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Abstract
Teodorescu operator, or T-operator, plays an important role in Vekua equation
systems and the generalized analytic function theory. It is a generalized solution to
the nonhomogeneous Dirac equation. The properties of T operators play a key role in
the study of boundary value problems and integral representation of the solutions. In
this paper, we first define a Teodorescu operator with B-M kernel in the complex
Clifford analysis and prove the boundedness of this operator. Then we give an
inequality similar to the classical Hile lemma about real vector which plays a key role
in the following proof. Finally, we prove the Hölder continuity and γ -integrability of
this operator.
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1 Introduction
In some way, there are two branches of Clifford analysis. The first one is the real Clifford
analysis introduced by Brack, Delanghe, and Sommen in [1] which studied function the-
ory with values in a real Clifford algebra defined on a nonempty subset of the Euclidean
space Rn+1. Many important theoretic results, such as the Cauchy integral formula, the
Cauchy theorem, the Taylor and the Laurent series expansion, the Liouville theorem, and
the Morera theorem, have been obtained, and they are the extensions of the well-known
classical theorems in one complex variable. Beyond these, a lot of scholars have studied
many properties of function theory in the real Clifford analysis. Eriksson and Leutwiler
[2–5] introduced the hypermonogenic function and studied some properties of it. Huang
[6], Qiao [7–9], Xie [10–12], and Yang [13–15] obtained many results in Clifford analysis.

The second one is the complex Clifford analysis. In the early 1990s, Ryan [16–19] in-
troduced the definition of the complex regular function and obtained the Cauchy integral
formula whose method is similar to the classical function with one complex variable. In
recent years, Ku, Du [20, 21] obtained some properties of complex regular functions using
the isotonic function.

Based on the above theoretical study and practical background, we construct an ana-
logue of Bochner–Martinelli kernel in several complex variables. We first define a Teodor-
escu operator with B-M kernel in the complex Clifford analysis and prove the boundedness
of this operator. Then we give an inequality similar to the classical Hile lemma about real
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vector which plays a key role in the following proof. Finally, we prove the Hölder continuity
and γ -integrability of this operator.

2 Preliminaries
Let Cl0,n(C) be a complex Clifford algebra over n+1-dimensional Euclidean space Cn+1.
Cl0,n(C) has the basis e0, e1, e2, . . . , en; e1e2, e1e3, . . . , e1en; e2e3, . . . , e2en; . . . ; en–1en; . . . ;
e1 · · · en. Hence, an arbitrary element of the basis may be written as eA = eα1 · · · eαh , where
A = {α1, . . . ,αh} ⊆ {1, . . . , n}, 1 ≤ α1 < α2 < · · · < αh ≤ n and when A = ∅, eA = e0 = 1. So, the
complex Clifford algebra is composed of elements having the type a =

∑
A zAeA, where zA

are complex numbers.
The basis in Clifford algebra satisfies

e2
i = –1, i = 1, 2, . . . , n, eiej = –ejei, 1 ≤ i < j ≤ n, (i �= j).

Define the norm of Clifford numbers as follows:
∣
∣
∣
∣

∑

A

zAeA

∣
∣
∣
∣ =

√
(a, a) =

(∑

A

|zA|2
) 1

2
.

Let � ⊂ Cn+1 be an open connected nonempty set. Then the function which is de-
fined on � and valued in Cl0,n(C) can be expressed as f (z) =

∑
A fA(z)eA, where fA(z) are

complex-valued functions. Let

F (r)
� =

{

f
∣
∣
∣f : � → Cl0,n(C), f (z) =

∑

A

fA(z)eA, fA(z) ∈ Cr(�)
}

.

Dirac operators are introduced as follows [6]:

Dlf =
n∑

i=0

ei
∂f
∂zi

; Dlf = e0
∂f
∂z0

–
n∑

i=1

ei
∂f
∂zi

;

Drf =
n∑

i=0

∂f
∂zi

ei; Drf =
∂f
∂z0

e0 –
n∑

i=1

∂f
∂zi

ei.

