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Abstract
In this paper, we introduce the concept of comparable complete metric spaces and
consider some fixed point theorems for mappings in the setting of incomplete metric
spaces. We obtain the results of Ansari et al. [J. Fixed Point Theory Appl. 20:26, 2018]
with weaker conditions. Moreover, we provide some corollaries and examples show
that our main result is a generalization of existing results in the literature.
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1 Introduction and preliminaries
Let Y be a nonempty subset of a metric space (X, d) and T be a function that map Y
into itself. A fixed point of the mapping T is an element x ∈ Y for which Tx = x. Fixed
point theory plays a crucial role in nonlinear functional analysis and many authors have
studied this notion. In 1922, Banach [7] reported the pioneer metric fixed point result
for contraction mappings. Many authors have generalized this significant result in several
directions; see e.g. [1–3, 8, 13].

Recently there have been many developments concerning the existence of fixed points
for operators defined in a metric space equipped with a partial order. In 2016, Jleli and
Samet [10] provided sufficient conditions for the existence of a fixed point of T satisfying
the two constraint inequalities Ax �1 Bx and Cx �2 Dx, where T : X → X defined on a
complete metric space equipped with two partial orders �1 and �2 and A, B, C, D : X → X
are self-map operators. In the other words, the problem is to investigate the existence a
point x ∈ X such that

⎧
⎪⎪⎨

⎪⎪⎩

Tx = x;

Ax �1 Bx;

Cx �2 Dx.

(1.1)

Before presenting the main result obtained in [10], let us recall some basic definitions and
remarkable results introduced in [10] (see also e.g. [4, 5, 9, 15, 16]).
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Definition 1.1 Let (X, d) be a metric space. A partial order “�” on X is d-regular if for
any two sequences {un} and {vn} in X, we have

lim
n→∞ d(un, u) = lim

n→∞ d(vn, v) = 0, un � vn for all n �⇒ u � v.

Definition 1.2 Let (X,�) be an ordered set. A mapping T : X → X is said to be �-
preserving if x � y implies T(x) � T(y).

Definition 1.3 Let “�1” and “�2” be two partial orders on X and operators T , A, B, C, D :
X → X be given. The operator T is called (A, B, C, D,�1,�2)-stable if for all x ∈ X,

Ax �1 Bx �⇒ CTx �2 DTx.

Example 1.4 Let X = R and consider the standard order “≤” on X. Let A, B, C, D : X → X
be the operators defined by

Ax = x, Bx = x2, Cx = exp(x),

Dx = exp
(
x2 – 2x + 2

)
, Tx = x + 1, x ∈R.

Then the operator T is (A, B, C, D,≤,≤)-stable.

Let us denote by � the set of all lower semi-continuous functions ψ : [0,∞) → [0,∞)
such that ψ–1{0} = {0}. The main theorem presented in [10] is given by the following result.

Theorem 1.5 Let (X, d) be a complete metric space endowed with two partial orders “�1”
and “�2”. Let operators T , A, B, C, D : X → X be given. Suppose that the following conditions
are satisfied:

(i) �i is d-regular, i = 1, 2;
(ii) A, B, C and D are continuous;

(iii) there exists x0 ∈ X such that Ax0 �1 Bx0 ;
(iv) T is (A, B, C, D,�1,�2)-stable;
(v) T is (C, D, A, B,�2,�1)-stable;

(vi) there exists ψ ∈ � such that

(Ax �1 Bx and Cy �2 Dx) �⇒ d(Tx, Ty) ≤ d(x, y) – ψ
(
d(x, y)

)
.

Then the sequence {Tnx0} converges to some x∗ ∈ X which is a solution to (1.1).

Ansari et al. in [6] proved that x∗ is the unique solution to (1.1) and removed the conti-
nuity of C and D.

In our main theorem, we replace the completeness assumption of the space X with
weaker conditions. Also we consider a more general condition in assumption (vi). For
this purpose, we review the concept of generalized α-h-φ-contraction type mapping and
some examples introduced in [14]. Also, we introduce new concepts to remove the com-
pleteness assumption of the space X.
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Definition 1.6 ([11]) Let T : X → X be a mapping and α : X × X → [0,∞) be a function.
The mapping T is said to be α-admissible if

α(x, y) ≥ 1 implies α(Tx, Ty) ≥ 1.

