
You Journal of Inequalities and Applications  (2018) 2018:219 
https://doi.org/10.1186/s13660-018-1813-9

R E S E A R C H Open Access

Approximation to the global solution of
generalized Zakharov equations in R2

Shujun You1*

*Correspondence:
ysj980@aliyun.com
1School of Mathematical Sciences,
Huaihua University, Huaihua, China

Abstract
We consider the initial value problem for the two-dimensional generalized Zakharov
equations which model the propagation of Langmuir waves in plasmas. It is obtained
that the solutions of the two-dimensional generalized Zakharov equations converge
as α → 0 to a solution of the Zakharov equations. Both weak and strong solutions are
considered.
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1 Introduction
Zakharov derived a set of coupled nonlinear wave equations describing the interaction
between high-frequency Langmuir waves and low-frequency ion-acoustic waves at the
classical level [1]. The usual Zakharov system defined in space time R

d+1 is given by

iEt + �E = nE, (1)

ntt – �n = �|E|2, (2)

where E is the envelope of the high-frequency electric field, and n is the plasma density
measured from its equilibrium value.

Since 1972, this system has been the subject of a large number of studies [2–8]. Glangetas
and Merle considered blow-up solutions of Zakharov equation in space dimension two.
They proved various concentration properties of these solutions: existence, characteriza-
tion of concentration mass, nonexistence of minimal concentration mass, and instability
of periodic solutions [7, 8]. Ginibre, Tsutsumi, and Velo studied the local Cauchy prob-
lem in time for the Zakharov system governing Langmuir turbulence, with initial data
(u(0), n(0), ∂tn(0)) ∈ Hk × Hl × Hl–1, in arbitrary space dimension. They proved that the
Zakharov system is locally well-posed for a variety of values of (k, l) [6].

The generalized Zakharov equation has also received the attention of many mathemati-
cians [9–18]. Borhanifar et al. obtained generalized solitonary solutions and periodic so-
lutions of the generalized Zakharov system and (2 + 1)-dimensional Nizhnik–Novikov–
Veselov system by using the Exp-function method [9]. Guo et al. established local in time
existence and uniqueness for a generalized Zakharov equation in the case of dimension
d = 1, 2, 3. Moreover, by using the conservation laws and the Brezis–Gallouet inequality,
the solution can be extended globally in time in a two-dimensional case for small initial
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data. Besides, they also proved global existence of smooth solution in one spatial dimen-
sion without any small assumption for initial data [10]. Biswas et al. obtained the 1-soliton
solution to Zakharov equation with power law and dual-power law nonlinearities. The
He’s variational principle was used to carry out the integration of this equation [11]. Buhe
and Bluman obtained several reductions and numerous new exact solutions of the gen-
eralized Zakharov equations by some subalgebras of symmetries [12]. Morris, Kara, and
Biswas studied the Zakharov equation with power law nonlinearity. The traveling wave
hypothesis was applied to obtain the 1-soliton solution of this equation. The multiplier
method from Lie symmetries was subsequently utilized to obtain the conservation laws
of the equations [13]. Linares and Pastor proved that the initial value problem for the
two-dimensional modified Zakharov–Kuznetsov equation is locally well-posed for data
in Hs(R2), s > 3/4. Even though the critical space for this equation is L2(R2), they proved
that well-posedness is not possible in such a space. Global well-posedness and a sharp
maximal function estimate were also established [14].

In [17], You studied the following generalized Zakharov system in space dimension two,
and established the global existence for Cauchy problem.

iEt + �E – nE + α|E|pE = 0, (3)

ntt – �n = �|E|2, (4)

E|t=0 = E0(x), n|t=0 = n0(x), nt|t=0 = n1(x). (5)

We are interested in this paper in the asymptotic behavior of system (3)–(4) when α

goes to zero. We regard equations (3)–(4) as the Langmuir turbulence parameterized by
α (|α| < 1). One expects that the sequence of system (3)–(4) converges to the Zakharov
equations (1)–(2). Actually, our goal is to show that the solutions (Eα , nα) to (3)–(4) tend
to (E, n) when α goes to 0, where (E, n) is the solution to (1)–(2) with (5).

The obtained results may be useful for better understanding the long wave Langmuir
turbulence in plasma. Now we state the main results of the paper.