Definition 2.1 ([16]) If � ⊂ Cn+1, f : � → Cl0,n(C) satisfies:
(1) fA(z) is a holomorphic function for any zj ∈ �,
(2) Dlf (z) = 0, ∀z ∈ �,

then f (z) is called a complex left regular function on �.

Definition 2.2 ([16]) If � ⊂ Cn+1, f : � → Cl0,n(C) satisfies:
(1) fA(z) is a holomorphic function for any zj ∈ �,
(2) Drf (z) = 0, ∀z ∈ �,

then f (z) is called a complex right regular function on �.

Lemma 2.1 (Hadamard lemma [22]) Let � ⊂ Rn+1 be a bounded domain, n ≥ 2. If α, β

satisfy 0 < α,β < n + 1, and α + β > n + 1, then for any x1, x2 ∈ Rn+1, x1 �= x2, we have
∫

�

|t – x1|–α|t – x2|–β dt ≤ J1|x1 – x2|(n+1)–α–β ,

where J1 is a positive constant related to α and β .
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Lemma 2.2 ([22]) Let � ⊂ Rn+1 be a bounded domain, when α < n + 1, for any y ∈ Rn+1,
we have

∫

�

|x – y|–α dx ≤ M,

where M is a positive constant only related to α and the size of �.

Lemma 2.3 (Hölder inequality [23]) If fk ∈ Lpk (�), k = 1, 2, . . . , n, and

1
p

=
1
p1

+
1
p2

+ · · · +
1
pn

≤ 1,

then f1f2 · · · fn ∈ Lp(�), and

Lp(f1f2 · · · fn) ≤ Lp1 (f1)Lp2 (f2) · · ·Lpn (fn), p ≥ 1.

Lemma 2.4 (Minkowski inequality [23]) If f1, f2, . . . , fn ∈ Lp(�), then f1 + f2 + · · ·+ fn ∈ Lp(�),
and

Lp(f1 + f2 + · · · + fn) ≤ Lp(f1) + Lp(f2) + · · · + Lp(fn), p ≥ 1.

Lemma 2.5 ([23]) Let Lp(�, Cl0,n(R)) represent the set of all p order integrable functions
which are defined on the bounded domain � ⊂ Rn+1, and with values in the real Clifford
algebra Cl0,n(R), define the norm of ϕ as follows:

‖ϕ‖�,p =
(∫

�

∣
∣ϕ(x)

∣
∣p dVx

) 1
p

, p ≥ 1,

when 1 ≤ r ≤ p,

Lp(�, Cl0,n(R)
) ⊂ Lr(�, Cl0,n(R)

)

is true.

The notations used in this paper are as follows:
(1) ω2n+2 represents the surface area of unit sphere in a 2n + 2-dimensional real

Euclidean space.
(2) Mi {i = 1, 2, 3}, Ki {i = 1, . . . , 16} are constants only related to n and the size of

domain � in this paper.
(3) dVξ = dζ0 ∧ dζ1 ∧ · · · ∧ dζn ∧ dη0 ∧ dη1 ∧ · · · ∧ dηn, ζj ∈ R, ηj ∈ R, (j = 0, 1, . . . , n),

ξj = ζj + iηj.
(4) dξ̄ ∧ dξ = dξ̄0 ∧ dξ̄1 ∧ · · ·dξ̄n ∧ dξ0 ∧ dξ1 · · · ∧ dξn.
(5) dξ̄ ∧ dξ = (2i)n+1 dVξ .

