3 Proof of Theorem 1.3

Proof Let u and v be two weak solutions of Eq. (1.6) with the initial values u0(x) and v0(x),
respectively. For large enough n > 0, let

gn(s) =
∫ s

0
hn(τ ) dτ , hn(s) = 2n

(
1 – |ns|)+. (3.1)

Obviously hn(s) ∈ C(R), and

hn(s) ≥ 0,
∣∣shn(s)

∣∣ ≤ 1,
∣∣gn(s)

∣∣ ≤ 1;

lim
n→∞ gn(s) = sign s, lim

n→∞ shn(s) = 0.
(3.2)
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We define

dn(x) =

⎧
⎨

⎩
nd(x), d(x) < 1

n ,

1, d(x) ≥ 1
n .

Since for any given t, ϕ1 = gn(u – v) ∈ W 1,p
α , by a process of limit, we can choose dngn(u – v)

as the test function, then

∫

�

dn(x)gn(u – v)
∂(u – v)

∂t
dx

+
∫

�

dα
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)hn(u – v)dn(x) dx

+
∫

�

dα
(|∇u|p–2∇u – |∇v|p–2∇v

)
(u – v)gn(u – v)∇dn dx

+
∫

�

(
bi(u, x, t) – bi(v, x, t)

) · (u – v)xi hn(u – v)dn(x) dx

+
∫

�

(
bi(u, x, t) – bi(v, x, t)

) · gn(u – v)dnxi (x) dx = 0. (3.3)

Thus

lim
n→∞

∫

�

dn(x)gn(u – v)
∂(u – v)

∂t
dx =

d
dt

‖u – v‖L1(�), (3.4)
∫

�

dα
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇(u – v)hn(u – v)dn(x) dx ≥ 0. (3.5)

Denoting Dn = {x ∈ � : d(x) > 1
n }, q = p

p–1 , clearly

∥∥nd
α
p
∥∥

Lp(�\Dn) = n
∥∥d

α
p
∥∥

Lp(�\Dn)

= n
(∫

�\Dn

dα dx
) 1

p
≤ cn1– 1+α

p ,

which goes to zero since that α > p – 1.
By this fact, |∇dn| = n, x ∈ � \ Dn, we have

∣
∣∣∣

∫

�

dα
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇dngn(u – v) dx
∣
∣∣∣

=
∣
∣∣
∣

∫

�\Dn

dα
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇dngn(u – v) dx
∣
∣∣
∣

≤ ∥
∥dα

p–1
p

(|∇u|p–1 + |∇v|p–1)∥∥
Lq(�\Dn)

∥
∥ndα 1

p
∥
∥

Lp(�\Dn)

≤ c
[(∫

�\Dn

dα|∇u|p dx
) 1

q
+

(∫

�\Dn

dα|∇u|p dx
) 1

q
]

, (3.6)

which goes to 0 as n → 0.
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Once more, since

∫

�

∣∣d
α
p (u – v)xi

∣∣dx ≤ c
(∫

�

dα
(|∇u|p + |∇v|p)dx

) 1
p

≤ c,

by the Lebesgue dominated convergence theorem, we have

lim
n→∞

∣
∣∣
∣

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
dn(x)hn(u – v)(u – v)xi dx

∣
∣∣
∣

≤ lim
n→∞

∫

�

∣∣bi(u, x, t) – bi(v, x, t)
∣∣∣∣hn(u – v)(u – v)xi

∣∣dx

≤ c lim
n→∞

∫

�

∣∣(u – v)hn(u – v)
∣∣∣∣d

α
p (u – v)xi

∣∣dx = 0. (3.7)

Once again,

lim
n→∞

∣
∣∣∣

∫

�

(
bi(u, x, t) – bi(v, x, t)

) · gn(u – v)dnxi (x) dx
∣
∣∣∣ ≤ c

∫

�

|u – v|dx. (3.8)

Now, let n → ∞ in (3.3). Then

d
dt

‖u – v‖L1(�) ≤ c‖u – v‖L1(�).

It implies that

∫

�

∣∣u(x, t) – v(x, t)
∣∣dx ≤ c

∫

�

|u0 – v0|dx, ∀t ∈ [0, T).

Theorem 1.3 is proved. �

4 Another kind of weak solution
In this section, we introduce another kind of weak solution and prove another stability
theorem.

