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Abstract
In this paper, we establish two Lyapunov inequalities for some half-linear higher order
differential equations with anti-periodic boundary conditions. Our result improves
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1 Introduction
In 1907, Lyapunov [2] proved the following remarkable result known as Lyapunov inequal-
ity. If u is a solution of

u′′ + q(t)u = 0, (1.1)

satisfying u(a) = u(b) = 0 (a < b) and u �= 0, then

∫ b

a

∣∣q(t)
∣∣dt >

4
b – a

.

Since then, Lyapunov inequality and many of its generalizations have gained a great deal
of attention (see [3–12] and the references therein), because these results have found many
applications in the study of various properties of solutions of differential and difference
equations such as oscillation theory, disconjugacy, and eigenvalue problems.

In the last twenty years, a lot of efforts have been made to obtain similar results for
higher order differential equations (see [1, 13–17] and the references therein), and other
type integral inequalities (see [18–30] and the references therein). In particular, Çakmak
[13] considered the following even higher order linear differential equation:

u(2m)(t) + r(t)u(t) = 0, t ∈ [a, b], (1.2)

where r ∈ C([a, b], [0,∞)) and u satisfies the following boundary conditions:

u(2i)(a) = u(2i)(b) = 0, i = 0, 1, 2, . . . , m – 1, (1.3)
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and he obtained the following result. If there exists a nontrivial solution u of Eq. (1.2)
satisfying (1.3), then one has

∫ b

a
r(t) dt >

22m

(b – a)2m–1 . (1.4)

Later, Watanabe et al. [14] used a Sobolev inequality to get a new Lyapunov inequality
for Eq. (1.2)

∫ b

a
r(t) dt >

22m

(b – a)2m–1 · π2m

2(22m – 1)ζ (2m)
,

where

ζ (s) =
+∞∑
n=1

1
ns , Re(s) > 1,

is the Riemann zeta function. Their result sharpened the result of Çakmak [13].
Recently, Wang [1] considered the following (m + 1)-order half-linear differential equa-

tion:

(∣∣u(m)(t)
∣∣p–2u(m)(t)

)′ + r(t)
∣∣u(t)

∣∣p–2u(t) = 0, t ∈ (a, b), (1.5)

where r ∈ C([a, b],R), m ∈N, p > 1 is a constant, and u satisfies the following anti-periodic
boundary conditions:

u(i)(a) + u(i)(b) = 0, i = 0, 1, 2, . . . , m, (1.6)

and he obtained the following result. If there exists a nontrivial solution u of Eq. (1.5)
satisfying (1.6), then

∫ b

a

∣∣r(t)
∣∣dt > 2

(
2

b – a

)m(p–1)

. (1.7)

In the present paper, we shall use the Sobolev inequality established in [14] to establish
two Lyapunov inequalities for Eq. (1.5) with the anti-periodic boundary conditions (1.6).
Our result improves that obtained by Wang [1].

2 Main results
Lemma 2.1 ([14]) For m ≥ 1, define the following Sobolev space:

Hm =
{

u|u(m) ∈ L2[a, b], u(k)(a) + u(k)(b) = 0, k = 0, 1, 2, . . . , m – 1
}

.

There exists a positive constant Cm such that, for any u ∈ Hm, the Sobolev inequality

(
sup

a≤t≤b

∣∣u(t)
∣∣)2 ≤ Cm

∫ b

a

∣∣u(m)(t)
∣∣2 dt
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holds, where

Cm =
2(22m – 1)(b – a)2m–1ζ (2m)

22mπ2m , m = 1, 2, . . . ,

and the constants {Cm} are sharp,

ζ (s) =
+∞∑
n=1

1
ns , Re(s) > 1,

is the Riemann zeta function.

Remark 2.1 From the definition of Hm, we can easily get if u ∈ Hm, then u(m–1) ∈ H1.

Lemma 2.2 If u is a nontrivial solution of Eq. (1.5) satisfying the anti-periodic boundary
conditions (1.6), then the inequalities

∣∣u(t)
∣∣ ≤ (b – a)m–1

2m

∫ b

a

∣∣u(m)(s)
∣∣ds, t ∈ [a, b], (2.1)

and

∣∣u(m–1)(t)
∣∣ ≤ 1

2

∫ b

a

∣∣u(m)(s)
∣∣ds, t ∈ [a, b] (2.2)

hold.