An α-admissible mapping T is said to be triangular α-admissible [12] if

α(x, y) ≥ 1 and α(y, z) ≥ 1 imply α(x, z) ≥ 1.

Lemma 1.7 ([11]) Let T : X → X be a triangular α-admissible map. Assume that there
exists x0 ∈ X such that α(x0, Tx0) ≥ 1. Define a sequence {xn} by xn+1 = Txn. Then, we have
α(xn, xm) ≥ 1 for all m, n ∈N with n < m.

Definition 1.8 ([11]) Let (X, d) be a metric space and α : X × X → [0,∞) be a function.
A sequence {xn} is said to be α-regular if the following condition is satisfied:

If {xn} is a sequence in X such that α(xn, xn+1) ≥ 1 for all n ∈N and xn → x ∈ X as n → ∞,
then there exists a subsequence {xnk } of {xn} such that α(xnk , x) ≥ 1 for all k.

Recently we introduced a new class of mappings which contain a Geraghty-contraction
type mapping and some of its extensions and some of weakly contractive type mappings
as a subclass.

Definition 1.9 ([14]) Let (X, d) be a metric space. DefineH(X) by the class of all mappings
h : X × X → [0, 1) which satisfies the following condition:

lim
n→∞ h(xn, yn) = 1 �⇒ lim

n→∞ d(xn, yn) = 0,

for all sequences {xn} and {yn} in X such that the sequence {d(xn, yn)} is decreasing and
convergent.

Example 1.10 ([14]) Let h : R×R → [0, 1), defined by
(i) h1(x, y) = t

t+x2+y2 , for some t ∈ [0,∞).
(ii) h2(x, y) = k, for some k ∈ (0, 1).

Then h1, h2 ∈H(R).

Let F be the class of those functions β : [0,∞) → [0, 1) satisfying the following condi-
tion:

β(tn) → 1 implies tn → 0.

Example 1.11 ([14]) Let (X, d) be a metric space and β ∈F . Define h1, h2 : X × X → [0, 1),
by

h1(x, y) = β
(
d(x, y)

)
;

h2(x, y) = β
(
Ma(x, y)

)
,
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where β ∈F and for all x, y ∈ X

Ma(x, y) = max

{

d(x, y), d(x, Tx), d(y, Ty),
d(x, Ty) + d(y, Tx)

2

}

.

Then, h1, h2 ∈H.

Definition 1.12 ([14]) Let (X, d) be a metric space and α : X × X → R be a function.
A mapping T : X → X is said to be generalized α-h-φ-contraction if there exist h ∈ H(X)
and φ ∈ � such that

α(x, y)φ
(
d(Tx, Ty)

) ≤ h(x, y)φ
(
Ma(x, y)

)
.

One of extensions of the Banach contraction principle that extend, generalize, and im-
prove some existing results, was given by Lashkaripour et al. as follows.

Theorem 1.13 ([14]) Let (X, d) be a complete metric space, α : X × X → R be a function
and T : X → X be a mapping. Suppose that the following conditions are satisfied:

(i) T is a generalized α-h-φ-contraction type mapping;
(ii) T is triangular α-admissible;

(iii) there exists x1 ∈ X such that α(x1, Tx1) ≥ 1;
(iv) T is continuous or for all sequences {xn}, {yn} ⊆ X that α(xn, yn) �= 0, ∀n ∈N, the

following condition is satisfied:

lim
n→∞ h(xn, yn) = 1 �⇒ lim

n→∞ d(Txn, Tyn) = 0.

Then T has a fixed point x∗ ∈ X, and {Tnx1} converges to x∗.

Next, we introduce the concept of comparable sequences and comparable complete met-
ric spaces.

Definition 1.14 Let (X,�) be an ordered space. A sequence {xn} is called a comparable
sequence, if

(∀n, k; xn � xn+k) or (∀n, k; xn+k � xn).

Example 1.15 Let X = R and consider the standard order “≤” on X. Then every monotone
sequence is comparable sequence.

