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Abstract
For arrays of rowwise pairwise negative quadrant dependent random variables,
conditions are provided under which weighted averages converge in mean to 0
thereby extending a result of Chandra, and conditions are also provided under which
normed and centered row sums converge in mean to 0. These results are new even if
the random variables in each row of the array are independent. Examples are
provided showing (i) that the results can fail if the rowwise pairwise negative
quadrant dependent hypotheses are dispensed with, and (ii) that almost sure
convergence does not necessarily hold.
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1 Introduction
For a sequence of independent and identically distributed (i.i.d.) random variables {Xn, n ≥
1} with EX1 = 0, Pyke and Root [12] established the degenerate mean convergence law

∑n
j=1 Xj

n
L1−→ 0. (1.1)

A considerably simpler proof of the limit law (1.1) was obtained by Dharmadhikari [4]
who did not refer to the Pyke and Root [12] article. Chandra [3] established the following
more general result for mean convergence of weighted averages. Its proof is more natural,
straightforward, and powerful than that of Dharmadhikari [4]. Chandra’s [3] method is
novel in the sense that the level of truncation does not depend on n (the sample size),
whereas Dharmadhikari [4] used the truncation level

√
n. The limit law (1.1) is obtained

immediately from the Chandra [3] result by taking an,j = n–1, 1 ≤ j ≤ n, n ≥ 1.

Theorem 1.1 (Chandra [3], Theorem 1) Let {Xn, n ≥ 1} be a sequence of pairwise i.i.d.
random variables with EX1 = 0, and let {an,j, 1 ≤ j ≤ n, n ≥ 1} be a triangular array of
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constants such that

sup
n≥1

n∑

j=1

|an,j| < ∞ and lim
n→∞

n∑

j=1

a2
n,j = 0.

Then
n∑

j=1

an,jXj
L1−→ 0.

In the current work, we extend in Theorems 3.1 and 3.2 this degenerate mean conver-
gence theorem of Chandra [3] in two directions:

(i) Our results pertain to weighted averages either from an array of random variables
whose nth row is comprised of kn pairwise negative quadrant dependent random
variables, n ≥ 1 (Theorem 3.1) or from an array of random variables whose nth row
is comprised of kn pairwise independent random variables, n ≥ 1 (Theorem 3.2). No
independence or dependence conditions are imposed between the random variables
from different rows of the arrays. The Chandra [3] result considered weighted
averages from a sequence of pairwise i.i.d. random variables.

(ii) The random variables that we consider are assumed to be stochastically dominated
by a random variable which is a weaker assumption than the assumption of Chandra
[3] that the random variables are identically distributed.

The third main result (Theorem 3.3) establishes for an array of random variables whose
nth row is comprised of kn pairwise negative quandrant dependent random variables,
n ≥ 1 a degenerate mean convergence result for normed and centered row sums. In con-
tradistinction to Theorems 3.1 and 3.2, weighted averages and stochastic domination play
no role in Theorem 3.3. As in Theorems 3.1 and 3.2, no independence or dependence
conditions are imposed between the random variables from different rows of the array in
Theorem 3.3.

Definition 1.1 A finite set of random variables {X1, . . . , XN } is said to be pairwise negative
quadrant dependent (PNQD) if for all i, j ∈ {1, . . . , N} (i �= j) and all x, y ∈R,

P(Xi ≤ x, Xj ≤ y) ≤ P(Xi ≤ x)P(Xj ≤ y). (1.2)

It is of course immediate that if X1, . . . , XN are pairwise independent (a fortiori, indepen-
dent) random variables, then {X1, . . . , XN } is PNQD.

In many stochastic models, the classical assumption of independence among the ran-
dom variables in the model is not a reasonable one; the random variable may be “repelling”
in the sense that small values of any of the random variables increase the probability that
the other random variables are large. Thus an assumption of some type of negative de-
pendence is often more suitable. Pemantle [11] prepared an excellent survey on a general
“theory of negative dependence”.