Proof Since the nontrivial solution u of Eq. (1.5) satisfies the anti-periodic boundary con-
ditions (1.6), then we have

u(t) =
1
2

∫ t

a
u′(s) ds –

1
2

∫ b

t
u′(s) ds, t ∈ [a, b].

So,

∣∣u(t)
∣∣ ≤ 1

2

∫ t

a

∣∣u′(s)
∣∣ds +

1
2

∫ b

t

∣∣u′(s)
∣∣ds =

1
2

∫ b

a

∣∣u′(s)
∣∣ds, t ∈ [a, b]. (2.3)

Similarly, we have

∣∣u(k)(t)
∣∣ ≤ 1

2

∫ b

a

∣∣u(k+1)(s)
∣∣ds, t ∈ [a, b], k = 1, 2, . . . , m – 1, (2.4)

then (2.2) holds. It follows from (2.4) that

∫ b

a

∣∣u(k)(s)
∣∣ds ≤ b – a

2

∫ b

a

∣∣u(k+1)(s)
∣∣ds, k = 1, 2, . . . , m – 1. (2.5)

From (2.3) and (2.5), we obtain

∣∣u(t)
∣∣ ≤ b – a

22

∫ b

a

∣∣u′′(s)
∣∣ds ≤ · · · ≤ (b – a)m–1

2m

∫ b

a

∣∣u(m)(s)
∣∣ds, t ∈ [a, b], (2.6)

i.e., (2.1) holds. �
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Theorem 2.1 If u is a nontrivial solution of Eq. (1.5) satisfying the anti-periodic boundary
conditions (1.6), then the inequality

∫ b

a

∣∣r(t)
∣∣dt > 2

(
2

b – a

)m(p–1)
πm(p–1)

2(p–1)/2(22m – 1)(p–1)/2(ζ (2m))(p–1)/2 (2.7)

holds, where p > 2.

Proof Since the nontrivial solution u of Eq. (1.5) satisfies the anti-periodic boundary con-
ditions (1.6), it is easy to see that u is an element of Hm. Multiplying (1.5) by u(m–1)(t) and
integrating over [a, b], yields

∫ b

a

(∣∣u(m)(t)
∣∣p–2u(m)(t)

)′u(m–1)(t) dt +
∫ b

a
r(t)

∣∣u(t)
∣∣p–2u(t)u(m–1)(t) dt = 0. (2.8)

Using integration by parts to the first integral on the left-hand side of (2.8) and the anti-
periodic boundary conditions (1.6), we have

∫ b

a

∣∣u(m)(t)
∣∣p dt =

∫ b

a
r(t)

∣∣u(t)
∣∣p–2u(t)u(m–1)(t) dt.

So

∫ b

a

∣∣u(m)(t)
∣∣p dt =

∫ b

a
r(t)

∣∣u(t)
∣∣p–2u(t)u(m–1)(t) dt

≤
∫ b

a

∣∣r(t)
∣∣∣∣u(t)

∣∣p–1∣∣u(m–1)(t)
∣∣dt

≤
(

sup
a≤t≤b

∣∣u(t)
∣∣)p–1

sup
a≤t≤b

∣∣u(m–1)(t)
∣∣
∫ b

a

∣∣r(t)
∣∣dt. (2.9)

By Lemma 2.1 and Remark 2.1, we obtain

(
sup

a≤t≤b

∣∣u(t)
∣∣)p–1 ≤ C(p–1)/2

m

(∫ b

a

∣∣u(m)(t)
∣∣2 dt

)(p–1)/2

(2.10)

and

sup
a≤t≤b

∣∣u(m–1)(t)
∣∣ ≤ C1/2

1

(∫ b

a

∣∣u(m)(t)
∣∣2 dt

)1/2

. (2.11)

Multiplying (2.10) and (2.11), we have

(
sup

a≤t≤b

∣∣u(t)
∣∣)p–1 · sup

a≤t≤b

∣∣u(m–1)(t)
∣∣ ≤ C(p–1)/2

m C1/2
1

(∫ b

a

∣∣u(m)(t)
∣∣2 dt

)p/2

. (2.12)

By using Hölder’s inequality

∫ b

a

∣∣f (t)g(t)
∣∣dt ≤

(∫ b

a

∣∣f (t)
∣∣α dt

)1/α(∫ b

a

∣∣g(t)
∣∣β dt

)1/β

(2.13)
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with f (t) = 1, g(t) = |u(m)(t)|2, α = p
p–2 , and β = p

2 , we obtain that

∫ b

a

∣∣u(m)(t)
∣∣2 dt ≤ (b – a)(p–2)/p

(∫ b

a

∣∣u(m)(t)
∣∣p dt

)2/p

.