Definition 1.16 Let (X,�, d) be an ordered metric space. X is said to be comparable com-
plete if every Cauchy comparable sequence is convergent.

It is easy to see that every complete metric space is comparable complete and that the
converse is not true. In the next example, X is comparable complete but it is not complete.

Example 1.17 Let X = Q. Suppose that

x � y ⇐⇒ ∃k, s ∈N∪ {0} : |x – y| = 10–k(1 – 10–s).
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Clearly, Q with the Euclidean metric is not a complete metric space, but it is comparable
complete metric space. If {xn} is an arbitrary Cauchy comparable sequence in X, then the
sequence is convergent in R. We prove that x is a rational number. In the contrary case let
x ∈Q

c. Since {xn} is a comparable sequence, for all m, n ∈N there exist k, s ∈N∪ {0} such
that

|xn – xm| = 10–k(1 – 10–s).

Suppose that m → ∞, then there exists r ∈Q such that |xn –x| = 10–r , which is a contradic-
tion. Therefore the space Q with this order is a comparable complete metric space. Note
that for all x ∈Q there exists a comparable sequence {xn} ⊆Q such that limn→∞ xn = x.

Definition 1.18 Let (X,�, d) be an ordered metric space. A mapping f : X → X is com-
parable continuous in a ∈ X if for each comparable sequence {an} in X if an → a, then
f (an) → f (a). Also, f is comparable continuous on X if f is comparable continuous in each
a ∈ X.

Every continuous function is a comparable continuous function, but the converse is not
true in general.

Example 1.19 Let X = R with the Euclidean metric and usual order “≤”. Let f : R → R

defined by f (x) = [x]. The function f is not a continuous function. Define the relation “�”
on R as follows:

x � y ⇐⇒ x ≥ y.

It is easy to see that the function f is a comparable continuous function.

Definition 1.20 Let (X,�) be an ordered space and T : X → X be a mapping. x0 ∈ X is
said to be T-comparable if for all n ∈N, x0 and Tnx0 be comparable and define

JT =
{

x0 ∈ X;
(∀n ∈ N : x0 � Tnx0

)
or

(∀n ∈N; Tnx0 � x0
)}

.

Example 1.21 Let X = R with the Euclidean metric and usual order “≤”. If define T : X →
X by T(x) = x2, then JT = R. Also if

g(x) =

⎧
⎨

⎩

–1 x ≥ 0,

1 x < 0,

then J} = ∅.

Proposition 1.22 Let (X,�) be an ordered set and T : X → X be �-preserving. Let {xn}
be Picard iterative sequence with initial point x0 ∈ JT , i.e. xn = Tn(x0). Then {xn} is a
comparable sequence.

Proof Let n, k ∈ N and for all k ∈ N, x0 � Tkx0 = xk . Since T is �-preserving, x1 = Tx0 �
Txn = xk+1. Inductively for all n ∈N we can prove that xn � xn+k . �
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2 Main result
Let � be the family of functions φ : [0,∞) → [0,∞) satisfying the following conditions:

(1) φ is continuous and non-decreasing;
(2) φ(t) = 0 if and only if t = 0.

In the following theorem, which is our first main result, we weaken assumption (ii) and
(vi) of Theorem 1.5. Moreover, we remove the completeness assumption of the space in
Theorem 1.5.

Theorem 2.1 Let (X, d,�) be a comparable complete metric space(not necessarily com-
plete). Let �1 and �2 be two partial order over X. Also, let operators T , A, B, C, D : X → X
be given. Suppose that the following conditions are satisfied:

(i) �i is d-regular, i = 1, 2 and T is �-preserving and triangular α-admissible;
(ii) A, B and T are comparable continuous;

(iii) there exists x0 ∈ JT such that Ax0 �1 Bx0 and α(x0, Tx0) ≥ 1;
(iv) T is (A, B, C, D,�1,�2)-stable;
(v) T is (C, D, A, B,�2,�1)-stable;

(vi) there exist h ∈H(X) and φ ∈ � such that

(Ax �1 Bx and Cy �2 Dy) �⇒ α(x, y)φ
(
d(Tx, Ty)

) ≤ h(x, y)φ
(
Ma(x, y)

)
.

Then the sequence Tnx0 converges to some x∗ ∈ X which is a solution to (1).