3 Some properties of a T operator with B-M kernel in the complex Clifford
analysis

In this section, we discuss some properties of a singular integral operator.
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Definition 3.1 Let � ⊂ Cn+1 be a bounded domain, ϕ ∈ Lp(�, Cl0,n(C)), z ∈ Cn+1, then

(Tϕ)(z)

=
1

ω2n+2(2i)n+1

∫

�

ϕ(ξ )
(∑n

k=0(ξk – zk)ēk

|ξ – z|2n+2 +
∑n

k=0(ξk – zk)ēk

|ξ – z|2n+2

)

dξ̄ ∧ dξ

is called T operator with B-M kernel.

Theorem 3.1 Let � ⊂ Cn+1 be a bounded domain, ϕ ∈ Lp(�, Cl0,n(C)), p > n + 1, then T is
bounded on Lp(�), and

‖Tϕ‖�,p ≤ M1‖ϕ‖�,p. (1)

Proof Choose q > 1 such that 1
p + 1

q = 1, when p > 2(n + 1), we have 1 < q < 2(n+1)
2n+1 , using

Hölder’s inequality, we have

∣
∣Tϕ(z)

∣
∣

=
1

2n+1ω2n+2

∣
∣
∣
∣

∫

�

ϕ(ξ )
(∑n

k=0(ξk – zk)ēk

|ξ – z|2n+2 +
∑n

k=0(ξk – zk)ēk

|ξ – z|2n+2

)

dξ̄ ∧ dξ

∣
∣
∣
∣

≤ K1

ω2n+2

(∫

�

∣
∣
∣
∣ϕ(ξ )

∑n
k=0(ξk – zk)ēk

|ξ – z|2n+2

∣
∣
∣
∣dVξ +

∫

�

∣
∣
∣
∣ϕ(ξ )

∑n
k=0(ξk – zk)ēk

|ξ – z|2n+2

∣
∣
∣
∣dVξ

)

≤ K2

(∫

�

∣
∣ϕ(ξ )

∣
∣ 1
|ξ – z|2n+1 dVξ +

∫

�

∣
∣ϕ(ξ )

∣
∣ 1
|ξ – z|2n+1 dVξ

)

≤ K3

∫

�

∣
∣ϕ(ξ )

∣
∣ 1
|ξ – z|2n+1 dVξ

≤ K4‖ϕ‖�,p

(∫

�

|ξ – z|–(2n+1)q dVξ

) 1
q

.

Because 1 < q < 2(n+1)
2n+1 , we have (2n + 1)q < 2(n + 1). Using Lemma 2.2, for ∀z ∈ �, we have

∫

�

|ξ – z|–(2n+1)q dVξ ≤ K5.

So we have

∣
∣Tϕ(z)

∣
∣ ≤ K4K5‖ϕ‖�,p.

Hence,

(∫

�

∣
∣Tϕ(z)

∣
∣p dVz

) 1
p

≤ K4K5

(∫

�

‖ϕ‖p
�,p dVz

) 1
p

.

Let M1 = K4K5(
∫
�

dVz)
1
p , we have

∥
∥Tϕ(z)

∥
∥

�,p ≤ M1‖ϕ‖�,p. �
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Theorem 3.2 Let z = z0e0 + z1e1 + z2e2 + · · · + znen, ξ = ξ0e0 + ξ1e1 + ξ2e2 + · · · + ξnen ∈
Cl0,n(C), z �= 0, ξ �= 0, and |z| �= |ξ |, n (≥ 2), m (≥ 0) be integers, then for any i, 0 ≤ i ≤ n, we
have

∣
∣
∣
∣

zi

|z|m+2 –
ξi

|ξ |m+2

∣
∣
∣
∣ ≤ |z – ξ |[Pm(z, ξ ) + |z| m

2 |ξ | m
2 ]

|z|m+1|ξ |m+1 , (2)

where

Pm(z, ξ ) =
m∑

k=0

|z|m–k|ξ |k =
|z|m+1 – |ξ |m+1

|z| – |ξ | .

