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Abstract
Wemainly study the M-estimation method for the high-dimensional linear regression
model and discuss the properties of the M-estimator when the penalty term is a local
linear approximation. In fact, the M-estimation method is a framework which covers
the methods of the least absolute deviation, the quantile regression, the least squares
regression and the Huber regression. We show that the proposed estimator possesses
the good properties by applying certain assumptions. In the part of the numerical
simulation, we select the appropriate algorithm to show the good robustness of this
method.
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1 Introduction
For the classical linear regression model Y = Xβ + ε, we are interested in the prob-
lem of variable selection and estimation, where Y = (y1, y2, . . . , yn)T is the response vec-
tor, X = (X1, X2, . . . , Xpn ) = (x1, x2, . . . , xn)T = (xij)n×pn is an n × pn design matrix, and ε =
(ε1, ε2, . . . , εn)T is a random vector. The main topic is how to estimate the coefficients vec-
tor β ∈ Rp

n when pn increases with sample size n and many elements of β equal zero. We
can transfer this problem into a minimization of a penalized least squares objective func-
tion

β̂n = arg min
β

Qn(βn), Qn(βn) = ‖Y – Xβn‖2 +
pn∑

j=1

pλn

(|βnj|
)
,

where ‖ · ‖ is the l2 norm of the vector, λn is a tuning parameter, and pλn (|t|) a penalty
term. It is well known that the least squares estimation is not robust, especially when in
the data there exist abnormal values or the error term has a heavy-tailed distribution.

In this paper we consider the loss function to be the least absolute deviation, i.e., we
minimize the following objective function:

β̂n = arg min
β

Qn(βn), Qn(βn) =
1
n

n∑

i=1

∣∣yi – xT
i βn

∣∣ +
pn∑

j=1

pλn

(|βnj|
)
,
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where the loss function is the least absolute deviation (LAD for short) that does not need
the noise to obey a gaussian distribution and be more robust than a least squares estima-
tion. In fact, the LAD estimation is a special case of the M-estimation, which was men-
tioned by Huber (1964, 1973, 1981) [1–3] firstly and which can be obtained by minimizing
the objective function

Qn(βn) =
1
n

n∑

i=1

ρ
(
yi – xT

i βn
)
,

where the function ρ can be selected. For example, if we choose ρ(x) = 1
2 x21|x|≤c + (c|x| –

c2/2)1|x|>c, where c > 0, the Huber estimator can be obtained; if we choose ρ(x) = |x|q,
where 1 ≤ q ≤ 2, Lq estimator will be obtained, with two special cases: LAD estimator for
q = 1 and OLS estimator for q = 2. If we choose ρ(x) = αx+ + (1 – α)(–x)+, where 0 < α < 1,
x+ = max(x, 0), we call it a quantile regression, and we can also get the LAD estimator for
α = 1/2 especially.

When pn approaches infinity as n tends to infinity, we assume that the function ρ is
convex and not monotone, and the monotone function ϕ is the derivative of ρ . By impos-
ing the appropriate regularity conditions, Huber (1973), Portnoy (1984) [4], Welsh (1989)
[5] and Mammen (1989) [6] have proved that the M-estimator enjoyed the properties of
consistency and asymptotic normality, where Welsh (1989) gave the weaker condition im-
posed on ϕ and the stronger condition on pn/n. Bai and Wu [7] further pointed out that the
condition on pn could be a part of the integrable condition imposed on the design matrix.
Moreover, He and Shao (2000) [8] studied the asymptotic properties of the M-estimator
in the case of a generalized model setting and the dimension pn getting bigger and big-
ger. Li (2011) [9] obtained the Oracle property of the non-concave penalized M-estimator
in high-dimensional model with the condition of pn log n/n → 0, p2

n/n → 0, and proposed
RSIS to make a variable selection by applying a rank sure independence screening method
in the ultra high-dimensional model. Zou and Li (2008) [10] combined a penalized func-
tion and a local linear approximation method (LLA) to prove that the obtained estimator
enjoyed good asymptotic properties, and they demonstrated that this method improved
the computational efficiency of a local quadratic approximation (LQA) in a simulation.