Proof From condition (iii), there exists x0 ∈ JT such that

Ax0 �1 Bx0 and α(x0, Tx0) ≥ 1.

Define the sequence {xn} by xn = Txn–1, for all n ∈ N. Applying Proposition 1.22, {xn}
is a comparable sequence. If xn0 = xn0+1 for some n0 ∈ N, then Txn0 = xn0+1 = xn0 , and
hence the proof is completed. Now, let xn �= xn+1, n = 0, 1, 2, . . . . Since Ax0 �1 Bx0 and T is
(A, B, C, D,�1,�2)-stable, we have

Ax0 �1 Bx0 �⇒ CTx0 �2 DTx0,

that is, Cx1 �2 Dx1. Hence

Ax0 �1 Bx0 and Cx1 �2 Dx1.

Continuing this process, by induction, for all n ∈N we get

Ax2n �1 Bx2n and Cx2n+1 �2 Dx2n+1. (2.1)

Also, applying Lemma 1.7 for all m, n ∈N with n < m, we have

α(xn, xm) ≥ 1. (2.2)
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Since {xn} is comparable, applying (2.1), (2.2) and (vi), by symmetry, for n = 1, 2, . . . , we
have

φ
(
d(xn, xn+1)

) ≤ α(xn–1, xn)φ
(
d(xn, xn+1)

)

= α(xn–1, xn)φ
(
d(Txn–1, Txn)

)

≤ h(xn–1, xn)φ
(
Ma(xn–1, xn)

)

< φ
(
Ma(xn–1, xn)

)
. (2.3)

Also, we have

Ma(xn–1, xn) = max

{

d(xn–1, xn), d(xn–1, Txn–1), d(xn, Txn),
d(xn–1, Txn) + d(xn, Txn–1)

2

}

= max

{

d(xn–1, xn), d(xn–1, xn), d(xn, xn+1),
d(xn–1, xn+1) + d(xn, xn)

2

}

= max

{

d(xn–1, xn), d(xn, xn+1),
d(xn–1, xn+1)

2

}

≤ max

{

d(xn–1, xn), d(xn, xn+1),
d(xn–1, xn) + d(xn, xn+1)

2

}

= max
{

d(xn–1, xn), d(xn, xn+1)
}

.

If Ma(xn–1, xn) = d(xn, xn+1), applying (2.3), we deduce that

φ
(
d(xn, xn+1)

)
< φ

(
Ma(xn–1, xn)

)

= φ
(
d(xn, xn+1)

)
,

which is a contradiction. Thus, we conclude that

Ma(xn–1, xn) = d(xn–1, xn), ∀n ∈N. (2.4)

Now, from (2.3) and (2.4), we get

φ
(
d(xn, xn+1)

)
< φ

(
d(xn–1, xn)

)
, ∀n ∈N.

The monotony of φ implies that

d(xn, xn+1) < d(xn–1, xn), ∀n ∈N.

We deduce that the sequence {d(xn, xn+1)} is nonnegative and decreasing. Consequently,
there exists r ≥ 0 such that limn→∞ d(xn, xn+1) = r. We prove that r = 0. In the contrary
case, suppose that r > 0. Then from (2.3) and (2.4), we have

0 <
φ(d(xn, xn+1))
φ(d(xn–1, xn))

≤ h(xn–1, xn),
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which implies that limn→∞ h(xn–1, xn) = 1. Since h ∈H,

lim
n→∞ d(xn–1, xn) = 0.

This implies that r = 0, which is a contradiction. Therefore

lim
n→∞ d(xn, xn+1) = 0.

Now, we shall prove that {xn} is a Cauchy sequence in comparable complete metric space
(X,�, d). Suppose, on the contrary, that {xn} is not a Cauchy sequence. Thus, there exists
ε > 0 such that, for all k ∈ N, there exist nk > mk > k such that

d(xmk , xnk ) ≥ ε.

Also, choosing mk as small as possible, it may be assumed that

d(xmk , xnk –1) < ε.

Hence for each k ∈ N, we have

ε ≤ d(xmk , xnk ) ≤ d(xmk , xnk –1) + d(xnk –1, xnk )

≤ ε + d(xnk –1, xnk ).