Theorem 1.1 Assume that E0 ∈ H1(R2), n0 ∈ L2(R2), n1 ∈ H–1(R2), 0 < p ≤ 2, |α| < 1, and
‖E0(x)‖L2 small. Then, as α goes to zero, (Eα , nα) converges to (E, n) in L∞(R+, H1(R2)) ×
L∞(R+, L2(R2)) weakly star.

Theorem 1.2 Suppose that E0 ∈ Hm+2(R2), n0 ∈ Hm+1(R2), n1 ∈ Hm(R2) (m ≥ 1) , 0 < p ≤
2, |α| < 1, and ‖E0(x)‖L2 small. Then

∥
∥Fα

∥
∥

Hm(R2) =
∥
∥Eα – E

∥
∥

Hm(R2) → 0 (α → 0),
∥
∥uα

∥
∥

Hm–1(R2) =
∥
∥nα – n

∥
∥

Hm–1(R2) → 0 (α → 0).

For the sake of convenience of the following contexts, we set some notations. For 1 ≤
q ≤ ∞, we denote by Lq(R2) the space of all q times integrable functions in R

2 equipped
with the norm ‖ · ‖Lq(R2) or simply ‖ · ‖Lq and by Hs(R2) the Sobolev space with the norm
‖·‖Hs,2(R2). Let (f , g) =

∫

R2 f (x) ·g(x) dx, where g(x) denotes the complex conjugate function
of g(x).

The paper is organized as follows. In Sect. 2, we establish a weak convergence result. In
Sect. 3, we state the strong convergence results.
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2 Weak convergence results
In this section, we shall prove Theorem 1.1. We introduce ϕ and transform (3)–(4) with
(5) into the following form:

iEα
t + �Eα – nαEα + α

∣
∣Eα

∣
∣
pEα = 0, (6)

nα
t – �ϕα = 0, (7)

ϕα
t – nα =

∣
∣Eα

∣
∣
2, (8)

with the initial data

Eα|t=0 = E0(x), nα|t=0 = n0(x), ϕα|t=0 = ϕ0(x), (9)

where ϕ0 satisfies �ϕ0 = n1.
Take the inner product of (6) and Eα , and take the inner product of (6) and Eα

t . Then we
can obtain the following invariants:

∥
∥Eα

∥
∥

2
L2(R2) = ‖E0‖2

L2(R2), (10)

H (t) :=
∥
∥∇Eα

∥
∥

2
L2(R2) +

1
2
∥
∥∇ϕα

∥
∥

2
L2(R2) +

1
2
∥
∥nα

∥
∥

2
L2(R2)

+
∫

R2
nα

∣
∣Eα

∣
∣
2 dx –

2α

p + 2

∫

R2

∣
∣Eα

∣
∣
p+2 dx = H (0). (11)

In this section, we consider the initial data satisfying rather few regularity conditions.
More precisely, we assume that E0, n0, n1 lie in H1(R2), L2(R2), H–1(R2), respectively. Ac-
cording to the Galerkin method, there exists the weak global solution

Eα ∈ L∞(

R+, H1(
R

2)), nα ∈ L∞(

R+, L2(
R

2)).

The proof of Theorem 1.1 needs two lemmas recalled in [19].

Lemma 2.1 Let B0, B, B1 be three reflexive Banach spaces and assume that the embedding
B0 → B is compact. Let

W =
{

V ∈ Lp0
(

(0, T); B0
)

,
∂V
∂t

∈ Lp1
(

(0, T); B1
)
}

, T < ∞, 1 < p0, p1 < ∞.

W is a Banach space with the norm

‖V‖W = ‖V‖Lp0 ((0,T);B0) + ‖Vt‖Lp1 ((0,T);B1).

Then the embedding W → Lp0 ((0, T); B) is compact.

Lemma 2.2 Let � be an open set of Rn, and let g, gε ∈ Lp(Rn), 1 < p < ∞, such that

gε → g a.e. in � and ‖gε‖Lp(�) ≤ C.

Then gε → g weakly in Lp(�).
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Now, with these lemmas, we are able to prove Theorem 1.1.