Inspired by this, in this paper we consider the following problem:

β̂n = arg min
βn

Qn(βn), Qn(βn) =
1
n

n∑

i=1

ρ
(
yi – xT

i βn
)

+
pn∑

j=1

p′
λn

(|β̃nj|
)|βnj|, (1.1)

where p′
λn (·) is the derivative of the penalized function, and β̃n = (β̃n1, β̃n2, . . . , β̃npn )T is the

non-penalized estimator.
In this paper, we assume that the function ρ is convex, hence the objective function is

still convex and the obtained local minimizer is a global minimizer.

2 Main results
For convenience, we first give some notations. Let β0 = (β01,β02, . . . ,β0p)T be the true pa-
rameter. Without loss of generality, we assume the first kn coefficients of the covariates
are nonzero, then there are pn – kn covariates with zero coefficients. β0 = (βT

0(1),β
T
0(2))

T ,
β̂n = (β̂T

n(1), β̂
T
n(2))

T correspondingly. For the given symmetric matrix Z, denote by λmin(Z)
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and λmax(Z) the minimum and maximum eigenvalue of Z, respectively. Denote XT X
n := D

and D =
( D11 D12

D21 D22

)
, where D11 = 1

n XT
(1)X(1). Finally, we denote cn = max{|p′

λn (|β̃nj|)| : β̃nj �=
0, 1 ≤ j ≤ pn}.

Next, we state some assumptions which will be needed in the following results.
(A1) The function ρ is convex on R, and its left derivative and right derivative ϕ+(·), ϕ–(·)

satisfies ϕ–(t) ≤ ϕ(t) ≤ ϕ+(t), ∀t ∈ R.
(A2) The error term ε is i.i.d, and the distribution function F of εi satisfies F(S) = 0, where

S is the set of discontinuous points of ϕ.
Moreover, E[ϕ(εi)] = 0, 0 < E[ϕ2(εi)] = σ 2 < ∞, and G(t) ≡ E[ϕ(εi + t)] = γ t +

o(|t|), where γ > 0. Besides these, we assume that limt→0 E[ϕ(εi + t) – ϕ(εi)]2 = 0.
(A3) There exist constants τ1, τ2, τ3, τ4 such that 0 < τ1 ≤ λmin(D) ≤ λmax(D) ≤ τ2 and

0 < τ3 ≤ λmin(D11) ≤ λmax(D11) ≤ τ4.
(A4) λn → 0 (n → ∞), pn = O(n1/2), cn = O(n–1/2).
(A5) Let zi be the transpose of the ith row vector of X(1), such that limn→∞ n– 1

2 ×
max1≤i≤n zT

i zi = 0.
It is worth mentioning that conditions (A1) and (A2) are classical assumptions for an

M-estimation in a linear model, which can be found in many references, for example Bai,
Rao and Wu (1992) [11] and Wu (2007) [12]. The condition (A3) is frequently used for a
sparse model in the linear model regression theory, which requires that the eigenvalues
of the matrices D and D11 are bounded. The condition (A4) is weaker than that in previ-
ous references. Under the condition (A4) we broaden the order of pn to n1/2, but Huber
(1973) and Li, Peng and Zhu (2011) [9] required that p2

n/n → 0, Portnoy (1984) required
pn log pn/n → 0, and Mammen (1989) required p3/2

n log pn/n → 0. Compared with these
results, it is obvious that our sparse condition is much weaker. The condition (A5) is the
same as that in Huang, Horowitz and Ma (2008) [13], which is used to prove the asymp-
totic properties of the nonzero part of M-estimation.

Theorem 2.1 (Consistency of estimator) If the conditions (A1)–(A4) hold, there exists a
non-concave penalized M-estimation β̂n, such that

‖β̂n – β0‖ = OP
(
(pn/n)1/2).

Remark 2.1 From Theorem 2.1, we can see that there exists a global M-estimation β̂n if
we choose the appropriate tuning parameter λn; moreover, this M-estimation is (n/pn)1/2-
consistent. This convergence rate is the same as that in the work of Huber (1973) and Li,
Peng and Zhu (2011).

Theorem 2.2 (The sparse model) If the conditions (A1)–(A4) hold and λmin(D) > λmax( 1
n ×

∑n
i=1 JiJT

i ), for the non-concave penalized M-estimation β̂n we have

P(β̂n(2) = 0) → 1.

Remark 2.2 By Theorem 2.2, we see that under the suitable conditions the global M-
estimation of the zero-coefficient variables goes to zero with a high probability when n
is large enough. This also shows that the model is sparse.



