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Abstract
In this paper, we obtain the Hermite–Hadamard type inequalities for s-convex
functions andm-convex functions via a generalized fractional integral, known as
Katugampola fractional integral, which is the generalization of Riemann–Liouville
fractional integral and Hadamard fractional integral. We show that through the
Katugampola fractional integral we can find a Hermite–Hadamard inequality via the
Riemann–Liouville fractional integral.
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1 Introduction
A function f : I →R, where I is an interval of real numbers, is called convex if the following
inequality holds:

f
(
ta + (1 – t)b

) ≤ tf (a) + (1 – t)f (b) (1)

for all a, b ∈ I and t ∈ [0, 1]. Function f is called concave if –f is convex.
The Hermite–Hadamard inequality [4] for convex functions f : I →R on an interval of

real line is defined as

f
(

a + b
2

)
≤ 1

b – a

∫ b

a
f (x) dx ≤ f (a) + f (b)

2
, (2)

where a, b ∈ I with a < b.
Since the Hermite–Hadamard inequality has many applications, many authors gener-

alized this inequality. The Hermite–Hadamard inequality is also established for several
kinds of convex functions. For more results and generalizations, see [2, 6, 10–14]. The
Hermite–Hadamard inequality (2) is not only established for the classical integral but also
for fractional integrals (e.g., see [1, 7, 18, 22]), for conformable fractional integrals (e.g., see
[19, 21]), and recently for generalized fractional integrals (e.g., see [8, 9]).
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Definition 1.1 ([5]) Let s ∈ (0, 1]. A function f : I ⊂R+ →R, where R+ = [0,∞), is called
s-convex function in the second sense if

f
(
ta + (1 – t)b

) ≤ tsf (a) + (1 – t)sf (b) (3)

for all a, b ∈ I and t ∈ [0, 1].

Definition 1.2 ([3, 23]) A function f : [0, b] → R, with b > 0, is said to be m-convex if the
following inequality holds:

f
(
ta + m(1 – t)c

) ≤ tf (a) + m(1 – t)f (c) (4)

for all a, c ∈ [0, b] and t ∈ [0, 1] and for all m ∈ [0, 1]. f is m-concave if –f is m-convex.

Definition 1.3 ([15]) Let α > 0 with n – 1 < α ≤ n, n ∈ N, and 1 < x < b. The left- and
right-hand side Riemann–Liouville fractional integrals of order α of function f are given
by

Jα
a+f (x) =

1
�(α)

∫ x

a
(x – t)α–1f (t) dt,

and

Jα
b–f (x) =

1
�(α)

∫ b

x
(t – x)α–1f (t) dt,

respectively, where �(α) is the gamma function defined by �(α) =
∫ ∞

0 e–ttα–1 dt.

Definition 1.4 ([16]) Let α > 0 with n – 1 < α ≤ n, n ∈ N, and 1 < x < b. The left- and
right-hand side Hadamard fractional integrals of order α of function f are given by

Hα
a+f (x) =

1
�(α)

∫ x

a

(
ln

x
t

)α–1 f (t)
t

dt,

and

Hα
b–f (x) =

1
�(α)

∫ b

x

(
ln

t
x

)α–1 f (t)
t

dt.

Definition 1.5 ([9]) Let [a, b] ⊂ R be a finite interval. Then the left- and right-hand side
Katugampola fractional integrals of order α(> 0) of f ∈ Xp

c (a, b) are defined by

ρIα
a+f (x) =

ρ1–α

�(α)

∫ x

a

(
xρ – tρ

)α–1tρ–1f (t) dt

and

ρIα
b–f (x) =

ρ1–α

�(α)

∫ b

x

(
tρ – xρ

)α–1tρ–1f (t) dt,
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with a < x < b and ρ > 0, where Xp
c (a, b) (c ∈R, 1 ≤ p ≤ ∞ ) is the space of those complex-

valued Lebesgue measurable functions f on [a, b] for which ‖f ‖Xp
c

< ∞, where the norm
is defined by

‖f ‖Xp
c

=
(∫ b

a

∣∣tcf (t)
∣∣p dt

t

)1/p

< ∞

for 1 ≤ p < ∞, c ∈R and for the case p = ∞,

‖f ‖X∞
c = ess sup

a≤t≤b

[
tc∣∣f (t)

∣
∣],

where ess sup stands for essential supremum.