Letting k → ∞ in the above inequality, we get

lim
n→∞ d(xnk , xmk ) = ε.

The triangle inequality implies that

lim
n→∞ d(xnk +1, xmk ) = ε, lim

n→∞ d(xnk , xmk –1) = ε, lim
n→∞ d(xnk +1, xmk +1) = ε. (2.5)

We see that, for all k ∈N, there exists ik ∈ {0, 1} such that

nk – mk + ik ≡ 1(2).

Now, applying (2.1), for all k > 1, we deduce that

Axnk �1 Bxnk and Cxmk –ik �2 Dxmk–ik ,

or

Axmk –ik �1 Bxmk–ik and Cxnk �2 Dxnk .

Now, applying (vi), for k ∈ N, we conclude that

φ
(
d(xnk +1, xmk –ik +1)

) ≤ α(xnk , xmk –ik )φ
(
d(xnk +1, xmk –ik +1)

)

= α(xnk , xmk –ik )φ
(
d(Txnk , Txmk –ik )

)

≤ h(xnk , xmk –ik )φ
(
Ma(xnk , xmk –ik )

)
. (2.6)
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Also, for any k ∈N, we have

Ma(xnk , xmk–ik ) = max

{

d(xnk , xmk –ik ), d(xnk , Txnk ), d(xmk–ik , Txmk –ik ),

d(xnk , Txmk –ik ) + d(xmk–ik , Txnk )
2

}

= max

{

d(xk , xmk –ik ), d(xnk , xnk +1), d(xmk –ik , xmk –ik +1),

d(xnk , xmk –ik +1) + d(xmk –ik , xnk +1)
2

}

≤ max

{

d(xnk , xmk –ik ), d(xnk , xnk +1), d(xmk –ik , xmk –ik +1),

d(xnk , xmk –ik ) + d(xmk –ik , xmk –ik +1)
2

+
d(xmk –ik , xnk ) + d(xnk , xnk +1)

2

}

.

Since limk→∞ d(xnk , xnk +1) = 0,

lim
k→∞

Ma(xnk , xmk –ik ) = lim
k→∞

d(xnk , xmk –ik ). (2.7)

Combining (2.6) and (2.7) with the continuity of φ, we get

lim
k→∞

φ
(
d(xnk +1, xmk –ik +1)

) ≤ lim
k→∞

h(xnk , xmk –ik ) lim
k→∞

φ
(
d(xnk , xmk –ik )

)
.

Applying (2.5), we deduce that

lim
k→∞

h(xnk , xmk –ik ) = 1.

Since h ∈H(X),

lim
k→∞

d(xnk , xmk –ik ) = 0,

which is a contradiction. Thus, {xn} is Cauchy comparable and so there exists x∗ ∈ X such
that limn→∞ xn = x∗. Since T is a comparable continuous function,

lim
n→∞ xn+1 = lim

n→∞ Txn = Tx∗.

Therefore

Tx∗ = x∗. (2.8)

A and B are comparable continuous and {x2n} is a comparable sequence, therefore

lim
n→∞ d

(
Ax2n, Ax∗) = lim

n→∞ d(Bx2n, Bx2n) = 0.

Since �1 is d-regular, (2.1) implies that

Ax∗ �1 Bx∗. (2.9)
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Since T is (A, B, C, D,�1,�2)-stable, applying (2.9), we have

CTx∗ �2 DTx∗.

This implies that

Cx∗ �2 Dx∗. (2.10)

Applying (2.8), (2.9) and (2.10), we deduce that x∗ is a solution of (2.1). �

In the following theorem, we omit the continuity condition of the mapping T in Theo-
rem 2.1.