Wang and Zhu Journal of Inequalities and Applications  (2018) 2018:225 Page 4 of 13

Theorem 2.3 (Oracle property) If the conditions (A1)–(A5) hold and λmin(D) > λmax( 1
n ×

∑n
i=1 JiJT

i ), with probability converging to one, the non-concave penalized M-estimation
β̂n = (β̂T

n(1), β̂
T
n(2))

T has the following properties:
(1) (The consistency of the model selection) β̂n(2) = 0;
(2) (Asymptotic normality)

√
ns–1

n uT (β̂n(1) – β0(1)) =
n∑

i=1

n–1/2s–1
n γ –1uT D11zT

i ϕ(εi) + oP(1)
d−→ N(0, 1),

where s2
n = σ 2γ –1uT D–1

11 u, and u is any kn dimensional vector such that ‖u‖ ≤ 1.
Meanwhile, zi is the transpose of the ith row vector of a kn × kn matrix X(1).

Remark 2.3 From Theorem 2.3, the M-estimation enjoys the Oracle property, that is,
the M-estimator can correctly select covariates with nonzero coefficients with proba-
bility converging to one and the estimators of the nonzero coefficients has the same
asymptotic distribution that they would have if the zero coefficients were known in ad-
vance.

Remark 2.4 In Fan and Peng (2004) [14], the authors showed that the non-concave pe-
nalized M-estimation has the property of consistency with the condition p4

n/n → 0,
and enjoyed the property of asymptotic normality with the condition p5

n/n → 0. By
Theorems 2.1–2.3, we can see that the corresponding conditions we impose are quite
weak.

3 Proofs of main results

The proof of Theorem 2.1 Let αn = (pn/n)1/2 + p1/2
n cn. For any pn-dimensional vector u with

‖u‖ = C, we only need to prove that there exists a great enough positive constant C such
that

lim inf
n→∞ P

{
inf‖u‖=C

Qn(β0 + αnu) > Qn(β0)
}

≥ 1 – ε,

for any ε > 0, that is, there at least exists a local minimizer β̂n such that ‖β̂n – β0‖ = OP(αn)
in the closed ball {β0 + αnu : ‖u‖ ≤ C}.

Firstly, by the triangle inequality we get

Qn(β0 + θu) – Qn(β0)

=
1
n

n∑

i=1

[
ρ
(
yi – xT

i (β0 + αnu)
)

– ρ
(
yi – xT

i β0
)]

+
pn∑

j=1

p′
λn

(|β̃nj|
)(|β0j + αnuj| – |β0j|

)

≥ 1
n

n∑

i=1

[
ρ
(
yi – xT

i (β0 + αnu)
)

– ρ
(
yi – xT

i β0
)]

– αn

pn∑

j=1

p′
λn

(|β̃nj|
)|uj|

:= T1 + T2,
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where T1 = 1
n
∑n

i=1[ρ(yi – xT
i (β0 + αnu)) – ρ(yi – xT

i β0)], T2 = –αn
∑pn

j=1 p′
λn (|β̃nj|)|uj|. Notic-

ing that

T1 =
1
n

n∑

i=1

[
ρ
(
yi – xT

i (β0 + αnu)
)

– ρ
(
yi – xT

i β0
)]

=
1
n

n∑

i=1

[
ρ
(
εi – αnxT

i u
)

– ρ(εi)
]

=
1
n

n∑

i=1

∫ –αnxT
i u

0

[
ϕ(εi + t) – ϕ(εi)

]
dt –

1
n

αn

n∑

i=1

ϕ(εi)xT
i u

:= T11 + T12, (3.1)

where T11 = 1
n
∑n

i=1
∫ –αnxT

i u
0 [ϕ(εi +t)–ϕ(εi)] dt, T12 = – 1

nαn
∑n

i=1 ϕ(εi)xT
i u. Combining with

the Von-Bahr–Esseen inequality and the fact that |T12| ≤ 1
nαn‖u‖‖∑n

i=1 ϕ(εi)xi‖, we in-
stantly have

E

[∥∥∥∥∥

n∑

i=1

ϕ(εi)xi

∥∥∥∥∥

2]
≤ n

n∑

i=1

E
[∥∥ϕ(εi)xi

∥∥2] = n
n∑

i=1

E[ϕ2(εi)xT
i xi ≤ n2pnσ

2,

hence

|T12| = OP
(
αnp1/2

n
)‖u‖ = OP

((
p2

n/n
)1/2). (3.2)

Secondly for T11, let T11 =
∑n

i=1 Ain, where Ain = 1
n
∫ –αnxT

i u
0 [ϕ(εi + t) – ϕ(εi)] dt, so

T11 =
n∑

i=1

[
Ain – E(Ain)

]
+

n∑

i=1

E(Ain) := T111 + T112.