Proof By Hölder’s inequality, Young’s inequality, and the Gagliardo–Nirenberg inequality,
there holds

∣
∣
∣
∣

∫

R2
nα

∣
∣Eα

∣
∣
2 dx

∣
∣
∣
∣
≤ ∥

∥nα
∥
∥

L2

∥
∥Eα

∥
∥

2
L4 ≤ 1

4
∥
∥nα

∥
∥

2
L2 +

∥
∥Eα

∥
∥

4
L4

≤ 1
4
∥
∥nα

∥
∥

2
L2 + C

∥
∥∇Eα

∥
∥

2
L2

∥
∥Eα

∥
∥

2
L2 .

Using the Gagliardo–Nirenberg inequality and noting |α| < 1, we write

2|α|
p + 2

∥
∥Eα

∥
∥

p+2
Lp+2 ≤ 2

p + 2
∥
∥Eα

∥
∥

p+2
Lp+2 ≤ C

∥
∥∇Eα

∥
∥

p
L2

∥
∥Eα

∥
∥

2
L2 .

Note that 0 < p ≤ 2 and ‖E0‖L2 small, relations (10) and (11) imply that the quantities

∥
∥Eα

∥
∥

L∞(R+,H1(R2)),
∥
∥nα

∥
∥

L∞(R+,L2(R2)),
∥
∥ϕα

∥
∥

L∞(R+,H1(R2))

are bounded uniformly in α. Therefore, some subsequence of (Eα , nα ,ϕα), also labeled by
α, has a weak limit (E, n,ϕ). More precisely

Eα → E in L∞(

R+, H1(
R

2)) weakly star, (12)

nα → n in L∞(

R+, L2(
R

2)) weakly star, (13)

ϕα → ϕ in L∞(

R+, H1(
R

2)) weakly star. (14)

Moreover, let us note that the following maps are continuous:

H1(
R

2) → L4(
R

2) and H1(
R

2) × L2(
R

2) → H–1(
R

2).

It then follows from (12) and (13) that the quantities

∥
∥�Eα

∥
∥

L∞(R+,H–1(R2)),
∥
∥nαEα

∥
∥

L∞(R+,H–1(R2)),
∥
∥
∣
∣Eα

∣
∣
2∥
∥

L∞(R+,L2(R2)),
∥
∥�ϕα

∥
∥

L∞(R+,H–1(R2)),
∥
∥α

∣
∣Eα

∣
∣
pEα

∥
∥

L∞(R+,L2(R2))

are bounded uniformly in α. So it can be assumed that

nαEα has a weak limit z in L∞(

R+, H–1(
R

2)), (15)
∣
∣Eα

∣
∣
2 has a weak limit w in L∞(

R+, L2(
R

2)), (16)

α
∣
∣Eα

∣
∣
pEα has a weak limit v in L∞(

R+, L2(
R

2)), (17)

and

�Eα → �E in L∞(

R+, H–1(
R

2)) weakly star, (18)

�ϕα → �ϕ in L∞(

R+, H–1(
R

2)) weakly star. (19)
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Finally, taking into account (12)–(19), Eqs. (6)–(8) imply that

Eα
t → Et in L∞(

R+, H–1(
R

2)) weakly star, (20)

nα
t → nt in L∞(

R+, H–1(
R

2)) weakly star, (21)

ϕα
t → ϕt in L∞(

R+, L2(
R

2)) weakly star. (22)

Using the above results, the proof of Theorem 1.1 will be complete if we establish that

z = nE, w = |E|2, and v = 0.

Let � be any bounded subdomain of R2, ψ be some test function in L2(0, T ; H1(R2)),
suppψ ⊂ � ⊂R

2.

∫ T

0

∫

R2

(

nαEα – nE
)

ψ dx dt

=
∫ T

0

∫

�

nα
(

Eα – E
)

ψ dx dt +
∫ T

0

∫

�

(

nα – n
)

Eψ dx dt.

Since

∣
∣
∣
∣

∫ T

0

∫

�

nα
(

Eα – E
)

ψ dx dt
∣
∣
∣
∣

≤ ∥
∥nα

∥
∥

L∞(0,T ;L2(�))

∥
∥Eα – E

∥
∥

L2(0,T ;L4(�))‖ψ‖L2(0,T ;L4(�)),

we deduce from (12) that

∫ T

0

∫

�

nα
(

Eα – E
)

ψ dx dt → 0 (α → 0).

In fact

‖Eψ‖L1(0,T ;L2(R)) ≤ ‖E‖L2(0,T ;L4(R2))‖ψ‖L2(0,T ;L4(R2)) < ∞.