Theorem 2.2 Let (X, d,�) be a comparable complete metric space(not necessarily com-
plete). Let �1 and �2 be two partial order over X. Also, let operators T , A, B, C, D : X → X
be given. Suppose that the following conditions are satisfied:

(i) �i is d-regular, i = 1, 2 and T is �-preserving and triangular α-admissible;
(ii) A, B are comparable continuous;

(iii) there exists x0 ∈ JT such that Ax0 �1 Bx0 and α(x0, Tx0) ≥ 0;
(iv) the sequence {T2nx0} is α-regular;
(v) T is (A, B, C, D,�1,�2)-stable and (C, D, A, B,�2,�1)-stable;

(vi) there exist h ∈H(X) and φ ∈ � such that for all sequences {xn}, {yn} ⊆ X where
α(xn, yn) �= 0, ∀n ∈N, the following conditions are satisfied:

lim
n→∞ h(xn, yn) = 1 �⇒ lim

n→∞ d(Txn, Tyn) = 0;

(Ax �1 Bx and Cy �2 Dy) �⇒ α(x, y)φ
(
d(Tx, Ty)

) ≤ h(x, y)φ
(
Ma(x, y)

)
.

Then T has a fixed point x∗ ∈ X, and {Tnx0} converges to x∗.

Proof From condition (iii), there exists x0 ∈ JT such that

Ax0 �1 Bx0 and α(x0, Tx0) ≥ 1.

Define the sequence {xn} by xn = Txn–1, for all n ∈ N. Following the proof of Theorem 2.1,
we know that, for n = 0, 1, . . . ,

Ax2n �1 Bx2n, Cx2n+1 �2 Dx2n+1 and α(xn, xn+1) ≥ 1, (2.11)

and the sequence {xn} is convergent to some x∗ ∈ X. Also, we have

Ax∗ �1 Bx∗. (2.12)

Now, we prove that Tx∗ = x∗. In the contrary case suppose that Tx∗ �= x∗. Since the se-
quence {x2n} is α-regular, there exists a subsequence {x2nk } such that α(x2nk , x∗) ≥ 1 for all
k ∈N. Without loss of generality, we assume that

α
(
x2n, x∗) ≥ 1, n = 0, 1, 2, . . . . (2.13)
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Applying (2.11), (2.13), for n = 0, 1, . . . , we get

φ
(
d
(
x2n+1, Tx∗)) = φ

(
d
(
Tx2n, Tx∗))

≤ α
(
x2n, x∗)φ

(
d
(
Tx2n, Tx∗))

≤ h
(
x2n, x∗)φ

(
Ma

(
x2n, x∗)). (2.14)

Also, we have

Ma
(
x2n, x∗) = max

{

d
(
x2n, x∗), d(x2n, Tx2n), d

(
x∗, Tx∗),

d(x2n, Tx∗) + d(x∗, Tx2n)
2

}

= max

{

d
(
x2n, x∗), d(x2n, x2n+1), d

(
x∗, Tx∗),

d(x2n, Tx∗) + d(x∗, x2n+1)
2

}

.

Since limn→∞ d(x2n, x∗) = 0, limn→∞ Ma(x2n, x∗) = d(x∗, Tx∗). Applying (2.14) and the con-
tinuity of φ, we get limn→∞ h(x2n, x∗) = 1, and so

d
(
x∗, Tx∗) = lim

n→∞ d
(
Tx2n, Tx∗) = 0.

This is a contradiction. Therefore Tx∗ = x∗. Since T is (A, B, C, D,�1,�2)-stable, applying
(2.12), we have

CTx∗ �2 DTx∗.

Therefore, Cx∗ �2 Dx∗. This implies that x∗ is a solution of (1.1). �

For the uniqueness of the solution of (1.1) we will consider the following condition.
(H1) For all x, y ∈ Fix(T), there exists z ∈ X such that α(x, z) ≥ 1 and α(z, y) ≥ 1.

Theorem 2.3 Adding condition (H1) to the hypotheses of Theorem 2.1 (resp. Theorem 2.2),
we see that x∗ is the unique fixed point of T .

Proof Let y∗ ∈ X be another solution of (1.1), that is,

Ty∗ = y∗, Ay∗ �1 By∗, Cy∗ �2 Dy∗. (2.15)

we show that x∗ = y∗. In the contrary case, let x∗ �= y∗. There exists z ∈ X such that

α
(
x∗, z

) ≥ 1 and α
(
z, y∗) ≥ 1.