Theorem 1.6 ([9]) Let α > 0 and ρ > 0. Then, for x > a,
1. limρ

ρ→1 Iα
a+f (x) = Jα

a+f (x),
2. limρ

ρ→0+ Iα
a+f (x) = Hα

a+f (x).

Lemma 1.7 ([20]) For 0 < α ≤ 1 and 0 ≤ a < b, we have

∣∣aα – bα
∣∣ ≤ (b – a)α .

We recall the classical beta functions:

β(a, b) =
∫ 1

0
xa–1(1 – x)b–1 dx.

We introduce the following generalization of beta function:

ργ (a, b) =
∫ 1

0

(
xρ

)a–1(1 – xρ
)b–1xρ–1 dx.

Note that as ρ → 1 then ργ (a, b) → β(a, b).
In this paper, we give the Hermite–Hadamard type inequalities for s-convex functions

and for m-convex functions via generalized fractional integral. Throughout the paper,
Xp

c (a, b) (c ∈ R, 1 ≤ p ≤ ∞) is the space as defined in Definition 1.5 and L1[a, b] stands
for the space of Lebesgue integrable over the closed interval [a, b] where a, b are some real
numbers with a < b.

2 Hermite–Hadamard type inequalities for s-convex function
In this section we give Hermite–Hadamard type inequalities for s-convex function.

Theorem 2.1 Let α > 0 and ρ > 0. Let f : [aρ , bρ] ⊂ R+ → R be a positive function with
0 ≤ a < b and f ∈ Xp

c (aρ , bρ). If f is also an s-convex function on [aρ , bρ], then the following
inequalities hold:

2s–1f
(

aρ + bρ

2

)
≤ ρα�(α + 1)

2(bρ + aρ)α
[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]

≤
[

α

α + s
+ αβ(α, s + 1)

]
f (aρ) + f (bρ)

2
, (5)
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where the fractional integrals are considered for the function f (xρ) and evaluated at a and
b, respectively.

Proof Let t ∈ [0, 1]. Consider x, y ∈ [a, b], a ≥ 0, defined by xρ = tρaρ + (1 – tρ)bρ , yρ =
tρbρ + (1 – tρ)aρ . Since f is an s-convex function on [aρ , bρ], we have

f
(

xρ + yρ

2

)
≤ f (xρ) + f (yρ)

2s .

Then we have

2sf
(

aρ + bρ

2

)
≤ f

(
tρaρ +

(
1 – tρ

)
bρ

)
+ f

(
tρbρ +

(
1 – tρ

)
aρ

)
. (6)

Multiplying both sides of (6) by tαρ–1, α > 0 and then integrating the resulting inequality
with respect to t over [0, 1], we obtain

2s

αρ
f
(

aρ + bρ

2

)
≤

∫ 1

0
tαρ–1f

(
tρaρ +

(
1 – tρ

)
bρ

)
dt +

∫ 1

0
tαρ–1f

(
tρbρ +

(
1 – tρ

)
aρ

)
dt

=
∫ a

b

(
bρ – xρ

bρ – aρ

)α–1

f
(
xρ

) xρ–1

aρ – bρ
dx

+
∫ b

a

(
yρ – aρ

bρ – aρ

)α–1

f
(
yρ

) yρ–1

bρ – aρ
dy

=
ρα–1�(α)
(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]
. (7)

This establishes the first inequality. For the proof of the second inequality in (5), we first
observe that for an s-convex function f , we have

f
(
tρaρ +

(
1 – tρ

)
bρ

) ≤ (
tρ

)sf
(
aρ

)
+

(
1 – tρ

)sf
(
bρ

)

and

f
(
tρbρ +

(
1 – tρ

)
aρ

) ≤ (
tρ

)sf
(
bρ

)
+

(
1 – tρ

)sf
(
aρ

)
.

By adding these inequalities, we get

f
(
tρaρ +

(
1 – tρ

)
bρ

)
+ f

(
tρbρ +

(
1 – tρ

)
aρ

) ≤ ((
tρ

)s +
(
1 – tρ

)s)[f
(
aρ

)
+ f

(
bρ

)]
. (8)

Multiplying both sides of (8) by tαρ–1, α > 0 and then integrating the resulting inequality
with respect to t over [0, 1], we obtain

ρα–1�(α)
(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]

≤
∫ 1

0
tαρ–1((tρ

)s +
(
1 – tρ

)s)[f
(
aρ

)
+ f

(
bρ

)]
dt. (9)
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Since

∫ 1

0
tαρ+sρ–1 dt =

1
ρ(α + s)

,

and by choosing the change of variable tρ = z, we have

∫ 1

0
tαρ–1(1 – tρ

)s dt =
β(α, s + 1)

ρ
.