Proof Suppose |z| ≤ |ξ | and insert the term zi|z|m+2 in the following formula, then we have
∣
∣
∣
∣

zi

|z|m+2 –
ξi

|ξ |m+2

∣
∣
∣
∣

=
∣
∣
∣
∣
zi|ξ |m+2 – ξi|z|m+2

|z|m+2|ξ |m+2

∣
∣
∣
∣

=
∣
∣
∣
∣
zi|ξ |m+2 – zi|z|m+2 + zi|z|m+2 – ξi|z|m+2

|z|m+2|ξ |m+2

∣
∣
∣
∣

≤ |zi|||ξ |m+2 – |z|m+2| + |zi – ξi||z|m+2

|z|m+2|ξ |m+2

≤ |z|||ξ | – |z||(|ξ |m+1 + |ξ |m|z| + · · · + |z|m+1) + |z – ξ ||z||ξ ||z|m
|z|m+2|ξ |m+2

≤
∣
∣
∣
∣
|z|||ξ | – |z||(|ξ |m+1 + |ξ |m|z| + · · · + |ξ ||z|m) + |z – ξ ||z||ξ ||z|m

|z|m+2|ξ |m+2

∣
∣
∣
∣

≤
∣
∣
∣
∣
|z – ξ |[(|ξ |m + |ξ |m–1|z| + · · · + |z|m) + |z|m]

|z|m+1|ξ |m+1

∣
∣
∣
∣

≤
∣
∣
∣
∣
|z – ξ |[Pm(z, ξ ) + |z| m

2 |ξ | m
2 ]

|z|m+1|ξ |m+1

∣
∣
∣
∣.

When |ξ | ≤ |z|, insert ξi|ξ |m+2 in the above formula, we can prove the above inequality
in a similar way. �

Remark 1 Because the original Hile lemma cannot be used directly in the complex Clif-
ford analysis, we give the conclusion of Theorem 3.2 which is similar to the classical Hile
lemma and plays an important role in proving the properties of T-operators and Cauchy
operators. We insert the appropriate items according to the situation and prove that in-
equality (2) holds. Inequality (2) is similar to the Hile lemma of the classical real vector
and is complete symmetry with respect to the variable ξ , z. It is a good tool to prove the
Hölder continuity of the T operator with B-M kernel in the complex Clifford analysis.

Theorem 3.3 Let � ⊂ Cn+1 be a bounded domain, ϕ ∈ Lp(�), p > 2(n + 1), then for any
z1, z2 ∈ �, we have

∣
∣(Tϕ)(z1) – (Tϕ)(z2)

∣
∣ ≤ M2‖ϕ‖�,p|z1 – z2|α , (3)

and Tϕ is Hölder continuous on �, where α = 1 – 2(n+1)
p .
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Proof Case 1. When |z1 – z2| ≥ 1, using Theorem 3.2 we have

∣
∣Tϕ(z1) – Tϕ(z2)

∣
∣ ≤ 2M1‖ϕ‖�,p

≤ 2M1‖ϕ‖�,p
1

|z1 – z2|α |z1 – z2|α

≤ M2‖ϕ‖�,p|z1 – z2|α .

Case 2. When |z1 – z2| < 1, we have

∣
∣Tϕ(z1) – Tϕ(z2)

∣
∣

≤ 1
ω2n+22n+1

∫

�

∣
∣ϕ(ξ )

∣
∣
∣
∣
∣
∣

∑n
k=0(ξk – z1k)ēk

|ξ – z1|2n+2 –
∑n

k=0(ξk – z2k)ēk

|ξ – z2|2n+2

∣
∣
∣
∣|dξ̄ ∧ dξ |

+
1

ω2n+22n+1

∫

�

∣
∣ϕ(ξ )

∣
∣
∣
∣
∣
∣

∑n
k=0(ξk – z1k)ēk

|ξ – z1|2n+2 –
∑n

k=0(ξk – z2k)ēk

|ξ – z2|2n+2

∣
∣
∣
∣|dξ̄ ∧ dξ |

≤ 1
ω2n+2

n∑

k=0

∫

�

∣
∣ϕ(ξ )