Since T is triangular α-admissible, we have α(x∗, y∗) ≥ 1. Now, Ax∗ �1 Bx∗ and Cy∗ �2

Dy∗, which implies that

φ
(
d
(
x∗, y∗)) = φ

(
d
(
Tx∗, Ty∗))

≤ α
(
x∗, y∗)φ

(
d
(
Tx∗, Ty∗))

≤ h
(
x∗, y∗)φ

(
Ma

(
x∗, y∗))

< φ
(
Ma

(
x∗, y∗)). (2.16)
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On the other hand, we have

Ma
(
x∗, y∗) = max

{

d
(
x∗, y∗), d

(
x∗, Tx∗), d

(
y∗, Ty∗),

d(x∗, Ty∗) + d(y∗, Tx∗)
2

}

= d
(
x∗, y∗). (2.17)

Applying (2.16) and (2.17), we have φ(d(x∗, y∗)) < φ(d(x∗, y∗)), which is a contradiction.
This implies that x∗ = y∗, and so the fixed point of T is unique. �

Example 2.4 Let X = [–2, 3) and define relation “�” on R as follows:

x � y ⇐⇒ [x] = [y] and x ≥ y.

The space X with the Euclidean metric is not a complete metric space, but it is comparable
complete metric space. We take �1 = �2 = ≤. Let T : X → X be the mapping defined by

T(x) =
1
2
(
x – [x]

)
, ∀x ∈ X.

For all x, y ∈ X such that x � y, we have Tx � Ty. Therefore T is �-preserving. consider
the mappings A, B, C, D : X → X defined by D(x) = –4x + 1,

A(x) =

⎧
⎨

⎩

x x ≥ 0,

–x + 2 x < 0,
B(x) =

⎧
⎨

⎩

5
4 x ≥ 1,
1
4 x < 1,

C(x) =

⎧
⎨

⎩

x x ≥ 1,

0 x < 1,
D(x) =

⎧
⎨

⎩

–4x + 1 x ≥ 0,

x x < 0.

Obviously, “�i” is d-regular, i = 1, 2. Moreover, A and B are comparable continuous map-
pings. If for some x ∈ X, we have Ax � Bx, then x ∈ [0, 1

4 ] ∪ [1, 5
4 ] which implies that

Tx ∈ [0, 1
8 ]. Therefore

C(Tx) = 0 ≤ –4Tx + 1 = DTx.

Thus T is (A, B, C, D,�1,�2)-stable. If for some x ∈ X, we have Cx ≤ Dx then x ∈ [0, 1
4 ],

which implies that Tx ∈ [0, 1
8 ]. Therefore

ATx = Tx ≤ 1
4

= BTx.

Thus T is (C, D, A, B,�2,�1)-stable. Define h : X × X → [0, 1) and α : X × X → R as fol-
lows:

α(x, y) =

⎧
⎨

⎩

1 [x] = [y],

0 otherwise,
and h(x, y) =

1
2

.
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If Ax ≤ Bx, Cy ≤ Dy and α(x, y) = 1, then x, y ∈ [0, 1
4 ]. Therefore

α(x, y)d(Tx, Ty) =
1
2
|x – y|

= h(x, y)d(x, y)

≤ h(x, y)Ma(x, y).

Let φ(t) = t, t ≥ 0. Therefore

(Ax �1 Bx and Cy �2 Dx) �⇒ α(x, y)φ
(
d(Tx, Ty)

) ≤ h(x, y)φ
(
Ma(x, y)

)
.

The hypotheses of Theorem 2.1 are satisfied. Therefore (1.1) has the unique solution
x∗ = 0.

Note that the mappings A, B and T are not continuous and (X, d) is not a complete
metric space.

3 Consequences
Now, we consider some special cases, where in our result we deduce several well-known
fixed point theorems of the existing literature.

Corollary 3.1 ([6]) Let (X, d) be a complete metric space endowed with two partial or-
ders �1 and �2. Let T , A, B, C, D : X → X be given operators. Suppose that the following
conditions are satisfied:

(i) �i is d-regular, i = 1, 2;
(ii) A and B are continuous;

(iii) there exists x0 ∈ X such that Ax0 �1 Bx0;
iv T is (A, B, C, D,�1,�2)-stable;

(v) T is (C, D, A, B,�2,�1)-stable;
(vi) there exists ψ ∈ � such that

Ax �1 Bx, Cy �2 Dy ⇒ d(Tx, Ty) ≤ d(x, y) – ψ
(
d(x, y)

)
. (3.1)

Then the sequence {Tnx0} converges to some x∗ ∈ X, which is a solution to (1.1). Moreover,
x∗ is the unique solution to (1.1).