Thus

(∫ b

a

∣∣u(m)(t)
∣∣2 dt

)p/2

≤ (b – a)(p–2)/2
∫ b

a

∣∣u(m)(t)
∣∣p dt. (2.14)

From (2.12) and (2.14), we have

(
sup

a≤t≤b

∣∣u(t)
∣∣)p–1 · sup

a≤t≤b

∣∣u(m–1)(t)
∣∣

≤ C(p–1)/2
m C1/2

1 (b – a)(p–2)/2
∫ b

a

∣∣u(m)(t)
∣∣p dt. (2.15)

From (2.9) and (2.15), we get

∫ b

a

∣∣u(m)(t)
∣∣p dt ≤ C(p–1)/2

m C1/2
1 (b – a)(p–2)/2

∫ b

a

∣∣u(m)(t)
∣∣p dt

∫ b

a

∣∣r(t)
∣∣dt. (2.16)

Now, we claim that
∫ b

a |u(m)(t)|p dt > 0. In fact, if the above inequality is not true, we have∫ b
a |u(m)(t)|p dt = 0, then u(m)(t) = 0 for t ∈ [a, b]. By the anti-periodic conditions (1.6), we

obtain u(t) = 0 for t ∈ [a, b], which contradicts u(t) �≡ 0, t ∈ [a, b]. Thus dividing both sides
of (2.16) by

∫ b
a |u(m)(t)|p dt, we obtain the inequality

∫ b

a

∣∣r(t)
∣∣dt ≥ 1

C(p–1)/2
m C1/2

1 (b – a)(p–2)/2
. (2.17)

Since

Cm =
2(22m – 1)(b – a)2m–1ζ (2m)

22mπ2m and ζ (2) =
π2

6
,

we get

(
1

Cm

)(p–1)/2

=
(

22mπ2m

2(22m – 1)(b – a)2m–1ζ (2m)

)(p–1)/2

=
2m(p–1)πm(p–1)

2(p–1)/2(22m – 1)(p–1)/2(b – a)
(2m–1)(p–1)

2 (ζ (2m))(p–1)/2
,

and

(
1

C1

)(p–1)/2

=
(

22π2

2(22 – 1)(b – a)2–1ζ (2)

)(p–1)/2

=
2

(b – a)(p–1)/2 .
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Then

1
C(p–1)/2

m C1/2
1 (b – a)(p–2)/2

=
2m(p–1)πm(p–1)2

2(p–1)/2(22m – 1)(p–1)/2(b – a)m(p–1)(ζ (2m))(p–1)/2

= 2
(

2
b – a

)m(p–1)
πm(p–1)

2(p–1)/2(22m – 1)(p–1)/2(ζ (2m))(p–1)/2 . (2.18)

So, from (2.17) and (2.18), we get (2.7) holds. Moreover, the inequality in (2.7) is strict
since u is not a constant. This completes the proof of Theorem 2.1. �

Theorem 2.2 If u is a nontrivial solution of Eq. (1.5) satisfying the anti-periodic boundary
conditions (1.6), then the inequality

∫ b

a

∣∣r(t)
∣∣dt >

2m(p–1)+1

(b – a)m(p–1) (2.19)

holds, where 1 < p < 2.

Proof As shown in the proof of Theorem 2.1, (2.9) holds, that is,

∫ b

a

∣∣u(m)(t)
∣∣p dt ≤

(
sup

a≤t≤b

∣∣u(t)
∣∣)p–1

sup
a≤t≤b

∣∣u(m–1)(t)
∣∣
∫ b

a

∣∣r(t)
∣∣dt.