We can easily obtain E(T111) = 0. From the Von-Bahr–Esseen inequality, the Schwarz in-
equality and the condition (B3), it follows that

var(T111) = var

( n∑

i=1

Ain

)
≤ 1

n

n∑

i=1

E
(∫ –αnxT

i u

0

[
ϕ(εi + t) – ϕ(εi)

]
dt

)2

≤ 1
n

n∑

i=1

∣∣αnxT
i u

∣∣
∣∣∣∣
∫ –αnxT

i u

0
E
[
ϕ(εi + t) – ϕ(εi)

]2 dt
∣∣∣∣

=
1
n

n∑

i=1

oP(1)
(
αnxT

i u
)2 =

1
n

oP(1)α2
n

n∑

i=1

uT xixT
i u

= oP(1)α2
nuT Du ≤ λmax(D)oP(1)α2

n‖u‖2 = oP
(
α2

n
)‖u‖2,

so together with the Markov inequality this yields

P
(|T111| > C1αn‖u‖) ≤ var(T111)

C2
1α

2
n‖u‖2 ≤ oP(α2

n)‖u‖2

C2
1α

2
n‖u‖2 → 0 (n → ∞),
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hence

T111 = oP(αn)‖u‖. (3.3)

As for T112,

T112 =
n∑

i=1

E(Ain) =
1
n

n∑

i=1

∫ –αnxT
i u

0

[
γ t + o

(|t|)]dt

=
1
n

n∑

i=1

(
1
2
γα2

nuT xixT
i u + oP(1)α2

nuT xixT
i u

)

=
1
2
γα2

nuT Du + op(1)α2
nuT Du

≥
[

1
2
γ λmin(D) + oP(1)

]
α2

n‖u‖2. (3.4)

Finally, considering T2, we can easily obtain

T2 ≤ (pn)1/2αn max
{∣∣p′

λn

(|β̃nj|
)∣∣, 1 ≤ j ≤ kn

}‖u‖ = (pn)1/2αncn‖u‖ ≤ α2
n‖u‖. (3.5)

This together with (3.1)–(3.5) shows that we can choose a great enough constant C such
that T111 and T2 are controlled by T112, from which it follows that there at least exists a
local minimizer β̂n such that ‖β̂n – β0‖ = OP(αn) in the closed ball {β0 + αnu : ‖u‖ ≤ C}. �

The proof of Theorem 2.2 From Theorem 2.1, as long as we choose a great enough constant
C and appropriate αn, then β̂n will be in the ball {β0 + αnu : ‖u‖ ≤ C} with probability
converging to one, where αn = (pn/n)1/2 + p1/2

n cn. For any pn-dimensional vector βn, now
we denote βn = (βT

n(1),β
T
n(2))

T , βn(1) = β0(1) + αnu(1), βn(2) = β0(2) + αnu(2) = αnu(2), where β0 =
(βT

0(1),β
T
0(2))

T , ‖u‖2 = ‖u(1)‖2 + ‖u(2)‖2 ≤ C2. Meanwhile let

Vn(u(1), u(2)) = Qn
((

βT
n(1),β

T
n(2)

)T)
– Qn

((
βT

0(1), 0T)T)
,

then by minimizing Vn(u(1), u(2)) we can obtain the estimator β̂n = (β̂T
n(1), β̂

T
n(2))

T , where
‖u(1)‖2 + ‖u(2)‖2 ≤ C2. In the following part, we will prove that, as long as ‖u‖ ≤ C,
‖u(2)‖ > 0,

P
(
Vn(u(1), u(2)) – Vn(u(1), 0) > 0

) → 1 (n → ∞)

holds, for any pn-dimensional vector u = (uT
(1), uT

(2))
T . We can easily find the fact that

Vn(u(1), u(2)) – Vn(u(1), 0)

= Qn
((

βT
n(1),β

T
n(2)

)T)
– Qn

((
βT

n(1), 0T)T)

=
1
n

n∑

i=1

[
ρ
(
εi – αnHT

i u(1) – αnJT
i u(2)

)
– ρ

(
εi – αnHT

i u(1)
)]