Thus (9) becomes

ρα–1�(α)
(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)] ≤ 1
ρ

[
1

α + s
+ β(α, s + 1)

]
(
f
(
aρ

)
+ f

(
bρ

))
. (10)

Thus (7) and (10) give (5). �

Remark 2.2 By letting ρ → 1 in (5) of Theorem 2.1, we get Theorem 3 of [22].

Theorem 2.3 Let α > 0 and ρ > 0. Let f : [aρ , bρ] ⊂ R+ → R be a differentiable mapping
on (aρ , bρ) with 0 ≤ a < b. If |f ′| is s-convex on [aρ , bρ], then the following inequality holds:

∣∣
∣∣
f (aρ) + f (bρ)

2
–

ρα�(α + 1)
2(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]
∣∣
∣∣

≤ bρ – aρ

2

[
1

α + s + 1
+ β(α + 1, s + 1)

](∣∣f ′(aρ
)∣∣ +

∣∣f ′(bρ
)∣∣). (11)

Proof From (7) one can have

ρα–1�(α)
(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]

=
∫ 1

0
tαρ–1f

(
tρaρ +

(
1 – tρ

)
bρ

)
dt +

∫ 1

0
tαρ–1f

(
tρbρ +

(
1 – tρ

)
aρ

)
dt. (12)

Integrating by parts, we get

f (aρ) + f (bρ)
αρ

–
ρα–1�(α)
(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]

=
bρ – aρ

α

∫ 1

0
tρ(α+1)–1[f ′(tρbρ +

(
1 – tρ

)
aρ

)
– f ′(tρaρ +

(
1 – tρ

)
bρ

)]
dt. (13)

By using the triangle inequality and s-convexity of |f ′| and the change of variable tρ = z,
we obtain

∣∣
∣∣
f (aρ) + f (bρ

αρ
–

ρα–1�(α)
(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]
∣∣
∣∣

≤ bρ – aρ

α

∫ 1

0
tρ(α+1)–1∣∣[f ′(tρbρ +

(
1 – tρ

)
aρ

)
– f ′(tρaρ +

(
1 – tρ

)
bρ

)]∣∣dt

≤ bρ – aρ

α

∫ 1

0
tρ(α+1)–1[∣∣f ′(tρbρ +

(
1 – tρ

)
aρ

)∣∣ +
∣
∣f ′(tρaρ +

(
1 – tρ

)
bρ

)∣∣]dt
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≤ bρ – aρ

α

∫ 1

0
tρ(α+1)–1[(tρ

)s∣∣f ′(bρ
)∣∣ +

(
1 – tρ

)s∣∣f ′(aρ
)∣∣

+
(
tρ

)s∣∣f ′(aρ
)∣∣ +

(
1 – tρ

)s∣∣f ′(bρ
)∣∣]dt

=
bρ – aρ

α

∫ 1

0
tρ(α+1)–1[(tρ

)s +
(
1 – tρ

)s][∣∣f ′(aρ
)∣∣ +

∣
∣f ′(bρ

)∣∣]dt

=
bρ – aρ

αρ

[
1

α + s + 1
+ β(α + 1, s + 1)

][∣∣f ′(aρ
)∣∣ +

∣
∣f ′(bρ

)∣∣]. (14)

�

Corollary 2.4 Under the same assumptions of Theorem 2.3.
1. If ρ = 1, then

∣∣
∣∣
f (a) + f (b)

2
–

�(α + 1)
2(b + a)α

[
Jα
a+f (b) + Jα

b–f (a)
]
∣∣
∣∣

≤ b – a
2

[
1

α + s + 1
+ β(α + 1, s + 1)

](∣∣f ′(a)
∣∣ +

∣∣f ′(b)
∣∣). (15)

2. If ρ = s = 1, then

∣∣
∣∣
f (a) + f (b)

2
–

�(α + 1)
2(b + a)α

[
Jα
a+f (b) + Jα

b–f (a)
]
∣∣
∣∣

≤ b – a
2

[
1

α + 2
+ β(α + 1, 2)

](∣∣f ′(a)
∣
∣ +

∣
∣f ′(b)

∣
∣). (16)

3. If ρ = s = α = 1, then

∣
∣∣∣
f (a) + f (b)

2
–

1
b + a

∫ b

a
f (x) dx

∣
∣∣∣ ≤ b – a

4
(∣∣f ′(a)

∣∣ +
∣∣f ′(b)

∣∣). (17)

In order to prove our further results, we need the following lemma.