Definition 4.1 If a function u(x, t) satisfies (1.10), and

∫∫

QT

[

utg(ϕ) + dα|∇u|p–2∇u · ∇g(ϕ) +
N∑

i=1

bi(u, x, t)gxi (ϕ)

]

dx dt = 0, (4.1)

for ϕ ∈ C1
0(QT ), g(s) is a C1 function with g(0) = 0, the initial value (1.7) is satisfied in the

sense of (1.12), then we say u(x, t) is a weak solution of Eq. (1.6) with the initial value (1.7).

Only if we choose ϕ1 = g(ϕ), ϕ2 = 1 in Definition 1.1, one can obtain the existence of the
weak solutions in the sense of Definition 4.1.

Theorem 4.2 If bi is a Lipchitz function,

∣∣bi(u, x, t) – bi(v, x, t)
∣∣ ≤ cg(x)|u – v|, (4.2)
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∫

�

g(x)d–1(x) dx ≤ c, (4.3)

and one of the following conditions is true:
(i) α ≥ p;

(ii) p > α > p – 1, p > 2;
then the stability

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx, ∀t ∈ [0, T), (4.4)

is true for the solutions u and v with the initial values u0(x) and v0(x), respectively.

Proof By a process of limit, we may choose ϕ = χ[τ ,s]gn(dβ (u – v)) as a test function, where
β is a constant to be chosen later. Then

∫∫

Qτ s

gn
(
(u – v)dβ

)∂(u – v)
∂t

dx dt

= –
∫∫

Qτ s

dα
(|∇u|p–2∇u – |∇v|p–2∇v

)∇[
gn

(
(u – v)dβ

)]
dx dt

–
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

][
gn

(
(u – v)dβ

)]
xi

dx dt. (4.5)

Now, let us calculate every term in (4.5). For the first term on the right hand side of (4.5),

∫∫

Qτ s

dα
(|∇u|p–2∇u – |∇v|p–2∇v

)∇[
gn

(
(u – v)dβ

)]
dx dt

=
∫∫

Qτ s

dα+βhn
(
(u – v)dβ

)(|∇u|p–2∇u – |∇v|p–2∇v
)∇(u – v) dx dt

+ β

∫∫

Qτ s

dα+β–1hn
(
(u – v)dβ

)
(u – v)

(|∇u|p–2∇u – |∇v|p–2∇v
)∇d dx dt. (4.6)

Clearly,

∫∫

Qτ s

dα+βhn
(
(u – v)dβ

)(|∇u|p–2∇u – |∇v|p–2∇v
)∇(u – v) dx dt ≥ 0. (4.7)

By the fact that |∇d| = 1 is true almost everywhere, α > p – 1, we have

∫∫

QT

dα–p dx dt ≤ c,

accordingly, using the Lebesgue dominated convergent theorem and the limit limn→∞ s ×
hn(s) = 0, we have

∣
∣∣
∣

∫∫

Qτ s

dα+β–1(|∇u|p–2∇u – |∇v|p–2∇v
)
(u – v)hn

(
(u – v)dβ

)∇d dx dt
∣
∣∣
∣

≤ c
(∫ s

τ

∫

�

dα
(|∇u|p + |∇v|p)dx dt

) p–1
p



Zhan Journal of Inequalities and Applications  (2018) 2018:227 Page 12 of 18

×
(∫ s

τ

∫

�

dαdp(β–1)|∇d|p∣∣hn
(
(u – v)dβ

)
(u – v)

∣∣p dx dt
) 1

p

≤ c
(∫ s

τ

∫

�

dα–p∣∣hn
(
(u – v)dβ

)
dβ (u – v)

∣
∣p dx dt

) 1
p

, (4.8)

which goes to zero as n → ∞.
As for the second term on the right hand side of (5.5),

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

][
gn

(
(u – v)dβ

)]
xi

dx dt

=
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)hn

(
(u – v)dβ

)
dβ

xi
dx dt

+
∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi d

βhn
(
(u – v)dβ

)
dx dt. (4.9)

Since for any given (x, t), bi(s, x, t) is a Lipschitz function, u, v ∈ L∞(QT ), we have

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
hn

(
(u – v)dβ

)
(u – v)dβ

xi
dx dt

= β

∫ s

τ

∫

�

[
bi(u, x, t) – bi(v, x, t)

]
d–1hn

(
(u – v)dβ

)
(u – v)dβdxi dx dt, (4.10)

which goes to zero when n → 0. This is due to [bi(u, x, t) – bi(v, x, t)]d–1(x) ∈ L1(QT )
by (4.2)–(4.3), using the Lebesgue dominated convergent theorem in (4.10) and using
limn→∞ shn(s) = 0 again.