The choice of the adjective “negative” in the definition of PNQD random variables is
due to the fact that (1.2) is equivalent to

P(Xj > y | Xi ≤ x) ≥ P(Xj > y)

provided P(Xi ≤ x) > 0.
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A collection of N PNQD random variables arises by sampling without replacement from
a set of N ≥ 2 real numbers (see, e.g., Bozorgnia et al. [2]). Li et al. [7] showed that for every
set of N ≥ 2 continuous distribution functions {F1, . . . , FN }, there exists a set of PNQD
random variables {X1, . . . , XN } such that the distribution function of Xj is Fj, 1 ≤ j ≤ N and
such that for all j ∈ {1, . . . , N – 1}, Xj and Xj+1 are not independent.

An array of random variables {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} is said to be rowwise PNQD if for
each n ≥ 1, the set of random variables {Xn,j, 1 ≤ j ≤ kn} is PNQD. There is interesting
literature of investigation on the strong law of large numbers problem for row sums of
rowwise PNQD arrays; see the discussion in Li et al. [7].

Definition 1.2 An array of random variables {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} is said to be stochas-
tically dominated by a random variable X if there exists a constant D such that

P
(|Xn,j| > x

) ≤ DP
(|DX| > x

)
, x ≥ 0, 1 ≤ j ≤ kn, n ≥ 1. (1.3)

Remark 1.1 Condition (1.3) is, of course, automatic with X = X1,1 and D = 1 if the array
{Xn,j, 1 ≤ j ≤ kn, n ≥ 1} consists of identically distributed random variables.

2 Preliminary lemmas
Three lemmas will now be stated. Lemmas 2.1, 2.2, and 2.3 are used in the proof of Theo-
rem 3.1, Lemma 2.3 is used in the proof of Theorem 3.2, and Lemmas 2.1 and 2.2 are used
in the proof of Theorem 3.3.

Lemma 2.1 follows from Lemma 1 of Lehmann [6]; see Matuła [8] for a more direct
proof.

Lemma 2.1 (Lehmann [6], Matuła [8]) Let the set of random variables {X1, . . . , XN } be
PNQD, and for each j ∈ {1, . . . , N}, let fj : R → R. If the functions f1, . . . , fN are all nonde-
creasing or all nonincreasing, then the set of random variables {f1(X1), . . . , fN (XN )} is PNQD.

The next lemma is well known (see, e.g., Patterson and Taylor [10]).

Lemma 2.2 Let the set of random variables {X1, . . . , XN } be PNQD. Then

Var

( N∑

j=1

Xj

)

≤
N∑

j=1

Var(Xj).

The following lemma is essentially due to Adler et al. [1].

Lemma 2.3 (Adler et al. [1]) Let {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of random variables
which is stochastically dominated by a random variable X, and let D be as in (1.3). Then

E
(|Xn,j|I

(|Xn,j| > x
)) ≤ D2

E
(|X|I(|DX| > x

))
, x ≥ 0, 1 ≤ j ≤ kn, n ≥ 1.

3 Mainstream
The main results, Theorems 3.1–3.3, may now be established. These are new results even
under the stronger hypothesis that the random variables in each row of the array are in-
dependent.
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Theorem 3.1 Let {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of rowwise PNQD mean 0 random
variables which is stochastically dominated by a random variable X with E|X| < ∞. Let
{an,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of constants such that

for each n ≥ 1, either min
1≤j≤kn

an,j ≥ 0 or max
1≤j≤kn

an,j ≤ 0 (3.1)

and

sup
n≥1

kn∑

j=1

|an,j| < ∞ and lim
n→∞

kn∑

j=1

a2
n,j = 0. (3.2)

Then

kn∑

j=1

an,jXn,j
L1−→ 0 (3.3)

and, a fortiori,

kn∑

j=1

an,jXn,j
P−→ 0.

Proof Let ε > 0 be arbitrary. Set C = supn≥1
∑kn

j=1 |an,j|. Let D < ∞ be as in (1.3). Since
E|X| < ∞, we can choose Aε ∈ (0,∞) such that

2CD2
E

(|X|I(D|X| > Aε

)) ≤ ε

2
and 2CDAεP

(|DX| > Aε

) ≤ ε

2
.

Let

Yn,j = Xn,jI
(|Xn,j| ≤ Aε

)
+ AεI

(|Xn,j| > Aε

)
– AεI

(|Xn,j| < –Aε

)
, 1 ≤ j ≤ kn, n ≥ 1

and

Zn,j = Xn,jI
(|Xn,j| > Aε

)
– AεI

(|Xn,j| > Aε

)
+ AεI

(|Xn,j| < –Aε

)
, 1 ≤ j ≤ kn, n ≥ 1.