Lemma 2.5 Let α > 0 and ρ > 0. Let f : [aρ , bρ] ⊂ R+ → R be a differentiable mapping on
(aρ , bρ) with 0 ≤ a < b. Then the following equality holds if the fractional integrals exist:

f (aρ) + f (bρ)
2

–
ρα�(α + 1)
2(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]

=
ρ(bρ – aρ)

2

∫ 1

0

[(
1 – tρ

)α –
(
tρ

)α]
tρ–1f ′(tρaρ +

(
1 – tρ

)
bρ

)
dt. (18)

Proof By using the similar arguments as in the proof of Lemma 2 in [18]. First consider

∫ 1

0

(
1 – tρ

)αtρ–1f ′(tρaρ +
(
1 – tρ

)
bρ

)
dt

=
(1 – tρ)αf (tρaρ + (1 – tρ)bρ)

ρ(aρ – bρ)

∣
∣∣
∣

1

0

+
α

aρ – bρ

∫ 1

0

(
1 – tρ

)α–1tρ–1f
(
tρaρ +

(
1 – tρ

)
bρ

)
dt
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=
f (bρ)

ρ(bρ – aρ)
–

α

bρ – aρ

∫ a

b

(
xρ – aρ

bρ – aρ

)α–1

· xρ–1

aρ – bρ
dx

=
f (bρ)

ρ(bρ – aρ)
–

ρα–1�(α + 1)
(bρ – aρ)α+1 · ρIα

b–f
(
xρ

)
∣
∣∣
∣
x=a

. (19)

Similarly, we can show that

∫ 1

0
tρα · tρ–1f ′(tρaρ +

(
1 – tρ

)
bρ

)
dt

= –
f (aρ)

ρ(bρ – aρ)
+

ρα–1�(α + 1)
(bρ – aρ)α+1 ·ρ Iα

a+f
(
xρ

)
∣∣
∣∣
x=b

. (20)

Thus from (19) and (20) we get (18). �

Remark 2.6 By taking ρ = 1 in (18) of Lemma 2.5, we get Lemma 2 in [17].

Throughout all other results we denote

If (α,ρ, a, b) =
f (aρ) + f (bρ)

2
–

ρα�(α + 1)
2(bρ + aρ)α

[
ρIα

a+f
(
bρ

)
+ ρIα

b–f
(
aρ

)]
.

Theorem 2.7 Let α > 0 and ρ > 0. Let f : [aρ , bρ] ⊂ R+ → R be a differentiable mapping
on (aρ , bρ) such that f ′ ∈ L1[a, b] with 0 ≤ a < b. If |f ′|q is s-convex on [aρ , bρ] for some fixed
q ≥ 1, then the following inequality holds:

∣
∣If (α,ρ, a, b)

∣
∣ ≤ ρ(bρ – aρ)

2

(
1

ρ(α + 1)

)1–1/q

×
((

ργ (s + 1,α + 1) +
1

ρ(α + s + 1)

)∣
∣f ′(aρ

)∣∣q

+
(
ργ (1,α + s + 1) + ργ (α + 1, s + 1)

)∣∣f ′(bρ
)∣∣q

)1/q

. (21)

Proof Using Lemma 2.5 and the power mean inequality and s-convexity of |f ′|q, we obtain

∣∣If (α,ρ, a, b)
∣∣

=
∣∣∣
∣
ρ(bρ – aρ)

2

∫ 1

0

{(
1 – tρ

)α –
(
tρ

)α}
tρ–1f ′(tρaρ +

(
1 – tρ

)
bρ

)
dt

∣∣∣
∣

≤ ρ(bρ – aρ)
2

(∫ 1

0

∣
∣(1 – tρ

)α –
(
tρ

)α∣
∣tρ–1 dt

)1–1/q

×
(∫ 1

0

∣∣(1 – tρ
)α –

(
tρ

)α∣∣tρ–1∣∣f ′(tρaρ +
(
1 – tρ

)
bρ

)∣∣q dt
)1/q

≤ ρ(bρ – aρ)
2

(∫ 1

0

{(
1 – tρ

)α +
(
tρ

)α}
tρ–1 dt

)1–1/q

×
(∫ 1

0

{(
1 – tρ

)α +
(
tρ

)α}
tρ–1[(tρ

)s∣∣f ′(aρ
)∣∣q +

(
1 – tρ

)s∣∣f ′(bρ
)∣∣q]dt

)1/q

=
ρ(bρ – aρ)