Meanwhile, also using the dominated convergent theorem, we have

∣∣
∣∣

∫∫

Qτ s

[
bi(u, x, t) – bi(v, x, t)

]
(u – v)xi d

βhn
(
(u – v)dβ

)
dx dt

∣∣
∣∣

≤
(∫ s

τ

∫

�

d(– α
p )q[hn

(
(u – v)dβ

)
dβ

∣
∣bi(u, x, t) – bi(v, x, t)

∣
∣]q dx dt

) 1
q

×
(∫ s

τ

∫

�

dα
(|∇u|p + |∇v|p)dx dt

) 1
p

≤ c
(∫ s

τ

∫

�

d(1– α
p )q[hn

(
(u – v)dβ

)
dβ |u – v|]q dx dt

) 1
q

, (4.11)

which goes to zero provided that one of the conditions (i) and (ii) is true. Here q = p
p–1 as

usual.
At last,

lim
n→∞

∫∫

Qτ s

gn
(
(u – v)dβ

)∂(u – v)
∂t

dx dt

=
∫∫

Qτ s

sign
(
(u – v)dβ

)∂(u – v)
∂t

dx dt

=
∫∫

Qτ s

sign
(
(u – v)

)∂(u – v)
∂t

dx dt

=
∫

�

∣
∣u(x, s) – v(x, s)

∣
∣dx –

∫

�

∣
∣u(x, τ ) – v(x, τ )

∣
∣dx. (4.12)
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By (4.6)–(4.12), we have

∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u(x, τ ) – v(x, τ )
∣∣dx. (4.13)

Then
∫

�

∣∣u(x, s) – v(x, s)
∣∣dx ≤

∫

�

∣∣u0(x) – v0(x)
∣∣dx.

The proof is complete. �

Proof of Theorem 1.6 Since α > p – 1, p > 2 and the condition (1.18) in Theorem 1.6, one
can see that (4.2)–(4.3) are all right. Thus, Theorem 1.6 is true. �

5 Proof of Theorem 1.7

Proof For a small positive constant λ > 0, define

φ(x) =

⎧
⎨

⎩
1, if x ∈ �λ,
d(x)
λ

, if x ∈ � \ �λ,
(5.1)

where

�λ =
{

x ∈ � : d(x) = dist(x, ∂�) > λ
}

.

Then

∇φ =
1
λ

∇d, x ∈ � \ �λ.

u and v are two weak solutions of Eq. (1.6) with the same partial homogeneous boundary
value (1.20) and with the different initial values u0(x) and v0(x), respectively. According to
Definition 4.1, we choose gn(φ(u – v)) as the test function. Thus

∫

�

gn
(
φ(u – v)

)∂(u – v)
∂t

dx

+
∫

�

dα
(|∇u|p–2∇u – |∇v|p–2∇v

) · φ∇(u – v)hn
(
φ(u – v)

)
dx

+
∫

�

dα
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φ(u – v)hn
(
φ(u – v)

)
dx

+
N∑

i=1

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
(u – v)xi hn

(
φ(u – v)

)
φ dx

+
N∑

i=1

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
φxi (u – v)hn

(
φ(u – v)

)
dx

= 0. (5.2)
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For the terms on the left hand side of (5.2),

lim
n→∞ lim

λ→0

∫

�

gn
(
φ(u – v)

)∂(u – v)
∂t

dx =
d
dt

∫

�

|u – v|dx, (5.3)
∫

�

dα
(|∇u|p–2∇u – |∇v|p–2∇v

) · φ∇(u – v)hn
(
φ(u – v)

)
dx ≥ 0. (5.4)

By the fact that

∣∣(u – v)hn
(
φ(u – v)

)∣∣ =
∣∣φ(u – v)hn

(
φ(u – v)

)∣∣ 1
φ

≤ c
φ

,
|∇φ|

φ
≤ c

λ
, (5.5)

using the Young inequality, we have

∣∣
∣∣

∫

�

dα
(|∇u|p–2∇u – |∇v|p–2∇v

) · ∇φ(u – v)hn
(
φ(u – v)