∣
∣
∣
∣
∣
∣

(ξk – z1k)
|ξ – z1|2n+2 –

(ξk – z2k)
|ξ – z2|2n+2

∣
∣
∣
∣dVξ

+
1

ω2n+2

n∑

k=0

∫

�

∣
∣ϕ(ξ )

∣
∣
∣
∣
∣
∣

(ξk – z1k)
|ξ – z1|2n+2 –

(ξk – z2k)
|ξ – z2|2n+2

∣
∣
∣
∣dVξ

=
2

ω2n+2

n∑

k=0

∫

�

∣
∣ϕ(ξ )

∣
∣
∣
∣
∣
∣

(ξk – z1k)
|ξ – z1|2n+2 –

(ξk – z2k)
|ξ – z2|2n+2

∣
∣
∣
∣dVξ .

Let

I =
∫

�

∣
∣ϕ(ξ )

∣
∣
∣
∣
∣
∣

(ξk – z1k)
|ξ – z1|2n+2 –

(ξk – z2k)
|ξ – z2|2n+2

∣
∣
∣
∣dVξ .

According to Theorem 3.2, we can get

I ≤
∫

�

∣
∣ϕ(ξ )

∣
∣
∣
∣
∣
∣
|z1 – z2|[P2n(ξ – z1, ξ – z2) + |ξ – z1|n|ξ – z2|n]

|ξ – z1|2n+1|ξ – z2|2n+1

∣
∣
∣
∣dVξ

= |z1 – z2|
∫

�

∣
∣ϕ(ξ )

∣
∣
∣
∣
∣
∣

P2n(ξ – z1, ξ – z2)
|ξ – z1|2n+1|ξ – z2|2n+1

∣
∣
∣
∣dVξ

+ |z1 – z2|
∫

�

∣
∣ϕ(ξ )

∣
∣ |ξ – z1|n|ξ – z2|n
|ξ – z1|2n+1|ξ – z2|2n+1 dVξ

= I1 + I2.

For I1, we have

I1 = |z1 – z2|
∫

�

2n∑

k=0

|ξ – z1|–(k+1)|ξ – z2)|–(2n+1–k)|ϕ(ξ )|dVξ

= |z1 – z2|
2n∑

k=0

∫

�

|ξ – z1|–(k+1)|ξ – z2)|–(2n+1–k)|ϕ(ξ )|dVξ .
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Using Hölder’s inequality we have

I1 ≤ |z1 – z2|‖ϕ‖�,p

2n∑

k=0

(∫

�

|ξ – z1|–(k+1)q|ξ – z2|–(2n+1–k)q dVξ

) 1
q

.

Because p > 2n + 2, 1
p + 1

q = 1, we can get

1 < q <
2n + 2
2n + 1

.

So

2n + 1 < (2n + 1)q < 2n + 2,

0 ≤ k ≤ 2n, we get

(k + 1)q ≤ 2n + 2,

(2n + 1 – k)q ≤ 2n + 2,

and

(k + 1)q + (2n + 1 – k)q > 2n + 2.

By Hadamard’s lemma, we have

∫

�

|ξ – z1|–(k+1)q|ξ – z2)|–(2n+1–k)q dVξ

≤ K6|z1 – z2|(2n+2)–(2n+1–k)q–(k+1)q

= K6|z1 – z2|(2n+2)–(2n+2)q.

So we have

I1 ≤ (2n + 1)K6‖ϕ‖�,p|z1 – z2|1+ 2n+2
q –(2n+2)

≤ (2n + 1)K6‖ϕ‖�,p|z1 – z2|1– 2n+2
p .