2

(
1

ρ(α + 1)

)1–1/q
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×
((

ργ (s + 1,α + 1) +
1

ρ(α + s + 1)

)∣
∣f ′(aρ

)∣∣q

+
(
ργ (1,α + s + 1) + ργ (α + 1, s + 1)

)∣∣f ′(bρ
)∣∣q

)1/q

. (22)

Hence the proof is completed. �

Corollary 2.8 Under the similar conditions of Theorem 2.7.
1. If ρ = 1, then

∣∣∣
∣
f (a) + f (b)

2
–

�(α + 1)
2(b + a)α

[
Jα
a+f (b) + Jα

b–f (a)
]
∣∣∣
∣

≤ (b – a)
2

(
1

(α + 1)

)1–1/q

×
((

β(s + 1,α + 1) +
1

(α + s + 1)

)∣
∣f ′(a)

∣
∣q

+
(
β(1,α + s + 1) + β(α + 1, s + 1)

)∣∣f ′(b)
∣∣q

)1/q

.

2. If ρ = s = 1, then

∣
∣∣∣
f (a) + f (b)

2
–

�(α + 1)
2(b + a)α

[
Jα
a+f (b) + Jα

b–f (a)
]
∣
∣∣∣

≤ (b – a)
2

(
1

(α + 1)

)1–1/q

×
((

β(2,α + 1) +
1

(α + 2)

)∣∣f ′(a)
∣∣q

+
(
β(1,α + 2) + β(α + 1, 2)

)∣∣f ′(b)
∣
∣q

)1/q

.

3. If ρ = s = α = 1, then

∣∣
∣∣
f (a) + f (b)

2
–

1
b + a

∫ b

a
f (x) dx

∣∣
∣∣ ≤ (b – a)

22–1/q ×
( |f ′(a)|q + |f ′(b)|q

2

)1/q

.

Theorem 2.9 Let α > 0 and ρ > 0. Let f : [aρ , bρ] ⊂ R+ → R be a differentiable mapping
on (aρ , bρ) such that f ′ ∈ L1[a, b] with 0 ≤ a < b. If |f ′|q is s-convex on [aρ , bρ] for some fixed
q ≥ 1, then the following inequality holds:

∣∣If (α,ρ, a, b)
∣∣

≤ ρ
1
q (bρ – aρ)

2

([
β(s + 1,α + 1) +

1
α + s + 1

][∣∣f ′(aρ
)∣∣q +

∣
∣f ′(bρ

)∣∣q]
)1/q

. (23)

Proof Using Lemma 2.5, the property of modulus, the power mean inequality, and the fact
that |f ′|q is an s-convex function, we have

∣∣If (α,ρ, a, b)
∣∣

≤
∣
∣∣
∣
ρ(bρ – aρ)

2

∫ 1

0

{(
1 – tρ

)α –
(
tρ

)α}
tρ–1∣∣f ′(tρaρ +

(
1 – tρ

)
bρ

)∣∣dt
∣
∣∣
∣

≤ ρ(bρ – aρ)
2

(∫ 1

0
tρ–1 dt

)1–1/q
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×
(∫ 1

0

{(
1 – tρ

)α –
(
tρ

)α}∣∣f ′(tρaρ +
(
1 – tρ

)
bρ

)∣∣q dt
)1/q

≤ ρ(bρ – aρ)
2

1
ρ1–1/q

×
(∫ 1

0

{(
1 – tρ

)α +
(
tρ

)α}[(
tρ

)s∣∣f ′(aρ
)∣∣q +

(
1 – tρ

)s∣∣f ′(bρ
)∣∣q]dt

)1/q

=
ρ

1
q (bρ – aρ)

2

(∣∣f ′(aρ
)∣∣q

∫ 1

0

{(
1 – tρ

)α(
tρ

)s +
(
tρ

)α(
tρ

)s}dt

+
∣
∣f ′(bρ

)∣∣q
∫ 1

0

{(
1 – tρ

)α(
1 – tρ

)s +
(
tρ

)α(
1 – tρ

)s}dt
)1/q

=
ρ

1
q (bρ – aρ)

2
(
A

∣
∣f ′(aρ

)∣∣q + B
∣
∣f ′(bρ

)∣∣q)1/q. (24)

By using the change of variable tρ = z, we get

A =
∫ 1

0

{(
1 – tρ

)α(
tρ

)s +
(
tρ

)α(
tρ

)s}dt = β(s + 1,α + 1) +
1

α + s + 1

and

B =
∫ 1

0

{(
1 – tρ

)α(
1 – tρ

)s +
(
tρ

)α(
1 – tρ

)s}dt = β(α + 1, s + 1) +
1

α + s + 1
.