)
dx

∣∣
∣∣

≤
∫

�\�λ

dα
(|∇u|p–1 + |∇v|p–1) |∇φ|

φ

∣∣φ(u – v)
∣∣hn

(
φ(u – v)

)
dx

≤ c
∫

�\�λ

1
λ

dα
(|∇u|p–1 + |∇v|p–1)∣∣φ(u – v)

∣∣hn
(
φ(u – v)

)
dx

≤ c
λ

∫

�\�λ

dα– α
p–1 ρ

α
p–1

(|∇u|p–1 + |∇v|p–1)dx

≤ c
∫

�\�λ

[
dα

(|∇u|p + |∇v|p) +
1
λp dp(α– α

p–1 )
]

dx, (5.6)

which goes to 0 as λ → 0, by p – 1 > α ≥ p–1
p–2 , implying

1
λp dp(α– α

p–1 ) ≤ λ
[α–1– α

p–1 ]p → 0.

Meanwhile,

N∑

i=1

∣
∣∣
∣

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
hn

(
φ(u – v)

)
(u – v)φxi (x) dx

∣
∣∣
∣

≤ c
N∑

i=1

∫

�\�λ

|bi(u, x, t) – bi(v, x, t)|
λ

dx. (5.7)

We use |bi(u, x, t) – bi(v, x, t)| ≤ ai(x)|u – v|. According to the definition of the trace, by the
partial boundary value condition (1.6),

u(x, t) = v(x, t) = 0, x ∈ �1 =

{

x ∈ ∂� :
N∑

i=1

ai(x) �= 0

}

and

N∑

i=1

ai(x) = 0, x ∈ �2 =

{

x ∈ ∂� :
N∑

i=1

ai(x) = 0

}

,
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we have

lim
λ→0

∣
∣∣
∣

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
hn

(
φ(u – v)

)
(u – v)φxi (x) dx

∣
∣∣
∣

≤ c
N∑

i=1

∫

∂�

∣∣ai(x)
∣∣|u – v|d� = c

N∑

i=1

∫

�1∪�2

∣∣ai(x)
∣∣|u – v|d� = 0. (5.8)

Moreover, as in [10], we can prove that

lim
n→∞ lim

λ→0

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
hn

(
φ(u – v)

)
(u – v)xiφ(x) dx = 0. (5.9)

In detail,

lim
λ→0

∣
∣∣
∣

∫

�

(
bi(u, x, t) – bi(v, x, t)

)
hn

(
φ(u – v)

)
(u – v)xiφ(x) dx

∣
∣∣
∣

=
∣
∣∣
∣

∫

{x∈�:|u–v|< 1
n }

[
bi(u, x, t) – bi(v, x, t)

]
hn(u – v)(u – v)xi dx

∣
∣∣
∣

≤ c
∫

{x∈�:|u–v|< 1
n }

∣
∣∣∣
bi(u, x, t) – bi(v, x, t)

u – v

∣
∣∣∣
∣∣(u – v)xi

∣∣dx

= c
∫

{x∈�:|u–v|< 1
n }

∣∣
∣∣d

– α
p

bi(u, x, t) – bi(v, x, t)
u – v

∣∣
∣∣
∣
∣d

α
p (u – v)xi

∣
∣dx

≤ c
[∫

{x∈�:|u–v|< 1
n }

∣
∣∣
∣d

– α
p

bi(u, x, t) – bi(v, x, t)
u – v

∣
∣∣
∣

p
p–1

dx
] p–1

p

×
[∫

{x∈�:|u–v|< 1
n }

∣∣dα∇(u – v)
∣∣p dx

] 1
p

. (5.10)

Since α < p – 1, |bi(u, x, t) – bi(v, x, t)| ≤ c|u – v|,
∫

{x∈�:|u–v|< 1
n }

∣∣∣
∣d

– α
p

bi(u, x, t) – bi(v, x, t)
u – v

∣∣∣
∣

p
p–1

dx ≤ c
∫

�

d– α
p–1 dx ≤ c. (5.11)

If {x ∈ � : |u – v| = 0} is a set with 0 measure, then

lim
n→∞

∫

{x∈�:|u–v|< 1
n }

∣∣d
α

p–1
∣∣dx =

∫

{x∈�:|u–v|=0}

∣∣d
α

p–1
∣∣dx = 0. (5.12)