Then

Xn,j = Yn,j + Zn,j and EYn,j + EZn,j = EXn,j = 0, 1 ≤ j ≤ kn, n ≥ 1,

and so

Xn,j = Yn,j – EYn,j + Zn,j – EZn,j, 1 ≤ j ≤ kn, n ≥ 1.

It follows from Lemma 2.1 that {Yn,j, 1 ≤ j ≤ kn, n ≥ 1} is an array of rowwise PNQD
random variables. Again by Lemma 2.1, (3.1) ensures that {an,jYn,j, 1 ≤ j ≤ kn, n ≥ 1} is an
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array of rowwise PNQD random variables. Note that |Yn,j| ≤ Aε , 1 ≤ j ≤ kn, n ≥ 1. Thus,
for n ≥ 1, by Lemma 2.2

E

( kn∑

j=1

an,j(Yn,j – EYn,j)

)2

= Var

( kn∑

j=1

an,jYn,j

)

≤
kn∑

j=1

a2
n,j Var(Yn,j) ≤

kn∑

j=1

a2
n,jEY 2

n,j ≤ A2
ε

kn∑

j=1

a2
n,j

→ 0

by the second half of (3.2). Thus

kn∑

j=1

an,j(Yn,j – EYn,j)
L2−→ 0

and, a fortiori,

kn∑

j=1

an,j(Yn,j – EYn,j)
L1−→ 0. (3.4)

Next, for n ≥ 1, by Lemma 2.3 and (1.3)

E

∣
∣
∣
∣
∣

kn∑

j=1

an,j(Zn,j – EZn,j)

∣
∣
∣
∣
∣
≤ 2E

kn∑

j=1

|an,j|E|Zn,j|

≤ 2
kn∑

j=1

|an,j|
(
E

(|Xn,j|I
(|Xn,j| > Aε

))
+ AεP

(|Xn,j| > Aε

))

≤ 2
kn∑

j=1

|an,j|
(
D2

E
(|X|I(|DX| > Aε

))
+ DAεP

(|DX| > Aε

))

≤ 2CD2
E

(|X|I(|DX| > Aε

))
+ 2CDAεP

(|DX| > Aε

)

≤ ε

2
+

ε

2
= ε (3.5)

by the choice of Aε .
Combining (3.4) and (3.5) yields

lim sup
n→∞

E

∣
∣
∣
∣
∣

kn∑

j=1

an,jXn,j

∣
∣
∣
∣
∣

= lim sup
n→∞

E

∣
∣
∣
∣
∣

kn∑

j=1

an,j(Yn,j – EYn,j + Zn,j – EZn,j)

∣
∣
∣
∣
∣

≤ lim sup
n→∞

(

E

∣
∣
∣
∣
∣

kn∑

j=1

an,j(Yn,j – EYn,j)

∣
∣
∣
∣
∣

+ E

∣
∣
∣
∣
∣

kn∑

j=1

an,j(Zn,j – EZn,j)

∣
∣
∣
∣
∣

)

≤ ε.
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Since ε > 0 is arbitrary,

lim
n→∞E

∣
∣
∣
∣
∣

kn∑

j=1

an,jXn,j

∣
∣
∣
∣
∣

= 0;

that is, (3.3) holds. �

Remark 3.1 One of the reviewers so kindly called to our attention the article by Ordóñez
Cabrera and Volodin [9] and suggested that we should provide a comparison between
Theorem 3.1 above and Theorem 1 of that article. Both theorems are in the same spirit in
that they both establish mean convergence for weighted averages from an array of rowwise
PNQD mean 0 random variables. Ordóñez Cabrera and Volodin [9] introduced the fol-
lowing new integrability concept for an array of random variables {Xn,j, un ≤ j ≤ kn, n ≥ 1}
which is weaker than several well-known integrability notions. The array of random vari-
ables is said to be h-integrable with respect to an array of constants {an,j, un ≤ j ≤ kn, n ≥ 1}
if

sup
n≥1

kn∑

j=un

|an,j|E|Xn,j| < ∞ and lim
n→∞

kn∑

j=un

|an,j|E
(|Xn,j|I

(|Xn,j| > h(n)
))