Thus substituting the values of A and B in (24) and applying the fact that β(a, b) = β(b, a),
we get the desired result. �

Corollary 2.10 Under the similar conditions of Theorem 2.7.
1. If ρ = 1, then

∣
∣∣
∣
f (a) + f (b)

2
–

�(α + 1)
2(b + a)α

[
Jα
a+f (b) + Jα

b–f (a)
]
∣
∣∣
∣

≤ (b – a)
2

([
β(s + 1,α + 1) +

1
α + s + 1

][∣∣f ′(a)
∣
∣q +

∣
∣f ′(b)

∣
∣q]

)1/q

.

2. If ρ = s = 1, then

∣
∣∣
∣
f (a) + f (b)

2
–

�(α + 1)
2(b + a)α

[
Jα
a+f (b) + Jα

b–f (a)
]
∣
∣∣
∣

≤ (b – a)
2

([
β(2,α + 1) +

1
α + 2

][∣∣f ′(a)
∣∣q +

∣∣f ′(b)
∣∣q]

)1/q

.

3. If ρ = s = α = 1, then

∣
∣∣
∣
f (a) + f (b)

2
–

1
b + a

∫ b

a
f (x) dx

∣
∣∣
∣ ≤ (b – a)

2

( |f ′(a)|q + |f ′(b)|q
2

)1/q

.
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3 Hermite–Hadamard type inequalities for m-convex function
In this section we give Hermite–Hadamard type inequalities for m-convex function.

Theorem 3.1 Let α > 0 and ρ > 0. Let f : [aρ , bρ] ⊂ R+ → R be a positive function with
0 ≤ a < b and f ∈ Xp

c (aρ , bρ). If f is also an m-convex function on [aρ , bρ], then the following
inequalities hold:

f
(

mρ(aρ + bρ)
2

)
≤ ρα�(α + 1)

2((mb)ρ – (ma)ρ)α
ρIα

ma+f
(
(mb)ρ

)
+

mρρα�(α + 1)
2(bρ – aρ)α

ρIα
b–f

(
aρ

)

≤ mρ

2
(
f
(
aρ

)
+ f

(
bρ

))
. (25)

Proof Since f is m-convex, we have

f
(

xρ + mρyρ

2

)
≤ f (xρ) + mρ f (yρ)

2
.

Let xρ = mρtρaρ + mρ(1 – tρ)bρ , yρ = tρbρ + (1 – tρ)aρ with t ∈ [0, 1]. Then we obtain

f
(

mρ(aρ + bρ)
2

)
≤ f (mρtρaρ + mρ(1 – tρ)bρ) + mρ f (tρbρ + (1 – tρ)aρ)

2
. (26)

Multiplying both sides of (26) by tαρ–1, α > 0 and then integrating the resulting inequality
with respect to t over [0, 1], we obtain

2
ρα

f
(

mρ(aρ + bρ)
2

)

≤
∫ 1

0
tαρ–1f

(
mρtρaρ + mρ

(
1 – tρ

)
bρ

)
dt + mρ

∫ 1

0
tαρ–1f

(
tρbρ +

(
1 – tρ

)
aρ

)
dt

=
∫ ma

mb

(
xρ – (mb)ρ

(ma)ρ – (mb)ρ

)α–1

xρ–1 dx
(ma)ρ – (mb)ρ

+ mρ

∫ b

a

(
yρ – aρ

bρ – aρ

)α–1

yρ–1 dy
bρ – aρ

=
ρα–1�(α)

((mb)ρ – (ma)ρ)α
ρIα

ma+f
(
(mb)ρ

)
+

mρρα–1�(α)
(bρ – aρ)α

ρIα
b–f

(
aρ

)
. (27)