By using Hölder’s inequality (2.13) with f (t) = |u(m)(t)|, g(t) = 1, α = p, and β = p
p–1 , we

obtain that

∫ b

a

∣∣u(m)(t)
∣∣dt ≤

(∫ b

a

∣∣u(m)(t)
∣∣p dt

)1/p

(b – a)(p–1)/p.

Thus

(b – a)1–p
(∫ b

a

∣∣u(m)(t)
∣∣dt

)p

≤
∫ b

a

∣∣u(m)(t)
∣∣p dt. (2.20)

From (2.1) and (2.2), we have

(
sup

a≤t≤b

∣∣u(t)
∣∣)p–1

sup
a≤t≤b

∣∣u(m–1)(t)
∣∣

≤ (b – a)(m–1)(p–1)

2m(p–1)

(∫ b

a

∣∣u(m)(t)
∣∣dt

)p–1 1
2

∫ b

a

∣∣u(m)(t)
∣∣dt

=
(b – a)(m–1)(p–1)

2m(p–1)+1

(∫ b

a

∣∣u(m)(t)
∣∣dt

)p

. (2.21)

Using (2.9), (2.20), and (2.21), we get

(b – a)1–p
(∫ b

a

∣∣u(m)(t)
∣∣dt

)p

≤ (b – a)(m–1)(p–1)

2m(p–1)+1

(∫ b

a

∣∣u(m)(t)
∣∣dt

)p ∫ b

a

∣∣r(t)
∣∣dt. (2.22)
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Table 1 Values of ζ (2n)

n 1 2 3 4 5 6

ζ (2n) π2
6

π4
90

π6
945

π8
9450

π10
93,555

691π12
638,512,875

Now, we claim that
∫ b

a |u(m)(t)|dt > 0. In fact, if the above inequality is not true, we have∫ b
a |u(m)(t)|dt = 0, then u(m)(t) = 0 for t ∈ [a, b]. By the anti-periodic conditions (1.6), we

obtain u(t) = 0 for t ∈ [a, b], which contradicts u(t) �≡ 0, t ∈ [a, b]. Thus, dividing both sides
of (2.22) by (

∫ b
a |u(m)(t)|dt)p, we obtain the inequality

∫ b

a

∣∣r(t)
∣∣dt ≥ 2m(p–1)+1

(b – a)m(p–1) . (2.23)

Moreover, the inequality in (2.23) is strict since u is not a constant. This completes the
proof of Theorem 2.2. �

Remark 2.2 Inequality (2.7) improves inequality (1.7) significantly when p > 2 and m ≥ 2.
We list the first six values of ζ (2n), n = 1, 2, . . . , 6, in Table 1.

For any m ∈N, we have ζ (2m) ≤ ζ (2) < 2, and then

πm(p–1)

2
p–1

2 (22m – 1)
p–1

2 (ζ (2m))
p–1

2
>

πm(p–1)

2(p–1)/2(22m)(p–1)/22(p–1)/2

=
πm(p–1)

2p–12m(p–1) =
(

π

2

)m(p–1) 1
2p–1

=
( ( π

2 )m

2

)p–1

. (2.24)

Note that ( ( π
2 )m

2 )p–1 > 1 for m > ln 2
lnπ–ln 2 ≈ 1.535 and p > 2. Then, using (2.24), we get

2
(

2
b – a

)m(p–1)
πm(p–1)

2(p–1)/2(22m – 1)(p–1)/2(ζ (2m))(p–1)/2 > 2
(

2
b – a

)m(p–1)

.

So, Theorem 2.1 improves Theorem 2.1 of [1] significantly when p > 2 and m ≥ 2.

3 Application
We give an application of the above Lyapunov inequality for an eigenvalue problem.

Example 3.1 Let λ be an eigenvalue of the following problem:

⎧⎨
⎩

(|u(m)(t)|p–2u(m)(t))′ + λr(t)|u(t)|p–2u(t) = 0,

u(i)(a) + u(i)(b) = 0, i = 0, 1, 2, . . . , m,

where r ∈ C([a, b],R), m ∈N, and p > 2 is a constant. Then, from Theorem 2.1, we have

|λ| >
2∫ b

a |r(t)|dt

(
2

b – a

)m(p–1)
πm(p–1)

2(p–1)/2(22m – 1)(p–1)/2(ζ (2m))(p–1)/2 .
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