= 0,

where {h(n), n ≥ 1} is a sequence of constants with 0 < h(n) ↑ ∞. Ordóñez Cabrera and
Volodin [9] established their Theorem 1 under an h-integrability assumption for the array.
Suppose that un = 1, n ≥ 1. It is clear that the stochastic domination condition in Theo-
rem 3.1 is indeed a stronger condition than the array being h-integrable. However, The-
orem 1 of Ordóñez Cabrera and Volodin [9] has the condition limn→∞ h2(n)

∑kn
j=1 a2

n,j = 0
which is stronger than the condition limn→∞

∑kn
j=1 a2

n,j = 0 in (3.2) of Theorem 3.1. Conse-
quently, the two theorems being compared overlap with each other but neither theorem
is contained in the other.

The next theorem is a version of Theorem 3.1 without assumption (3.1) for an array
of random variables where the random variables in each row of the array are pairwise
independent (which is a stronger assumption than the array being rowwise PNQD).

Theorem 3.2 Let {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of mean 0 random variables such
that, for each n ≥ 1, the random variables Xn,j, 1 ≤ j ≤ kn are pairwise independent. Sup-
pose that the array {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} is stochastically dominated by a random variable
X with E|X| < ∞. Let {an,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of constants such that

sup
n≥1

kn∑

j=1

|an,j| < ∞ and lim
n→∞

kn∑

j=1

a2
n,j = 0.

Then

kn∑

j=1

an,jXn,j
L1−→ 0
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and, a fortiori,

kn∑

j=1

an,jXn,j
P−→ 0.

Proof Let ε > 0 be arbitrary, and let C, D, Aε , Yn,j, and Zn,j, 1 ≤ j ≤ kn, n ≥ 1 be as in the
proof of Theorem 3.1. The pairwise independence assumption ensures that

Var

( kn∑

j=1

an,jYn,j

)

=
kn∑

j=1

a2
n,j Var(Yn,j), n ≥ 1,

and (3.4) follows arguing as in the proof of Theorem 3.1. Moreover, (3.5) holds by the
same argument as in the proof of Theorem 3.1. The rest of the proof is identical to that in
Theorem 3.1. �

Remark 3.2 The cited result of Chandra [3] follows immediately from Theorem 3.2 by
taking kn = n, n ≥ 1 and Xn,j = Xj, 1 ≤ j ≤ n, n ≥ 1.

Remark 3.3 If the rowwise PNQD hypothesis in Theorem 3.1 is dispensed with, then the
theorem can fail. To see this, let X be a nondegenerate mean 0 random variable, let kn = n,
n ≥ 1, and let

Xn,j = X and an,j = n–1, 1 ≤ j ≤ n, n ≥ 1.

Then {Xn,j, 1 ≤ j ≤ n, n ≥ 1} is not an array of PNQD random variables, (3.1) and (3.2) hold,
but

kn∑

j=1

an,jXn,j = X
L1�−→ 0.

This same example shows that Theorem 3.2 can fail without the pairwise independent
hypothesis.

We now show via an example that the hypotheses to Theorems 3.1 and 3.2 do not nec-
essarily ensure that

∑kn
j=1 an,jXn,j −→ 0 almost surely (a.s.).

Example 3.1 Let {Xn, n ≥ 1} be a sequence of i.i.d. random variables with EX1 = 0 and
E|X1|p = ∞ for some p > 1. Set kn = n, n ≥ 1, Xn,j = Xj, 1 ≤ j ≤ kn, n ≥ 1, and

a1,1 = 1, an,j =

⎧
⎨

⎩

0, 1 ≤ j ≤ n,

n–1/p, j = n,
n ≥ 2.

Then (3.2) holds since

sup
n≥1

kn∑

j=1

|an,j| = sup
n≥1

n–1/p = 1 < ∞
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and

lim
n→∞

kn∑

j=1

a2
n,j = lim

n→∞ n–2/p = 0.