+
pn∑

j=kn+1

p′
λn

(|β̃nj|
)|αnuj|

=
1
n

n∑

i=1

∫ –αnHT
i u(1)–αnJT

i u(2)

–αnHT
i u(1)

[
ϕ(εi + t) – ϕ(εi)

]
dt –

1
n

αn

n∑

i=1

ϕ(εi)JT
i u(2)
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+
pn∑

j=kn+1

p′
λn

(|β̃nj|
)|αnuj|

:= W1 + W2 + W3,

where Hi and Ji are kn and pn – kn dimensional vectors, respectively, such that xi = (HT
i +

JT
i )T . Similar to the proof of Theorem 2.1, we get

W1 =
1
n

n∑

i=1

∫ –αnHT
i u(1)–αnJT

i u(2)

–αnHT
i u(1)

[
ϕ(εi + t) – ϕ(εi)

]
dt

=
1

2n

n∑

i=1

γα2
nuT xixT

i u –
1

2n

n∑

i=1

γα2
nuT

(2)JiJT
i u(2) + oP(1)α2

n‖u‖2 + oP(1)αn‖u‖

≥ 1
2
γα2

n

[
λmin(D) – λmax

(
1
n

n∑

i=1

JiJT
i

)]
‖u‖2 + oP(1)α2

n‖u‖2 + oP(1)αn‖u‖, (3.6)

|W2| =

∣∣∣∣∣–
1
n

αn

n∑

i=1

ϕ(εi)JT
i u(2)

∣∣∣∣∣ = OP
((

p2
n/n

)1/2)‖u‖, (3.7)

and

|W3| =

∣∣∣∣∣

pn∑

j=kn+1

p′
λn

(|β̃nj|
)|αnuj|

∣∣∣∣∣ ≤ (pn)1/2αn max
{∣∣p′

λn

(|β̃nj|
)∣∣, kn + 1 ≤ j ≤ pn

}‖u‖

= (pn)1/2αncn‖u‖ ≤ α2
n‖u‖. (3.8)

By Eqs. (3.6)–(3.8) and the condition λmin(D) > λmax( 1
n
∑n

i=1 JiJT
i ), it follows that

Vn(u(1), u(2)) – Vn(u(1), 0)

≥ 1
2
γα2

n

[
λmin(D) – λmax

(
1
n

n∑

i=1

JiJT
i

)]
‖u‖2

+ oP(1)α2
n‖u‖2 + oP(1)αn‖u‖ + OP

((
p2

n/n
)1/2)‖u‖ + OP

(
α2

n
)‖u‖

> 0,

which shows that, as long as ‖u‖ ≤ C, ‖u(2)‖ > 0,

P
(
Vn(u(1), u(2)) – Vn(u(1), 0) > 0

) → 1 (n → ∞)

holds, for any pn-dimensional vector u = (uT
(1), uT

(2))
T . �

The proof of Theorem 2.3 It is obvious that the conclusion (1) can be obtained instantly by
Theorem 2.2, so we only need to prove the conclusion (2). It follows from Theorem 2.1 that
β̂n is consistent with β0 and β̂n(2) = 0 with probability converging to one from Theorem 2.2.
Therefore for β̂n(1)

∂Qn(βn)
∂βn(1)

∣∣∣∣
βn(1)=β̂n(1)

= 0,
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that is,

–
1
n

n∑

i=1

Hiϕ
(
yi – HT

i β̂n(1)
)

+ W(1) = 0,

where

W =
(
p′

λn

(|β̃n1|
)

sgn(β̂n1), p′
λn

(|β̃n2|
)

sgn(β̂n2), . . . , p′
λn

(|β̃npn |
)

sgn(β̂npn )
)T .

In the following part we give the Taylor expansion of upper left first term:

–
1
n

n∑

i=1

{
Hiϕ

(
yi – HT

i β̂0(1)
)

–
[
ϕ′(yi – HT

i β0(1)
)
HiHT

i + oP(1)
]
(β̂n(1) – β0(1))

}
+ W(1) = 0.

Noticing that yi = HT
i β0(1) + εi, we have

–
1
n

n∑

i=1

Hiϕ(εi) +
1
n

n∑

i=1

[
ϕ′(εi)HiHT

i + oP(1)
]
(β̂n(1) – β0(1)) + W(1) = 0,

which shows that

1
n

γ

n∑

i=1

HiHT
i (β̂n(1) – β0(1)) =

1
n

n∑

i=1

Hiϕ(εi) – W(1) + (β̂n(1) – β0(1))oP(1)

+
1
n

n∑

i=1

(
γ – ϕ′(εi)

)
HiHT

i (β̂n(1) – β0(1)).