As to I2, using Hölder’s inequality we have

I2 = |z1 – z2|
∫

�

∣
∣ϕ(ξ )

∣
∣ |ξ – z1|n|ξ – z2|n
|ξ – z1|2n+1|ξ – z2|2n+1 dVξ

≤ |z1 – z2|‖ϕ‖�,p

(∫

�

|ξ – z1|–(n+1)q|ξ – z2|–(n+1)q dVξ

) 1
q

.

Since p > 2n + 2 and 1
p + 1

q = 1, we get

1 < q <
2n + 2
2n + 1

.
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So

(n + 1)q ≤ 2n + 2,

(2n + 2)q ≥ 2n + 2.

From Hadamard’s lemma, we get

∫

�

|ξ – z1|–(n+1)q|ξ – z2|–(n+1)q dVξ

≤ K7|z1 – z2|(2n+2)–(2n+2)q.

So

I2 ≤ K7‖ϕ‖�,p|z1 – z2|1+ 2n+2
q –(2n+2)

≤ K7‖ϕ‖�,p|z1 – z2|1– 2n+2
p .

Hence

I = I1 + I2

≤ (2n + 1)(K6 + K7)‖ϕ‖�,p|z1 – z2|1– 2n+2
p

= K8‖ϕ‖�,p|z1 – z2|1– 2n+2
p .

Using Hölder’s inequality, we obtain

∣
∣Tϕ(z1) – Tϕ(z2)

∣
∣ ≤ 2

ω2n+2
K8‖ϕ‖�,p|z1 – z2|1– 2n+2

p

≤ K9‖ϕ‖�,p|z1 – z2|1– 2n+2
p

≤ M2‖ϕ‖�,p|z1 – z2|α . �

Remark 2 In Case 2 of this theorem, we use the inequality of Theorem 3.3, Hölder’s in-
equality, and Hadamard’s lemma. This result enriches the theoretical system of the com-
plex Clifford analysis.

Theorem 3.4 Let � ⊂ Cn+1 be a bounded domain, ϕ ∈ Lp(�), 1 < p < 2n + 2, γ is an
arbitrary constant which satisfies 1 < γ < (2n+2)p

(2n+2)–p , then Tϕ is γ -integrable on �, that is,
Tϕ ∈ Lγ (�), and the following inequality

‖Tϕ‖�,γ ≤ M3‖ϕ‖�,p (4)

is true.

Proof For convenience, we introduce the notation b, suppose b = 1
γ

– 1
p + 1

2n+2 , then
from1 < γ < (2n+2)p

(2n+2)–p we know b > 0. Here are two cases to prove that Tϕ is γ -integrable
on �.
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Case 1. When p < γ < (2n+2)p
(2n+2)–p , 0 < p

γ
< 1, thus 0 < p( 1

p – 1
γ

) = 1 – p
γ

< 1, again

p
γ

+ p
(

1
p

–
1
γ

)

= 1.

Choose q > 0 such that 1
p + 1

q = 1, then we have

(2n + 2)
(

b
2

–
1
γ

)

+ (2n + 2)
(

b
2

–
1
q

)

= (2n + 2)
(

b –
1
γ

–
1
q

)

= (2n + 2)
(

1
γ

–
1
p

+
1

2n + 2
–

1
γ

–
1
q

)

= (2n + 2)
(

–1 +
1

2n + 2

)

= –(2n + 1).

Therefore,

∣
∣Tϕ(z)

∣
∣

=
1

2n+1ω2n+2

∣
∣
∣
∣

∫

�

ϕ(ξ )
(∑n

k=0(ξk – zk)ēk

|ξ – z|2n+2 +
∑n

k=0(ξk – zk)ēk

|ξ – z|2n+2

)

dξ̄ ∧ dξ

∣
∣
∣
∣

≤ K10

ω2n+2

(∫

�

∣
∣ϕ(ξ )

∣
∣ 1
|ξ – z|2n+1 dVξ +

∫

�

∣
∣ϕ(ξ )

∣
∣ 1
|ξ – z|2n+1 dVξ

)

=
2K10

ω2n+2

∫

�

∣
∣ϕ(ξ )

∣
∣ 1
|ξ – z|2n+1 dVξ

=
2K10

ω2n+2

∫

�

∣
∣ϕ(ξ )

∣
∣

p
γ |ξ – z|(2n+2)( b

2 – 1
γ )∣∣ϕ(ξ )

∣
∣p( 1

p – 1
γ )|ξ – z|(2n+2)( b

2 – 1
q ) dVξ .