All of the hypotheses of Theorems 3.1 and 3.2 are satisfied and hence (3.3) holds.
Note that {∑kn

j=1 an,jXn,j = n–1/pXn, n ≥ 1} is a sequence of independent random variables.
Now, for arbitrary M ≥ 1,

∞∑

n=1

P

(∣
∣
∣
∣
∣

kn∑

j=1

an,jXn,j

∣
∣
∣
∣
∣

> M

)

=
∞∑

n=1

P
(∣
∣n–1/pXn

∣
∣ > M

)
=

∞∑

n=1

P

( |X1|
M

> n1/p
)

= ∞

since E|X1|p = ∞. Then by the second Borel–Cantelli lemma,

P

(∣
∣
∣
∣
∣

kn∑

j=1

an,jXn,j

∣
∣
∣
∣
∣

> M i.o. (n)

)

= 1,

and so

P

(

lim sup
n→∞

∣
∣
∣
∣
∣

kn∑

j=1

an,jXn,j

∣
∣
∣
∣
∣

= ∞
)

= P

( ∞⋂

M=1

{

lim sup
n→∞

∣
∣
∣
∣
∣

kn∑

j=1

an,jXn,j

∣
∣
∣
∣
∣
≥ M

})

≥ P

( ∞⋂

M=1

{∣
∣
∣
∣
∣

kn∑

j=1

an,jXn,j

∣
∣
∣
∣
∣

> M i.o. (n)

})

= 1.

Thus,

lim sup
n→∞

∣
∣
∣
∣
∣

kn∑

j=1

an,jXn,j

∣
∣
∣
∣
∣

= ∞ a.s.

and so
∑kn

j=1 an,jXn,j → 0 a.s. fails.

We now establish Theorem 3.3. Throughout the rest of this section, for an array of ran-
dom variables {Xn,j, 1 ≤ j ≤ kn, n ≥ 1}, let Sn =

∑kn
j=1 Xn,j, n ≥ 1.

Theorem 3.3 Let {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} be an array of rowwise PNQD L1 random vari-
ables. Let g : [0,∞) → [0,∞) be a continuous function with

g(0) = 0 and
g2(v)

v
↑ ∞ as 0 < v ↑ ∞.

Let {bn, n ≥ 1} be a sequence of positive constants with bn ↑ ∞ and suppose that there exists
a sequence of positive constants {αn, n ≥ 1} such that

g(v) – g(bn) ≤ αn(v – bn) for all v > bn and n ≥ 1. (3.6)
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Set

Vn,j = g–1(|Xn,j|
)
, 1 ≤ j ≤ kn, n ≥ 1

and assume that EVn,j < ∞, 1 ≤ j ≤ kn, n ≥ 1. Let {dn, n ≥ 1} be a sequence of positive
constants and suppose for some sequence of positive constants {cn, n ≥ 1} with cn < bn, n ≥ 1
that

αn

dn

kn∑

j=1

E
(
(Vn,j – bn)I(Vn,j > bn)

) → 0, (3.7)

g2(bn)
d2

nbn

kn∑

j=1

E
(
Vn,jI(Vn,j > cn)

) → 0, (3.8)

g2(bn)
d2

nbn

kn∑

j=1

EVn,j = O(1), (3.9)

g2(bn)
d2

n

kn∑

j=1

P(Vn,j > bn) → 0, (3.10)

and

g2(cn)
cn

= o
(

g2(bn)
bn

)

. (3.11)

Then

Sn – ESn

dn

L1−→ 0 (3.12)

and, a fortiori,

Sn – ESn

dn

P−→ 0.

Proof For 1 ≤ j ≤ kn and n ≥ 1, set

Yn,j = Xn,jI
(|Xn,j| ≤ g(bn)

)
+ g(bn)I

(
Xn,j > g(bn)

)
– g(bn)I

(
Xn,j < –g(bn)

)

and

Zn,j =
(
Xn,j – g(bn)

)
I
(
Xn,j > g(bn)

)
+

(
Xn,j + g(bn)

)
I
(
Xn,j < –g(bn)

)
.

Then Yn,j + Zn,j = Xn,j, 1 ≤ j ≤ kn, n ≥ 1. Set Tn =
∑kn

j=1 Yn,j, n ≥ 1. We will show that

∑kn
j=1 E|Zn,j|

dn
→ 0 (3.13)

and

Tn – ETn

dn

L1−→ 0. (3.14)
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To prove (3.13), note that for 1 ≤ j ≤ kn and n ≥ 1,

|Zn,j| =
(
Xn,j – g(bn)

)
I
(
Xn,j > g(bn)

)
+

(
–Xn,j – g(bn)

)
I
(
Xn,j < –g(bn)

)