Then, as long as ‖u‖ ≤ 1,

uT (β̂n(1) – β0(1)) = n–1γ –1uT D–1
11

n∑

i=1

Hiϕ(εi)

+ n–1γ –1uT D–1
11

n∑

i=1

(
γ – ϕ′(εi)

)
HiHT

i (β̂n(1) – β0(1))

– γ –1uT D–1
11 W(1) + oP(αn)

holds, for any kn-dimensional vector u. For the upper right third term, we can obtain

∣∣γ –1uT D–1
11 W(1)

∣∣ ≤ 1
γ λmin(D11)

‖W(1)‖ ≤ 1
γ λmin(D11)

p1/2
n cn

≤ αn

γ λmin(D11)
→ oP(1) (n → ∞). (3.9)
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Now let us deal with the upper right second term. Theorem 2.1 and the condition (A3)
yield

∣∣∣∣∣n
–1γ –1uT D–1

11

n∑

i=1

(
γ – ϕ′(εi)

)
HiHT

i (β̂n(1) – β0(1))

∣∣∣∣∣

≤ 1
nγ λmin(D11)

∥∥∥∥∥

n∑

i=1

(
γ – ϕ′(εi)

)
HiHT

i (β̂n(1) – β0(1))

∥∥∥∥∥

≤ 1
nγ λmin(D11)

∥∥∥∥∥

n∑

i=1

(
γ – ϕ′(εi)

)
HiHT

i

∥∥∥∥∥‖β̂n(1) – β0(1)‖

≤ OP(1)
nγ λmin(D11)

‖β̂n(1) – β0(1)‖ = OP
(
p1/2

n n–3/2), (3.10)

where the upper third inequality sign holds because of Lemma 3 of Mammen (1989). Com-
bining (3.9)–(3.10), we have

uT (β̂n(1) – β0(1)) = n–1γ –1uT D–1
11

n∑

i=1

Hiϕ(εi) + OP(αn) + OP
(
p1/2

n n–3/2),

that is,

n1/2uT (β̂n(1) – β0(1)) = n–1/2γ –1uT D–1
11

n∑

i=1

Hiϕ(εi) + oP(1).

Denote s2
n = σ 2γ –1uT D–1

11 u, Fin = n–1/2s–1
n γ –1uT D–1

11 zT
i , where zi is a kn × kn matrix and the

transpose of the ith row vector of X(1), then n1/2uT (β̂n(1) – β0(1)) =
∑n

i=1 Finϕ(εi) + oP(1). It
follows from (A5) that

n∑

i=1

F2
in =

n∑

i=1

FinF ′
in =

n∑

i=1

(
n–1/2s–1

n γ –1uT D–1
11 zT

i
)(

n–1/2s–1
n γ –1ziD–1

11 u
)

=
n∑

i=1

n–1s–2
n γ –2uT D–1

11 zT
i ziD–1

11 u = s–2
n γ –2uT D–1

11 u = σ –2.

Applying the Slutsky theorem, we see that

√
ns–1

n uT (β̂n(1) – β0(1))
d−→ N(0, 1). �

4 Simulation results
In this section we evaluate the performance of the M-estimator proposed in (1.1) by sim-
ulation studies.

We begin with the data. Simulating the data by the model Y = Xβ + ε, where β0(1) =
(–2, 2.5, 3, –1)T , ε follows N(0, 1), t5 and mixed normally distribution 0.9N(0, 1) +
0.1N(0, 9), respectively. The design matrix X is generated by a p-dimensional multivariate
normal distribution with mean zero and covariance matrix whose (i, j)th component is
ρ |i–j|, where we set ρ = 0.5.
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Then for the loss function. In this section we can choose some special loss functions,
such as the LAD loss function, the OLS loss function and the Huber loss function. In this
paper we choose the LAD loss function and the Huber loss function.