Therefore, we deduce from (13) that

∫ T

0

∫

�

(

nα – n
)

Eψ dx dt → 0 (α → 0).

Thus nαEα → nE in L2(0, T ; H–1(R2)). So z = nE.
We notice that the embedding

H1(�) → L4(�)

is compact, and for any Banach space X, the embedding

L∞(R+, X) → L2(0, T ; X)
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is continuous. Hence, according to (12), (20) and Lemma 2.1, applied to B0 = H1(�), B =
L4(�), B1 = H–1(�), we obtain that some subsequence of Eα|� (also labeled by α) converges
strongly to E|� in L2(0, T ; L4(�)). Thus, we can assume that

Eα → E strongly in L2(0, T ; L4
loc(�)

)

, (23)

and thus

Eα → E a.e. in [0, T] ×R
2. (24)

Then, using Lemma 2.2, (16) and (24) imply that w = |E|2.
Finally, let φ ∈D(R2), we obtain from (6) that

(

iEα
t + �Eα – nαEα + α

∣
∣Eα

∣
∣
pEα ,φ

)

= 0.

By virtue of ‖Eα‖L∞(R+,H1(R2)) is bounded uniformly in α, we can obtain

∣
∣
(

α
∣
∣Eα

∣
∣
pEα ,φ

)∣
∣ ≤ |α|∥∥Eα

∥
∥

p+1
L2p+2‖φ‖L2 → 0, α → 0.

Thus

iEα
t + �Eα – nαEα → 0 in L

(

D
(

R
2), L∞(R+)

)

.

Therefore

iEt + �E – nE = 0,

which completes the proof of Theorem 1.1. �

3 Strong convergence results
This last result leads us to wondering whether the convergence is better when we take
more regular initial data. We shall prove that

Fα = Eα – E, uα = nα – n

converge strongly in some sense. Taking into account the equations satisfied by (Eα , nα)
and (E, n), we find that (Fα , uα) must satisfy the system

iFα
t + �Fα – uαFα – uαE – nFα + α

∣
∣Eα

∣
∣
pEα = 0, (25)

uα
tt – �uα = �

(∣
∣Fα

∣
∣
2 + 2 Re

(

FαE
))

, (26)

with the initial data

Fα|t=0 = 0, uα|t=0 = 0, uα
t |t=0 = 0. (27)
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We introduce V α(x, t) and transform (25)–(27) into the following form:

iFα
t + �Fα – uαFα – uαE – nFα + α

∣
∣Eα

∣
∣
pEα = 0, (28)

uα
t – �V α = 0, (29)

V α
t = uα +

∣
∣Fα

∣
∣
2 + 2 Re

(

FαE
)

, (30)

with the initial data

Fα|t=0 = 0, uα|t=0 = 0, V α|t=0 = 0. (31)

We know that if E0(x) ∈ Hl+2(R2), n0(x) ∈ Hl+1(R2), n1(x) ∈ Hl(R2), l ≥ 1, and 0 < p ≤
2 with ‖E0(x)‖L2 small, there exists a unique global solution (Eα , nα) for system (3)–(5)
satisfying [17]

Eα(x, t) ∈ L∞
loc

(

0, T ; Hl+2) ∩ W 1,∞(

0, T ; Hl), nα(x, t) ∈ L∞
loc

(

0, T ; Hl+1),

nα
t (x, t) ∈ L∞

loc
(

0, T ; Hl) ∩ W 1,∞(

0, T ; Hl–1).

Moreover, if E0(x) ∈ Hm+2(R2), n0(x) ∈ Hm+1(R2), n1(x) ∈ Hm(R2), m ≥ 1, and ‖E0(x)‖L2

small, system (1), 2, (5) has a unique global solution (E, n) satisfying [20]

E(x, t) ∈ L∞
loc

(

0, T ; Hm+2(
R

2)), n(x, t) ∈ L∞
loc

(

0, T ; Hm+1(
R

2)),

nt ∈ L∞
loc

(

0, T ; Hm(

R
2)).

The entire proof of Theorem 1.2 is broken down into Lemmas 3.1 and 3.2.