=
(|Xn,j| – g(bn)

)
I
(
Xn,j > g(bn)

)
+

(|Xn,j| – g(bn)
)
I
(
Xn,j < –g(bn)

)

=
(|Xn,j| – g(bn)

)
I
(|Xn,j| > g(bn)

)

=
(
g(Vn,j) – g(bn)

)
I
(
g(Vn,j) > g(bn)

)

=
(
g(Vn,j) – g(bn)

)
I(Vn,j > bn)

≤ αn(Vn,j – bn)I(Vn,j > bn)
(
by (3.6)

)
,

and hence

1
dn

kn∑

j=1

E|Zn,j| ≤ αn

dn

kn∑

j=1

E
(
(Vn,j – bn)I(Vn,j > bn)

) → 0

by (3.7) proving (3.13).
To prove (3.14), note that for 1 ≤ j ≤ kn and n ≥ 1,

Y 2
n,j = X2

n,jI
(|Xn,j| ≤ g(bn)

)
+ g2(bn)I

(|Xn,j| > g(bn)
)

= g2(Vn,j)I
(
g(Vn,j) ≤ g(bn)

)
+ g2(bn)I

(
g(Vn,j) > g(bn)

)

= g2(Vn,j)I(Vn,j ≤ bn) + g2(bn)I(Vn,j > bn)

=
g2(Vn,j)

Vn,j
· Vn,jI(0 < Vn,j ≤ cn) +

g2(Vn,j)
Vn,j

· Vn,jI(cn < Vn,j ≤ bn) + g2(bn)I(Vn,j > bn).

Then for n ≥ 1, since the set of random variables {Yn,j, 1 ≤ j ≤ kn} is PNQD by Lemma 2.1,

E

(
Tn – ETn

dn

)2

≤ 1
d2

n

kn∑

j=1

Var(Yn,j) (by Lemma 2.2)

≤ 1
d2

n

kn∑

j=1

EY 2
n,j

=
1

d2
n

( kn∑

j=1

E

(
g2(Vn,j)

Vn,j
· Vn,jI(0 < Vn,j ≤ cn)

)

+
kn∑

j=1

E

(
g2(Vn,j)

Vn,j
· Vn,jI(cn < Vn,j ≤ bn)

)

+
kn∑

j=1

E
(
g2(bn)I(Vn,j > bn)

)
)

≤ 1
d2

n

(
g2(cn)

cn

kn∑

j=1

EVn,j +
g2(bn)

bn

kn∑

j=1

E
(
Vn,jI(Vn,j > cn)

)
+ g2(bn)

kn∑

j=1

P(Vn,j > bn)

)
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=
1

d2
n

(
g2(bn)

bn
· o(1)

kn∑

j=1

EVn,j

+
g2(bn)

bn

kn∑

j=1

E
(
Vn,jI(Vn,j > cn)

)
+ g2(bn)

kn∑

j=1

P(Vn,j > bn)

)
(
by (3.11)

)

=
g2(bn)
d2

nbn

( kn∑

j=1

EVn,j

)

· o(1) +
g2(bn)
d2

nbn

kn∑

j=1

E
(
Vn,jI(Vn,j > cn)

)
+

g2(bn)
d2

n

kn∑

j=1

P(Vn,j > bn)

= o(1)
(
by (3.9), (3.8), and (3.10)

)
.

Thus

Tn – ETn

dn

L2−→ 0

and hence (3.14) holds.
Finally, note that for n ≥ 1,

Sn – ESn

dn
=

∑kn
j=1 Yn,j +

∑kn
j=1 Zn,j –

∑kn
j=1 EYn,j –

∑kn
j=1 EZn,j

dn

=
∑kn

j=1 Zn,j –
∑kn

j=1 EZn,j

dn
+

Tn – ETn

dn
. (3.15)

Now it follows from (3.13) that

E

∣
∣
∣
∣

∑kn
j=1 Zn,j –

∑kn
j=1 EZn,j

dn

∣
∣
∣
∣ ≤ 2

∑kn
j=1 E|Zn,j|

dn
→ 0. (3.16)

The conclusion (3.12) follows from (3.15), (3.16), and (3.14). �

Corollary 3.1 Let {Xn,j, 1 ≤ j ≤ kn, n ≥ 1} be a uniformly bounded array of rowwise PNQD
random variables. Let {bn, n ≥ 1} be a sequence of constants with 1 < bn ↑ ∞. Then

Sn – ESn√
knbn

L1−→ 0. (3.17)

Proof Let dn =
√

knbn, n ≥ 1 and cn =
√

bn, n ≥ 1. Let g(v) = v, v ≥ 0 and αn = 1, n ≥ 1. Set

Vn,j = g–1(|Xn,j|
)

= |Xn,j|, 1 ≤ j ≤ kn, n ≥ 1.