Because 1 < p < γ , 1
γ

+ ( 1
p – 1

γ
) + 1

q = 1, using Hölder’s inequality we get

∣
∣Tϕ(z)

∣
∣

≤ 2K10

ω2n+2

(∫

�

∣
∣ϕ(ξ )

∣
∣p|ξ – z|(2n+2)( γ b

2 –1) dVξ

) 1
γ
(∫

�

∣
∣ϕ(ξ )

∣
∣p dVξ

) 1
p – 1

γ

·
(∫

�

|ξ – z|(2n+2)( qb
2 –1) dVξ

) 1
q

=
2K10

ω2n+2

(∫

�

∣
∣ϕ(ξ )

∣
∣p|ξ – z|(2n+2)( γ b

2 –1) dVξ

) 1
γ

‖ϕ‖1– p
γ

�,p

·
(∫

�

|ξ – z|(2n+2)( qb
2 –1) dVξ

) 1
q

.
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Because b > 0, we have

(2n + 2)
(

1 –
γ b
2

)

< 2n + 2,

(2n + 2)
(

1 –
qb
2

)

< 2n + 2.

From Lemma 2.2 we can know that two integrals are meaningful, we assume that K11 =
supξ∈�

∫
�

|ξ – z|(2n+2)( qb
2 –1) dVξ .

Therefore we have

∣
∣Tϕ(z)

∣
∣γ ≤

(
2

ω2n+2

)γ

K
γ
q

11‖ϕ‖γ –p
�,p

(∫

�

∣
∣ϕ(ξ )

∣
∣p|ξ – z|(2n+2)( γ b

2 –1) dVξ

)

.

Let K12 = supξ∈�

∫
�

|ξ – z|(2n+2)( γ b
2 –1) dVz , so we have

∣
∣Tϕ(z)

∣
∣γ ≤ K12‖ϕ‖γ –p

�,p ‖ϕ‖p
�,p = K13‖ϕ‖γ

�,p,

where K13 = ( 2
ω2n+2

)γ K
γ
q

11K12.
Hence, we get

‖Tϕ‖�,γ =
(∫

�

∣
∣Tϕ(z)

∣
∣γ dVξ

) 1
γ

≤ Kγ
13‖ϕ‖�,p = K14‖ϕ‖�,p,

where K14 = Kγ
13.

(2) When p ≥ γ > 1, choose m such that 0 < (2n+2)γ
(2n+2)+γ

< m < γ , and m is an arbitrary pos-
itive constant satisfying m < γ < (2n+2)m

(2n+2)+m . Because ϕ ∈ Lp(�), m < p, we have ϕ ∈ Lm(�).
Choose 1

p + 1
q = 1

m . Therefore, from the proof process of (1) and Lemma 2.5, we get

‖Tϕ‖�,p

≤ K15‖ϕ‖�,m

= K15

[∫

�

∣
∣ϕ(ξ ) · 1

∣
∣m

] 1
m

≤ K15

[∫

�

∣
∣ϕ(ξ ) · 1

∣
∣p

] 1
p
[∫

�

∣
∣ϕ(ξ ) · 1

∣
∣q

] 1
q

≤ K15V
1
q

� ‖ϕ‖�,p

≤ K16‖ϕ‖�,p.

Therefore Tϕ is γ integrable on �. If we choose M3 = max{K14, K16}, then

‖Tϕ‖�,γ ≤ M3‖ϕ‖�,p. �
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