Lemma 3.1 Suppose that E0 ∈ H3, n0 ∈ H2, n1 ∈ H1, 0 < p ≤ 2, |α| < 1, and ‖E0(x)‖L2

small. Then there exists some function M(t) ∈ L∞
Loc(R+) such that

∥
∥∇Fα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 +

∥
∥∇V α

∥
∥

2
L2 +

∥
∥uα

∥
∥

2
L2 ≤ M(t)α2.

Proof Taking the inner product of (28) and Fα , we have

(

iFα
t + �Fα – uαFα – uαE – nFα + α

∣
∣Eα

∣
∣
pEα , Fα

)

= 0. (32)

Since

Im
(

iFα
t , Fα

)

=
1
2

d
dt

∥
∥Fα

∥
∥

2
L2 ,

Im
(

�Fα – nαFα , Fα
)

= 0,
∣
∣Im

(

–uαE + α
∣
∣Eα

∣
∣
pEα , Fα

)∣
∣

≤ (‖E‖L∞
∥
∥uα

∥
∥

L2 + |α|∥∥Eα
∥
∥

p+1
L2p+2

)∥
∥Fα

∥
∥

L2

≤ M(t)
(∥
∥uα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 + α2).
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From (32), we get

d
dt

∥
∥Fα

∥
∥

2
L2 ≤ M(t)

(∥
∥uα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 + α2). (33)

We deduce the inequality from (33)

∥
∥Fα

∥
∥

2
L2 ≤ M(t)

(∫ t

0

(∥
∥uα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2

)

dτ + α2
)

. (34)

Taking the inner product of (28) and Fα
t gives that

(

iFα
t + �Fα – uαFα – uαE – nFα + α

∣
∣Eα

∣
∣
pEα , Fα

t
)

= 0. (35)

Since

Re
(

iFα
t , Fα

t
)

= 0,

Re
(

�Fα , Fα
t
)

= –
1
2

d
dt

∥
∥∇Fα

∥
∥

2
L2 ,

Re
(

–uαFα – nFα , Fα
t
)

= –
1
2

∫

R2

(

uα + n
)(∣

∣Fα
∣
∣
2)

t dx

= –
1
2

d
dt

∫

R2

(

uα + n
)∣
∣Fα

∣
∣
2 dx +

1
2

∫

R2

(

uα + n
)

t

∣
∣Fα

∣
∣
2 dx,

where

1
2

∫

R2
uα

t
∣
∣Fα

∣
∣
2 dx =

1
2

∫

R2
uα

t
(

V α
t – uα – 2 Re

(

FαE
))

dx

=
1
2

∫

R2
�V αV α

t dx –
1
4

d
dt

∥
∥uα

∥
∥

2
L2 –

d
dt

∫

R2
uα Re

(

FαE
)

dx

+
∫

R2
uα Re

(

FαE
)

t dx

= –
1
4

d
dt

(
∥
∥∇V α

∥
∥

2
L2 +

∥
∥uα

∥
∥

2
L2 + 4

∫

R2
uα Re

(

FαE
)

dx
)

+
∫

R2
uα Re

(

FαE
)

t dx.

From (35), we obtain

d
dt

(
1
2
∥
∥∇Fα

∥
∥

2
L2 +

1
4
∥
∥∇V α

∥
∥

2
L2 +

1
4
∥
∥uα

∥
∥

2
L2 +

1
2

∫

R2

(

uα + n
)∣
∣Fα

∣
∣
2 dx

)

+
d
dt

∫

R2
uα Re

(

FαE
)

dx

=
∫

R2
uα Re

(

FαEt
)

dx +
1
2

∫

R2
nt

∣
∣Fα

∣
∣
2 dx + α Re

∫

R2

∣
∣Eα

∣
∣
pEαFα

t dx. (36)
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First, we study the right-hand side of (36).

∣
∣
∣
∣

∫

R2
uα Re

(

FαEt
)

dx
∣
∣
∣
∣
≤ ‖Et‖L4

∥
∥uα

∥
∥

L2

∥
∥Fα

∥
∥

L4

≤ M(t)
∥
∥uα

∥
∥

L2

∥
∥∇Fα

∥
∥

1
2
L2

∥
∥Fα

∥
∥

1
2
L2

≤ M(t)
(∥
∥uα

∥
∥

2
L2 +

∥
∥∇Fα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2

)