Since the array is comprised of uniformly bounded random variables, conditions (3.7),
(3.8), (3.9), and (3.10) hold. Moreover, (3.11) also holds since cn = o(bn). The conclusion
(3.17) follows from Theorem 3.3. �

Remark 3.4 If the rowwise PNQD hypothesis in Theorem 3.3 or Corollary 3.1 is dispensed
with, then those results can fail. To see this, let {kn, n ≥ 1} be a sequence of integers with
1 < kn ↑ ∞, let X be a bounded nondegenerate random variable, and set Xn,j = X, 1 ≤ j ≤
kn, n ≥ 1. Let bn = kn, n ≥ 1. All of the conditions of Corollary 3.1 (hence of Theorem 3.3)
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are satisfied except for the rowwise PNQD hypothesis. The conclusions of Corollary 3.1
(hence of Theorem 3.3) fail since

Sn – ESn√
knbn

=
kn(X – EX)

kn
= X – EX

L1�−→ 0.

We now show via an example that the hypotheses of Corollary 3.1 (hence of Theo-
rem 3.3) do not necessarily ensure that

Sn – ESn√
knbn

→ 0 a.s. (3.18)

Example 3.2 Let {Xn, n ≥ 1} be a sequence of nondegenerate i.i.d. uniformly bounded ran-
dom variables, and let

kn = n, bn = log log
(
max{16, n}), dn =

√
knbn, n ≥ 1.

Let Xn,j = Xj, 1 ≤ j ≤ n, n ≥ 1. The hypotheses of Corollary 3.1 (hence of Theorem 3.3)
are satisfied and so (3.12) and (3.17) hold. But by the Hartman and Wintner [5] law of the
iterated logarithm,

lim sup
n→∞

Sn – ESn√
knbn

=
√

2 Var(X1) a.s.

and so (3.18) does not hold.

Corollary 3.2 Let {Xn,j, 1 ≤ j ≤ n, n ≥ 1} be an array of identically distributed rowwise
PNQD L1 random variables, and let {bn, n ≥ 1} be a sequence of constants with 1 < bn ↑ ∞.
If

√
n√
bn

E
((|X1,1| – bn

)
I
(|X1,1| > bn

)) → 0, (3.19)

then

Sn – ESn√
nbn

L1−→ 0. (3.20)

Proof We will apply Theorem 3.3 with g(v) = v, 0 ≤ v < ∞ and

kn = n, αn = 1, cn =
√

bn, and dn =
√

nbn, n ≥ 1.

Then cn < bn, n ≥ 1 and (3.6) and (3.11) are immediate. Condition (3.7) is the same as
(3.19). Since E|X1,1| < ∞, conditions (3.8) and (3.9) are immediate. Condition (3.10) re-
duces to

bnP
(|X1,1| > bn

) → 0

which holds since E|X1,1| < ∞. The conclusion (3.20) follows from Theorem 3.3. �
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4 Conclusions
For an array of rowwise PNQD random variables {Xn,j, 1 ≤ j ≤ kn, n ≥ 1}, conditions are
provided under which the following degenerate mean convergence laws hold:

(i)

kn∑

j=1

an,jXn,j
L1−→ 0,

where EXn,j = 0, 1 ≤ j ≤ kn, n ≥ 1, and {an,j, 1 ≤ j ≤ kn, n ≥ 1} is an array of
constants;

(ii)

∑kn
j=1(Xn,j – EXn,j)

dn

L1−→ 0,

where {dn, n ≥ 1} is a sequence of positive constants.
A version of the result in (i) is also obtained for an array of rowwise pairwise indepen-

dent random variables and this result extends the result of Chandra [3]. Examples are
provided showing that the above results can fail if the hypotheses are weakened and that
a.s. convergence does not necessarily hold together with the L1 convergence.
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