About the penalty function: for p′
λn (|β̃nj|) in the penalty function, we choose the penalty

function as a SACD estimation in the following:

pλn

(|β|) =

⎧
⎪⎪⎨

⎪⎪⎩

λn|β|, 0 ≤ |β| ≤ λn,

–(β2 – 2aλn|β| + λ2
n)/(2(a – 1)), λn < |β| < aλn,

(a + 1)λ2
n/2, |β| > aλn,

then p′
λn (|β̃nj|) = λnI(|β̃nj| ≤ λn) + aλn–|β̃nj|

a–1 I(λn < |β̃nj| ≤ aλn). By the proposal of Fan and Li
(2001), we can select a = 3.7, which shows that generalized cross validation can be applied
in searching the best tuning parameter λn.

About stimulation algorithm. For the proposed LLA method, we connect the penalty
function with independent variables and an independent variable, respectively, then we
write a program by using the quantile package in R. For the Lasso method, we use the Lars
package to simulate.

Now we address the selection of the tuning parameter. We apply the BIC criterion to
select the tuning parameter. The criterion is

BIC(λn) = ln

(
1
n

n∑

i=1

ρ
(
yi – xT

i β̂
)
)

+ DFλn ln(n)/n,

where DFλn is the generalized degree of freedom used by Fan and Li (2001).
About the selection of the evaluation index. In order to evaluate the performance of the

estimators, we select four measures called EE, PE, C, IC and CP, which are obtained by 500
replicates. EE is the median of ‖β̂ – β0‖2 to evaluate the estimation accuracy, and PE is the
prediction error defined by the median of n–1‖Y – Xβ̂‖2. The other three measures are to
qualify the performance of model consistency, where C and IC refer to the average number
of correctly selected zero covariates and the average number of incorrectly selected zero
covariates, and CP is the proportion of the number of the correct selection of zero variables
to the total number of zero variables.

In the following we will compare the performances of the method LLA we proposed,
the Lasso method and the Oracle estimation. Set n = 200, 500, 700, respectively, and p =
[2

√
n].

From Table 1, we notice that the indices EE, C, IC, CP of our proposed LLA method
perform better when ε ∼ N(0, 1). In particular, for the index CP, LLA outperforms Lasso.
The reason for this may be that we impose different penalties for important and unimpor-
tant variables, while Lasso imposes the same penalties for all variables. Moreover, with the
increase of the sample size, the ability of LLA method to correctly identify unimportant
variables is also increasing. When the sample size is 700 and the number of explanatory
variables is 53, an average of 48.9617 unimportant variables-zero variables are estimated
to be zero on average, with an average accuracy of 99.92%.

An interesting fact can be found from Table 2, that is, when the error term is chosen
as t5, the accuracy of the method LLA proposed to correctly exclude incorrect variables
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Table 1 Simulation results for LAD loss function and ε ∼ N(0, 1)

Setting Method EE PE C IC CP

n = 200 Oracle 10.8544 3.3916 24.0000 0 100%
p = 28 Lasso 10.5726 3.3035 10.8480 0 45.20%
m = 24 LLA 10.9153 3.3947 23.8540 0 99.39%

n = 500 Oracle 19.9085 5.4118 41.0000 0 100%
p = 45 Lasso 19.5952 5.2928 18.9920 0 46.32%
m = 41 LLA 19.9233 5.4045 40.9140 0 99.79%

n = 700 Oracle 24.3006 6.3847 49.0000 0 100%
p = 53 Lasso 24.0315 6.2994 23.1009 0 47.14%
m = 49 LLA 24.3666 6.4077 48.9617 0 99.92%

Table 2 Simulation results for LAD loss function and ε ∼ t5

Setting Method EE PE C IC CP

n = 200 Oracle 10.5634 4.2892 24.0000 0 100%
p = 28 Lasso 10.2810 4.1649 11.7700 0 49.04%
m = 24 LLA 10.6448 4.2725 23.8780 0 99.49%

n = 500 Oracle 19.4296 6.8240 41.0000 0 100%
p = 45 Lasso 19.1157 6.7042 18.9580 0 46.24%
m = 41 LLA 19.4665 6.8335 40.9560 0 99.89%

n = 700 Oracle 23.7784 8.0637 49.0000 0 100%
p = 53 Lasso 23.4389 7.9551 22.8800 0 46.69%
m = 49 LLA 23.7808 8.0919 48.9740 0 99.94%

Table 3 Simulation results for LAD loss function and ε ∼ 0.9N(0, 1) + 0.1N(0, 9)