,
∣
∣
∣
∣

1
2

∫

R2
nt

∣
∣Fα

∣
∣
2 dx

∣
∣
∣
∣
≤ 1

2
‖nt‖L2

∥
∥Fα

∥
∥

2
L4

≤ M(t)
∥
∥∇Fα

∥
∥

L2

∥
∥Fα

∥
∥

L2

≤ M(t)
(∥
∥∇Fα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2

)

,
∣
∣
∣
∣
α Re

∫

R2

∣
∣Eα

∣
∣
pEαFα

t dx
∣
∣
∣
∣

= |α|
∣
∣
∣
∣
Re

∫

R2
i
∣
∣Eα

∣
∣
pEα

(

�Fα – uαEα – nFα – α
∣
∣Eα

∣
∣
pEα

)

dx
∣
∣
∣
∣

≤ C|α|(∥∥Eα
∥
∥

p
L∞

∥
∥∇Eα

∥
∥

L2

∥
∥∇Fα

∥
∥

L2 +
∥
∥Eα

∥
∥

p+1
L∞

∥
∥Eα

∥
∥

L2

∥
∥uα

∥
∥

L2
)

+ |α|(‖n‖L∞
∥
∥Eα

∥
∥

p+1
L2p+2

∥
∥Fα

∥
∥

L2 + |α|∥∥Eα
∥
∥

2p+2
L2p+2

)

≤ M(t)
(∥
∥∇Fα

∥
∥

2
L2 +

∥
∥uα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 + α2).

Thus, the right-hand side of (36) is smaller than

M(t)
(∥
∥∇Fα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 +

∥
∥uα

∥
∥

2
L2 + α2).

We now study the left-hand side of (36).

∣
∣
∣
∣

1
2

∫

R2

(

uα + n
)∣
∣Fα

∣
∣
2 dx

∣
∣
∣
∣
≤ 1

2
∥
∥nα

∥
∥

L∞
∥
∥Fα

∥
∥

2
L2 ≤ M(t)

∥
∥Fα

∥
∥

2
L2 ,

∣
∣
∣
∣

∫

R2
uα Re

(

FαE
)

dx
∣
∣
∣
∣
≤ ‖E‖L∞

∥
∥uα

∥
∥

L2

∥
∥Fα

∥
∥

L2

≤ M(t)
∥
∥Fα

∥
∥

2
L2 +

1
8
∥
∥uα

∥
∥

2
L2 .

Thus, taking into account the initial data, we deduce from (36) the inequality

1
2
∥
∥∇Fα

∥
∥

2
L2 +

1
4
∥
∥∇V α

∥
∥

2
L2 +

1
8
∥
∥uα

∥
∥

2
L2

≤ M(t)
(

∥
∥Fα

∥
∥

2
L2 +

∫ t

0

(∥
∥∇Fα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 +

∥
∥uα

∥
∥

2
L2

)

dτ + α2
)

. (37)

By combining inequalities (34) and (37), we obtain the estimate

∥
∥∇Fα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 +

∥
∥∇V α

∥
∥

2
L2 +

∥
∥uα

∥
∥

2
L2

≤ M(t)
(∫ t

0

(∥
∥∇Fα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 +

∥
∥∇V α

∥
∥

2
L2 +

∥
∥uα

∥
∥

2
L2

)

dτ + α2
)

,
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which immediately yields

∥
∥∇Fα

∥
∥

2
L2 +

∥
∥Fα

∥
∥

2
L2 +

∥
∥∇V α

∥
∥

2
L2 +

∥
∥uα

∥
∥

2
L2 ≤ M(t)α2. �

Lemma 3.2 Suppose that E0 ∈ Hm+2, n0 ∈ Hm+1, n1 ∈ Hm (m ≥ 1) , 0 < p ≤ 2, |α| < 1, and
‖E0(x)‖L2 small. Then there exists some function M(t) ∈ L∞

Loc(R+) such that

∥
∥DmFα

∥
∥

2
L2 +

∥
∥Dm–1Fα

∥
∥

2
L2 +

∥
∥DmV α

∥
∥

2
L2 +

∥
∥Dm–1uα

∥
∥

2
L2 ≤ M(t)α2. (38)

Proof Lemma 3.2 is true when m = 1 (Lemma 3.1). Suppose that Lemma 3.2 is true when
m = k (k ≥ 1), i.e.,