Now by multiplying both sides of (27) by αρ

2 , we get the first inequality of (25). For the
second inequality, using m-convexity of f , we have

f
(
mρtρaρ + mρ

(
1 – tρ

)
bρ

)
+ mρ f

((
1 – tρ

)
aρ + tρbρ

) ≤ mρ
[
f
(
aρ

)
+ f

(
bρ

)]
. (28)

Multiplying both sides of (28) by tαρ–1, α > 0 and then integrating the resulting inequality
with respect to t over [0, 1], we obtain

ρα–1�(α)
((mb)ρ – (ma)ρ)α

ρIα
ma+f

(
(mb)ρ

)
+

mρρα–1�(α)
(bρ – aρ)α

ρIα
b–f

(
aρ

)

≤ mρ

ρα

(
f
(
aρ

)
+ f

(
bρ

))
. (29)

Now, by multiplying both sides of (29) by αρ

2 , we get the second inequality of (25). �
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Corollary 3.2 Under the assumptions of Theorem 3.1, we have
1. For ρ = 1, then

f
(

m(a + b)
2

)

≤ �(α + 1)
2(mb – ma)α

Jα
ma+f (mb) +

m�(α + 1)
2(b – a)α

Jα
b–f (a)

≤ m
2

(
f (a) + f (b)

)
. (30)

2. For ρ = α = 1, then

f
(

m(a + b)
2

)
≤ 1

2(mb – ma)

∫ mb

ma
f (x) dx +

m
2(b – a)

∫ b

a
f (x) dx

≤ m
2

(
f (a) + f (b)

)
. (31)

Remark 3.3 If we take m = 1 in (31) of Corollary (3.2)(2), then we get (2).

Theorem 3.4 Let α > 0 and ρ > 0. Let f : [aρ , bρ] ⊂ R+ → R be a positive function with
0 ≤ a < b and f ∈ Xp

c (aρ , bρ). If f is also an m-convex function on [aρ , bρ]. Let F(xρ , yρ)tρ :
[0, 1] →R be defined as

F
(
xρ , yρ

)
tρ =

1
2
[
f
(
tρxρ + mρ

(
1 – tρ

)
yρ

)
+ f

((
1 – tρ

)
xρ + mρtρyρ

)]
.

Then we have

1
(bρ – aρ)α

∫ b

a

(
bρ – uρ

)α–1uρ–1F
(

uρ ,
aρ + bρ

2

)

( bρ –uρ

bρ –aρ )
du

≤ ρα–1�(α)
2(bρ – aρ)α

ρIα
a+f

(
bρ

)
+

m
2ρα

f
(

aρ + bρ

2

)
. (32)

Proof Since f is an m-convex function, we have

F
(
xρ , yρ

)
tρ ≤ 1

2
[
tρ f

(
xρ

)
+ mρ

(
1 – tρ

)
f
(
yρ

)
+

(
1 – tρ

)
f
(
xρ

)
+ mρtρ f

(
yρ

)]

=
1
2
[
f
(
xρ

)
+ mρ f

(
yρ

)]
,

and also

F
(

xρ ,
aρ + bρ

2

)

tρ
≤ 1

2

[
f
(
xρ

)
+ mρ f

(
aρ + bρ

2

)]
.

Take xρ = tρaρ + (1 – tρ)bρ , we have

F
(

tρaρ +
(
1 – tρ

)
bρ ,

aρ + bρ

2

)

tρ
≤ 1

2

[
f
(
tρaρ +

(
1 – tρ

)
bρ

)
+ mρ f

(
aρ + bρ

2

)]
. (33)
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Multiplying both sides of (33) by tαρ–1, α > 0 and then integrating the resulting inequality
with respect to t over [0, 1], we obtain

∫ 1

0
tαρ–1F

(
tρaρ +

(
1 – tρ

)
bρ ,

aρ + bρ

2

)

tρ
dt

≤ 1
2

∫ 1

0
tαρ–1

[
f
(
tρaρ +

(
1 – tρ

)
bρ

)
+ mρ f

(
aρ + bρ

2

)]
dt. (34)

Then, by the change of variable uρ = tρaρ + (1 – tρ)bρ , we get the desired inequality (32). �

Remark 3.5 By taking ρ = 1 in (32) of Theorem 3.4, we get Theorem 6 in [22].

4 Applications to special means
In this section, we consider some applications to our results. Here we consider the follow-
ing means:

(1) The arithmetic mean:

A(a, b) =
a + b

2
; a, b ∈ R.