Setting Method EE PE C IC CP

n = 200 Oracle 10.4815 4.4830 24.0000 0 100%
p = 28 Lasso 10.2030 4.4063 11.6360 0 48.48%
m = 24 LLA 10.5826 4.4529 23.9240 0 99.68%

n = 500 Oracle 19.2539 7.1997 41.0000 0 100%
p = 45 Lasso 18.9670 7.0960 19.3840 0 47.28%
m = 41 LLA 19.2950 7.1173 40.9520 0 99.88%

n = 700 Oracle 23.6354 8.5657 49.0000 0 100%
p = 53 Lasso 23.2424 8.4609 23.0580 0 47.06%
m = 49 LLA 23.6566 8.3699 48.9300 0 99.86%

is slightly higher than that of the case where the error term is a standardized normal dis-
tribution. The reason is that when the error term is heavy tailed, it is more appropriate
to choose LLA, but the accuracy of estimation and prediction is slightly worse than that
of Lasso. When the sample size increases, the LLA and Oracle estimates perform equally
well in the selection of important variables and the complexity of the model.

As can be seen from Table 3, when the error term is set to a mixed normal distribution,
the ability of the proposed method to correctly select zero variables is good. In the case of
a small sample size, the ability of the Lasso method to select important variables is better.

From Tables 4–6 where we choose the Huber loss function, the LLA method we pro-
posed behaves well both in variable selection and robustness. Compared with Table 1 and
Table 4, when the data has outliers, we should choose LAD as the loss function. Moreover,
when the error term follows a mixed normally distribution, the LLA method behaves bet-
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Table 4 Simulation results for Huber loss function and ε ∼ N(0, 1)

Setting Method EE PE C IC CP

n = 200 Oracle 10.8300 3.3696 24.0000 0 100%
p = 28 Lasso 9.6422 3.5569 20.0920 0 83.72%
m = 24 LLA 10.9088 3.3784 22.7200 0 94.67%

n = 500 Oracle 19.9141 5.4034 41.0000 0 100%
p = 45 Lasso 18.0691 5.6068 38.0300 0 92.76%
m = 41 LLA 19.8884 5.3937 40.5160 0 98.82%

n = 700 Oracle 24.3265 6.3761 49.0000 0 100%
p = 53 Lasso 22.4030 6.5988 46.2440 0 94.38%
m = 49 LLA 24.3596 6.3882 48.6620 0 99.31%

Table 5 Simulation results for Huber loss function and ε ∼ t5

Setting Method EE PE C IC CP

n = 200 Oracle 10.5572 4.2666 24.0000 0 100%
p = 28 Lasso 9.2590 4.4065 18.4680 0.0020 76.95%
m = 24 LLA 10.6099 4.2429 22.8100 0 95.04%

n = 500 Oracle 19.4395 6.8118 41.0000 0 100%
p = 45 Lasso 17.4385 6.9993 36.2080 0 88.31%
m = 41 LLA 19.4471 6.8247 40.5440 0 98.89%

n = 700 Oracle 23.8089 8.0487 49.0000 0 100%
p = 53 Lasso 21.6534 8.2558 44.4980 0 90.81%
m = 49 LLA 23.8220 8.0807 48.6940 0 99.38%

Table 6 Simulation results for Huber loss function and ε ∼ 0.9N(0, 1) + 0.1N(0, 9)

Setting Method EE PE C IC CP

n = 200 Oracle 10.4829 4.4694 24.0000 0 100%
p = 28 Lasso 9.1630 4.6333 18.0680 0 75.28%
m = 24 LLA 10.5706 4.4827 22.7880 0 94.95%

n = 500 Oracle 19.2618 7.1860 41.0000 0 100%
p = 45 Lasso 17.3780 7.3190 35.3500 0 86.22%
m = 41 LLA 19.2962 7.2029 40.5900 0 99.00%

n = 700 Oracle 23.6356 8.5563 49.0000 0 100%
p = 53 Lasso 21.5202 8.7148 43.4420 0 88.66%
m = 49 LLA 23.6275 8.5822 48.7120 0 99.41%

ter than the Lasso method. The reason for this is that the real data has a mixed normal
distribution with high probability.

5 Conclusion
In this paper, we mainly study the M-estimation method for the high-dimensional linear
regression model and discuss the properties of the M-estimator when the penalty term is
the local linear approximation. We show that the proposed estimator possesses the good
properties by applying certain assumptions. In the numerical simulation, we select the
appropriate algorithm to show the good robustness of this method.
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