∥
∥DkFα

∥
∥

2
L2 +

∥
∥Dk–1Fα

∥
∥

2
L2 +

∥
∥DkV α

∥
∥

2
L2 +

∥
∥Dk–1uα

∥
∥

2
L2 ≤ M(t)α2.

We shall prove that estimate (38) is true when m = k + 1.
Taking the inner product of (28) and (–1)k+1D2kFα

t results in

(

iFα
t + �Fα – uαFα – uαE – nFα + α

∣
∣Eα

∣
∣
pEα , (–1)k+1D2kFα

t
)

= 0. (39)

Since

Re
(

iFα
t , (–1)k+1D2kFα

t
)

= 0,

Re
(

�Fα , (–1)k+1D2kFα
t
)

=
1
2

d
dt

∥
∥Dk+1Fα

∥
∥

2
L2 .

Re
(

–uαEα , (–1)k+1D2kFα
t
)

= – Re
(

Dk–1(uαEα
)

, Dk+1Fα
t
)

= –
d
dt

Re
(

Dk–1(uαEα
)

, Dk+1Fα
)

+ Re
(

Dk–1(uαEα
)

t , Dk+1Fα
)

,

Re
(

–nFα , (–1)k+1D2kFα
t
)

= Re
(

Dk(nFα
)

, DkFα
t
)

=
1
2

∫

R2
n
(∣
∣DkFα

∣
∣
2)

t dx + Re

( k
∑

j=1

Cj
kDjnDk–jFα , DkFα

t

)

=
1
2

d
dt

∫

R2
n
∣
∣DkFα

∣
∣
2 dx –

1
2

∫

R2
nt

∣
∣DkFα

∣
∣
2 dx

+ Re

( k
∑

j=1

Cj
kDjnDk–jFα , DkFα

t

)

,

Re
(

α
∣
∣Eα

∣
∣
pEα , (–1)k+1D2kFα

t
)

= α Re
(

Dk–1(∣∣Eα
∣
∣
pEα

)

, Dk+1Fα
t
)

= α
d
dt

Re
(

Dk–1(∣∣Eα
∣
∣
pEα

)

, Dk+1Fα
)

– α Re
(

Dk–1(∣∣Eα
∣
∣
pEα

)

t , Dk+1Fα
)

.
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Thus, from (39), we get

d
dt

(
1
2
∥
∥Dk+1Fα

∥
∥

2
L2 – Re

(

Dk–1(uαEα
)

, Dk+1Fα
)

+
1
2

∫

R2
n
∣
∣DkFα

∣
∣
2 dx

)

+ α
d
dt

Re
(

Dk–1(∣∣Eα
∣
∣
pEα

)

, Dk+1Fα
)

=
1
2

∫

R2
nt

∣
∣DkFα

∣
∣
2 dx – Re

( k
∑

j=1

Cj
kDjnDk–jFα , DkFα

t

)

– Re
(

Dk–1(uαEα
)

t , Dk+1Fα
)

+ α Re
(

Dk–1(∣∣Eα
∣
∣
pEα

)

t , Dk+1Fα
)

. (40)

Since
∣
∣
∣
∣

1
2

∫

R2
nt

∣
∣DkFα

∣
∣
2 dx

∣
∣
∣
∣
≤ 1

2
‖nt‖L2

∥
∥DkFα

∥
∥

2
L4

≤ M(t)
∥
∥Dk+1Fα

∥
∥

L2

∥
∥DkFα

∥
∥

L2

≤ M(t)
(∥
∥Dk+1Fα

∥
∥

2
L2 + α2),

∣
∣
∣
∣
∣
Re

( k
∑

j=1

Cj
kDjnDk–jFα , DkFα

t

)∣
∣
∣
∣
∣

=

∣
∣
∣
∣
∣
Re

( k
∑

j=1

Cj
kDjnDk–jFα , –iDk(F̄α

xx – uαĒα – nF̄α – α
∣
∣Eα

∣
∣
pĒα

)

)∣
∣
∣
∣
∣

≤ M(t)
(∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dkuα

∥
∥

2
L2 + α2),

∣
∣Re

(

Dk–1(uαEα
)

t , Dk+1Fα
)∣
∣ =

∣
∣Re

(

Dk–1(V α
xxEα + uαEα

t
)

, Dk+1Fα
)∣
∣

≤ M(t)
(∥
∥Dk+1V α

∥
∥

2
L2 +

∥
∥Dk+1Fα

∥
∥

2
L2 + α2),

∣
∣α Re

(

Dk–1(∣∣Eα
∣
∣
pEα

)

t , Dk+1Fα
)∣
∣ ≤ M(t)

(∥
∥Dk+1Fα

∥
∥

2
L2 + α2).

Thus, the right-hand side of (40) is smaller than

M(t)
(∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2 +

∥
∥Dkuα

∥
∥

2
L2 + α2).

We now study the left-hand side of (40).