(2) The logarithmic mean:

L(a, b) =
ln |b| – ln |a|

b – a
; a, b ∈R, |a| 
= |b|, a, b 
= 0.

(3) The generalized log mean:

Ln(a, b) =
[

bn+1 – an+1

(n + 1)(b – a)

]1/n

; a, b ∈R, n ∈ Z \ {–1, 0}, a, b 
= 0.

Proposition 4.1 Let a, b ∈R, a < b, 0 /∈ [a, b], and n ∈ Z, |n| ≥ 2, then

∣∣
∣∣A

(
an, bn) –

b – a
b + a

Ln
n(a, b)

∣∣
∣∣ ≤ |n|(b – a)

2
A

(|a|n–1, |b|n–1). (35)

Proof By taking f (x) = xn in Corollary 2.4(3), we get the required result. �

Proposition 4.2 Let a, b ∈R, a < b, 0 /∈ [a, b], and n ∈ Z, |n| ≥ 2. Then, for q ≥ 1, we have

∣
∣∣
∣A

(
an, bn) –

b – a
b + a

Ln
n(a, b)

∣
∣∣
∣ ≤ |n|(b – a)

22–1/q A1/q(|a|q(n–1), |b|q(n–1)). (36)

Proof By taking f (x) = xn in Corollary 2.8(3), we get the required result. �

Proposition 4.3 Let a, b ∈R, a < b, 0 /∈ [a, b], and n ∈ Z, |n| ≥ 2. Then, for q ≥ 1, we have

∣
∣∣∣A

(
an, bn) –

b – a
b + a

Ln
n(a, b)

∣
∣∣∣ ≤ |n|(b – a)

2
A1/q(|a|q(n–1), |b|q(n–1)). (37)

Proof By taking f (x) = xn in Corollary 2.10(3), we get the required result. �
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Proposition 4.4 Let a, b ∈R, a < b, 0 /∈ [a, b], and n ∈ Z, m ∈ [0, 1], then we have

f
(
mA(a, b)

) ≤ 1
2

Ln
n(ma, mb) +

m
2

Ln
n(a, b) ≤ mA

(
an, bn). (38)

Proof By taking f (x) = xn in Corollary 3.2(2), we get the required result. �

Proposition 4.5 Let a, b ∈R, a < b, 0 /∈ [a, b], then

∣∣
∣∣A

(
a–1, b–1) –

b – a
b + a

L(a, b)
∣∣
∣∣ ≤ b – a

2
A

(|a|–2, |b|–2). (39)

Proof By taking f (x) = 1
x in Corollary 2.4(3), we get the required result. �

Proposition 4.6 Let a, b ∈R, a < b, 0 /∈ [a, b]. Then, for q ≥ 1, we have

∣
∣∣
∣A

(
a–1, b–1) –

b – a
b + a

L(a, b)
∣
∣∣
∣ ≤ b – a

22–1/q A1/q(|a|–2q, |b|–2q). (40)

Proof By taking f (x) = 1
x in Corollary 2.8(3), we get the required result. �

Proposition 4.7 Let a, b ∈R, a < b, 0 /∈ [a, b]. Then, for q ≥ 1, we have

∣∣
∣∣A

(
a–1, b–1) –

b – a
b + a

L(a, b)
∣∣
∣∣ ≤ b – a

2
A1/q(|a|–2q, |b|–2q). (41)

Proof By taking f (x) = 1
x in Corollary 2.10(3), we get the required result. �

Proposition 4.8 Let a, b ∈R, a < b, 0 /∈ [a, b], and m ∈ [0, 1], then we have

f
(
mA

(
a–1, b–1)) ≤ 1

2
L(ma, mb) +

m
2

L(a, b) ≤ mA
(
a–1, b–1). (42)

Proof By taking f (x) = 1
x in Corollary 3.2(2), we get the required result. �

5 Conclusion
In Sect. 2, some Hermite–Hadamard type inequalities for s-convex functions in a gener-
alized fractional form were obtained. In Corollaries 2.4, 2.8, and 2.10, we obtained some
new results related to s-convex functions, convex functions via Riemann–Liouville frac-
tional integrals and via classical integrals. In Sect. 3, we established a Hermite–Hadamard
type inequality for m-convex functions in generalized fractional integrals. In Corollary 3.2,
a new Hermite–Hadamard type inequality for m-convex functions via Riemann–Liouville
fractional integrals and via classical integrals was proved.
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