If the set {x ∈ � : |u – v| = 0} has a positive measure, then

lim
n→∞

∫

{x∈�:|u–v|< 1
n }

dα
∣∣∇(u – v)

∣∣p dx =
∫

{x∈�:|u–v|=0}
dα

∣∣∇(u – v)
∣∣p dx = 0. (5.13)

Therefore, in both cases, (5.10) goes to 0 as η → 0.
Now, after letting λ → 0, let n → ∞ in (5.2). Then, by (5.3), (5.4), (5.6), (5.8), and (5.9),

we have

d
dt

∫

�

|u – v|dx ≤ c
∫

�

|u – v|dx,
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by the Gronwall inequality, we have

∫

�

∣
∣u(x, t) – v(x, t)

∣
∣dx ≤ c

∫

�

∣
∣u0(x) – v0(x)

∣
∣dx, ∀t ∈ [0, T),

Theorem 1.7 is proved. �

6 The partial boundary condition
Let us simply review Fichera–Oleǐnik theory. For a linear degenerate elliptic equation,

N+1∑

r,s=1

ars(x)
∂2u

∂xr∂xs
+

N+1∑

r=1

br(x)
∂u
∂xr

+ c(x)u = f (x), x ∈ �̃ ⊂R
N+1, (6.1)

the symmetric matrix (ars(x)) has nonnegative characteristic value, to study its well-
posedness problem, one only needs to give a partial boundary condition. In detail, let {ns}
be the unit inner normal vector of ∂�̃ and denote

�2 =
{

x ∈ ∂�̃ : arsnrns = 0,
(
br – ars

xs

)
nr < 0

}
,

�3 =
{

x ∈ ∂�̃ : arsnsnr > 0
}

.

Then, to ensure the well-posedness of Eq. (1.7), Fichera–Oleǐnik theory tells us that the
suitable boundary condition is

u|�2∪�3 = g(x). (6.2)

In particular, if the matrix (ars) is positive definite, (6.2) is just the usual Dirichlet boundary
condition. Considering the classical parabolic equation

ut =
N∑

i,j=1

aij(x)
∂2u

∂xi∂xj
+

N∑

i=1

bi(x, t)
∂u
∂xi

+ c(x, t)u = f (x, t), (6.3)

with the matrix (aij) is positive definite, besides the initial condition

u(x, 0) = u0(x), x ∈ �, (6.4)

only a parabolic boundary value condition

u(x, t) = g(x, t), (x, t) ∈ ∂� × [0, T), (6.5)

is imposed. However, for Eq. (1.6) considered in this paper, since the equations are strongly
nonlinear and degenerate, including the extremely case of a ≡ 0, Fichera–Oleǐnik theory
is invalid, the corresponding problem becomes more complicated. To show that the partial
boundary value condition imposed on the main equation (1.6) is reasonable, we can come
back to the linear case. In other words, let us suppose that p = 2 and

bi(u, x, t) = ai(x)u. (6.6)
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Then Eq. (1.6) has the form

ut = div
(
dα∇u

)
+

N∑

i=1

ai(x)
∂u
∂xi

+ u div−→a , (x, t) ∈ QT , (6.7)

where −→a = {ai}. According to Fichera–Oleǐnik theory, the optional boundary value con-
dition is

u(x, t) = 0, (x, t) ∈ � × [0, T), (6.8)

with

� =
{

x ∈ ∂� : ai(x)ni(x) < 0
}

, (6.9)

where �n = {ni} is the inner normal vector of �.
Now, by reviewing the partial boundary value condition (1.24)

�p =

{

x ∈ ∂� :
N∑

i=1

ai(x) �= 0

}

,

we have found

� ⊆ �p. (6.10)

Though the condition (1.24) may be not the optimal, it is reasonable.

7 Conclusion
Besides the diffusion coefficient dα being degenerate on the boundary, Eq. (1.6) has a con-
vection term

∑N
i=1

∂bi(u,x,t)
∂xi

, which depends on the spatial variable x. Such a characteristic
can bring about essential changes on the boundary value condition. A reasonable partial
boundary value condition is proposed for the first time, the stability of the weak solu-
tions based on this partial boundary value condition is established. One can see that, if
the convection term is independent of the spatial variable x, putting up a reasonable par-
tial boundary condition becomes more difficult. We hope we can solve this problem in
our follow-up work.
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