∣
∣Re

(

Dk–1(uαEα
)

, Dk+1Fα
)∣
∣ ≤ M(t)α2 +

1
8
∥
∥Dk+1Fα

∥
∥

2
L2 ,

∣
∣
∣
∣

1
2

∫

R2
n
∣
∣DkFα

∣
∣
2 dx

∣
∣
∣
∣
≤ 1

2
‖n‖L∞

∥
∥DkFα

∥
∥

2
L2 ≤ M(t)α2,

∣
∣α Re

(

Dk–1(∣∣Eα
∣
∣
pEα

)

, Dk+1Fα
)∣
∣ ≤ M(t)α2 +

1
8
∥
∥Dk+1Fα

∥
∥

2
L2 .

Thus, taking into account the initial data, we deduce from (40) the following inequality:

∥
∥Dk+1Fα

∥
∥

2
L2 ≤ M(t)

(∫ t

0

(∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2 +

∥
∥Dkuα

∥
∥

2
L2

)

dτ + α2
)

. (41)
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Taking the inner product of (30) and (–1)k+1D2k+2V α leads to

(

V α
t , (–1)k+1D2k+2V α

)

=
(

uα +
∣
∣Fα

∣
∣
2 + 2 Re

(

FαE
)

, (–1)k+1D2k+2V α
)

. (42)

Since

(

V α
t , (–1)k+1D2k+2V α

)

=
1
2

d
dt

∥
∥Dk+1V α

∥
∥

2
L2 ,

(

uα , (–1)k+1D2k+2V α
)

=
(

uα , (–1)k+1D2kuα
t
)

= –
1
2

d
dt

∥
∥Dkuα

∥
∥

2
L2 ,

∣
∣
(∣
∣Fα

∣
∣
2, (–1)k+1D2k+2V α

)∣
∣ =

∣
∣
(

Dk+1(∣∣Fα
∣
∣
2), Dk+1V α

)∣
∣

≤ M(t)
(∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2 + α2),

∣
∣
(

2 Re
(

FαE
)

, (–1)k+1D2k+2V α
)∣
∣

= 2
∣
∣Re

(

Dk+1(FαE
)

, Dk+1V α
)∣
∣

≤ M(t)
(∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2 + α2).

Thus, from (42), we get

d
dt

(∥
∥Dk+1V α

∥
∥

2
L2 +

∥
∥Dkuα

∥
∥

2
L2

)

≤ M(t)
(∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2 + α2). (43)

Thus, taking into account the initial data, we deduce from (43) the following inequality:

∥
∥Dk+1V α

∥
∥

2
L2 +

∥
∥Dkuα

∥
∥

2
L2 ≤ M(t)

(∫ t

0

(∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2

)

dτ + α2
)

. (44)

By combining (41) with (44), we get

∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2 +

∥
∥Dkuα

∥
∥

2
L2

≤ M(t)
(∫ t

0

(∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2 +

∥
∥Dkuα

∥
∥

2
L2

)

dτ + α2
)

,

which immediately yields

∥
∥Dk+1Fα

∥
∥

2
L2 +

∥
∥Dk+1V α

∥
∥

2
L2 +

∥
∥Dkuα

∥
∥

2
L2 ≤ M(t)α2.

Lemma 3.2 is proved, and the result of Theorem 1.2 is obvious. �

4 Results and discussion
One can regard the existence and uniqueness of the global smooth solution for the initial
value problem of generalized Zakharov equations (3)–(5) in dimension three and study
the asymptotic behavior of system (3)–(5) in dimension three when α goes to zero.
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5 Conclusions
We consider the initial value problem for the generalized Zakharov equations (3)–(5)
which model the propagation of Langmuir waves in plasmas. For suitable initial data, so-
lutions are shown to exist for a time interval independent of α. For such data, solutions
of (3)–(5) converge as α → 0 to the solution of the classic Zakharov equations (1)–(2)
with (5).
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