Proof Define h : X × X → [0, 1), by

h(x, y) =

⎧
⎨

⎩

d(x,y)–ψ(d(x,y)
d(x,y) if x �= y,

0 if x = y.
(3.2)

Let {xn}, {yn} ⊆ X be such that sequence {d(xn, yn)} is decreasing and limn→∞ d(xn, yn) = r.
Suppose that limn→∞ h(xn, yn) = 1. We show that limn→∞ d(xn, yn) = 0. In the contrary case,
let limn→∞ d(xn, yn) = r > 0. Since ψ is lower semi-continuous,

lim sup
n→∞

h(xn, yn) = lim sup
n→∞

d(xn, yn) – ψ(d(xn, yn)
d(xn, yn)

=
r – ψ(r)

r
= 1,
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which implies that ψ(r) = 0, and so r = 0. This is a contradiction. Therefore

lim
n→∞ d(xn, yn) = 0.

This implies that h ∈ H(X). Let, for some x, y ∈ X, Ax �1 Bx, Cy �2 Dy. Then applying
(3.1) and (3.2) we conclude that

d(Tx, Ty) ≤ h(x, y)d(x, y) ≤ h(x, y)Ma(x, y).

Also for all x, y ∈ X define α(x, y) = 1. The hypotheses of Theorem 2.1 are satisfied. Hence
there exists a unique x∗ ∈ X such that x∗ is the unique solution to (1.1). �

In Theorem 2.1, by setting �1 = �2, C = B and D = A, we get the following corollary.

Corollary 3.2 Let (X,�, d) be a comparable complete metric space(not necessarily com-
plete) with partial order �1. Also, let operators T , A, B : X → X be given. Suppose that the
following conditions are satisfied:

(i) �1 is d-regular and T is �-preserving and triangular α-admissible;
(ii) A, B and T are comparable continuous;

(iii) there exists x0 ∈ JT such that Ax0 �1 Bx0 and α(x0, Tx0) ≥ 1;
(iv) for all x ∈ X , we have

Ax �1 Bx �⇒ BTx �1 ATx;

(v) for all x ∈ X , we have

Bx �1 Ax �⇒ ATx �1 BTx;

(vi) there exist h ∈H(X) and φ ∈ � such that

(Ax �1 Bx and By �1 Ay) �⇒ α(x, y)φ
(
d(Tx, Ty)

) ≤ h(x, y)φ
(
Ma(x, y)

)
.

Then the sequence {Tnx0} converges to some x∗ ∈ X satisfying Tx∗ = x∗ and Ax∗ = Bx∗.

By setting A = D = Ix and C = B we have the following common fixed point theorem.

Corollary 3.3 Let (X,�, d) be a comparable complete metric space(not necessarily com-
plete) with partial order �1. Also, let operators T , A, B : X → X be given. Suppose that the
following conditions are satisfied:

(i) �1 is d-regular and T is �-preserving and triangular α-admissible;
(ii) B and T are comparable continuous;

(iii) there exists x0 ∈ JT such that x0 �1 Bx0 and α(x0, Tx0) ≥ 1;
(iv) for all x ∈ X , we have

x �1 Bx �⇒ BTx �1 Tx;
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(v) for all x ∈ X , we have

Bx �1 x �⇒ Tx �1 BTx;

(vi) there exist h ∈H(X) and φ ∈ � such that

(x �1 Bx and By �1 y) �⇒ α(x, y)φ
(
d(Tx, Ty)

) ≤ h(x, y)φ
(
Ma(x, y)

)
.

Then the sequence {Tnx0} converges to some x∗ ∈ X satisfying Tx∗ = x∗ and Bx∗ = x∗.

4 Conclusions
In this note, we replace the completeness assumption of the space X with a weaker condi-
tion by introducing the concept of comparable complete metric spaces. So, we address a
fixed point in the setting of incomplete metric spaces by using the constraint inequalities.
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