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Abstract
In this paper, we study a class of critical elliptic problems of Kirchhoff type:

[
a + b

(∫
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|∇u|2 –μ

u2

|x|2 dx
) 2–α

2
](

–�u –μ
u

|x|2
)
=

|u|2∗(α)–2u

|x|α + λ
f (x)|u|q–2u

|x|β ,

where a,b > 0, μ ∈ [0, 1/4), α,β ∈ [0, 2), and q ∈ (1, 2) are constants and 2∗(α) = 6 – 2α
is the Hardy–Sobolev exponent inR

3. For a suitable function f (x), we establish the
existence of multiple solutions by using the Nehari manifold and fibering maps.
Moreover, we regard b > 0 as a parameter to obtain the convergence property of
solutions for the given problem as b ↘ 0+ by the mountain pass theorem and
Ekeland’s variational principle.
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1 Introduction and main results
In the present paper, we consider the following Schrödinger equation:

[
a + b

(∫

R3
|∇u|2 – μ

u2

|x|2 dx
) 2–α

2
](

–�u – μ
u

|x|2
)

=
|u|2∗(α)–2u

|x|α + λ
f (x)|u|q–2u

|x|β , (1.1)

where a, b > 0, μ ∈ [0, 1/4), α,β ∈ [0, 2), and q ∈ (1, 2) are constants and 2∗(α) = 6 – 2α is
the critical Hardy–Sobolev exponent.

We call (1.1) a Schrödinger equation of Kirchhoff type because of the appearance of the
term b(

∫
R3 |∇u|2 –μu2|x|–2 dx)(2–α)/2 which makes the study of (1.1) interesting. Indeed, if

we choose μ = α = 0 and let |u|4u + f (x)|u|q–2u|x|–β = k(x, u) – V (x)u, then (1.1) transforms
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to the following classical Kirchhoff type equation:

–
(

a + b
∫

R3
|∇u|2 dx

)
�u + V (x)u = k(x, u) (1.2)

which is degenerate if b = 0 and non-degenerate otherwise. Equation (1.2) arises in a mean-
ingful physical context. In fact, if we set V (x) = 0 and replace R

3 by a bounded domain
� ⊂R

3, then we get the following Dirichlet problem:

–
(

a + b
∫

�

|∇u|2 dx
)

�u = k(x, u)

which is related to the stationary analogue of the equation

ρ
∂2u
∂t2 –

(
P0

h
–

E
2L

∫ L

0

∣∣∣∣
∂u
∂x

∣∣∣∣
2

dx
)

∂2u
∂x2 = 0

proposed by Kirchhoff in [16] as an extension of the classical D’Alembert’s wave equation
for free vibrations of elastic strings. This model takes the changes in length of the string
produced by transverse vibrations into account. After J. L. Lions in his pioneer work [21]
presented an abstract functional analysis framework to (1.2), this problem has been widely
studied in extensive literature such as [8, 11, 12, 19, 20, 24, 25].

In their celebrated paper, Ambrosetti et al. [2] studied the following semilinear elliptic
equation with concave-convex nonlinearities:

⎧⎨
⎩

–�u = |u|p–2u + ξ |u|q–2u, in �,

u = 0, on ∂�,

where � is a bounded domain in R
N , ξ > 0 and 1 < q < 2 < p ≤ 2∗ = 2N/(N – 2) with N ≥ 3.

By the variational method, they obtained the existence and multiplicity of positive solu-
tions to the above problem. Subsequently, an increasing number of researchers have paid
attention to semilinear elliptic equations with critical exponent and concave-convex non-
linearities; for example, see [1, 5, 13, 14, 27, 29] and the references therein.

Using the Nehari manifold and fibering maps, Chen et al. [6] extended the above analysis
to the subcritical semilinear elliptic problem of Kirchhoff type:

⎧
⎨
⎩

–M(
∫
�

|∇u|2 dx)�u = g(x)|u|p–2u + λh(x)|u|q–2u in �,

u = 0 on ∂�,

where M is the so-called Kirchhoff function depending on 1 < q < 2 < p < 2∗, � is a
bounded domain with a smooth boundary in R

N and the weight functions h, g ∈ C(�)
satisfy some specified conditions

f ± = max{±f , 0} 	= 0 and g± = max{±g, 0} 	= 0,
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they proved the existence of multiple solutions of it. In the critical case, Lei et al. [19]
considered the following Kirchhoff problem in three dimensions:

⎧⎨
⎩

–(a + ε
∫
�

|∇u|2 dx)�u = u5 + λuq–1 in �,

u = 0 on ∂�,

where ε > 0 is a sufficiently small constant, and they employed the mountain pass theo-
rem to show that the problem admits at least two different positive solutions. Some other
related and important results can be found in [18, 23] and the references therein.

Before stating our main results, we introduce some function spaces. Throughout the
paper, Lp(R3) (1 ≤ p ≤ +∞) is the usual Lebesgue space with the standard norm |u|p, and
we consider the Hilbert space D1,2(R3) equipped with its usual inner product and norm

(u, v)D1,2(R3) =
∫

R3
∇u∇v dx and ‖u‖D1,2(R3) =

(∫

R3
|∇u|2 dx

) 1
2

.

By the well-known Hardy inequality [17]

∫

R3

u2

|x|2 dx ≤ 4
∫

R3
|∇u|2 dx,

we derive that the induced inner product and norm

(u, v) =
∫

R3
∇u∇v – μ

uv
|x|2 dx and ‖u‖ =

(∫

R3
|∇u|2 – μ

u2

|x|2 dx
) 1

2

are equivalent to the usual inner product and norm on D1,2(R3) for any μ ∈ [0, 1/4). As a
special case of [15, Lemma 2.3], for any μ ∈ [0, 1/4) and s ∈ [0, 2), we can define

Sμ,s =
{∫

R3
|∇u|2 – μ

u2

|x|2 dx : u ∈ D1,2(
R

3) and
∫

R3

|u|2∗(s)

|x|s dx = 1
}

. (1.3)

We also know that Sμ,s can be attained by a positive function U ∈ D1,2(R3) satisfying

∫

R3
|∇U|2 – μ

U2

|x|2 dx =
∫

R3

|U|2∗(s)

|x|s dx = S
3–s
2–s
μ,s . (1.4)

Motivated by all the works mentioned above, we are interested in the multiplicity and
asymptotic behavior of solutions of (1.1) whose natural variational functional is

J(u) =
a
2
‖u‖2 +

b
4 – α

‖u‖4–α –
1

2∗(α)

∫

R3
|u|2∗(α)|x|–α dx –

λ

q

∫

R3
f (x)|u|q|x|–β dx.

Note that we can adopt the idea used in [28] to prove that J(u) is well-defined on D1,2(R3)
and of class C1. Furthermore, any solution of (1.1) is a critical point of J(u). Hence we
obtain the solutions of it by finding the critical points of the functional J(u). To this aim,
we assume the following condition:

(F) 0 � f (x) ∈ L∞(R3) and there exists R0 > 0 such that supp f ∈ BR0 (0).
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Since supp f ⊂ BR0 (0), using Hölder’s inequality and (1.3), we have

∫

R3

f (x)|u|q
|x|β dx ≤ |f |∞

(∫

BR0 (0)

1
|x|β dx

) 2∗(β)–q
2∗(β)

(∫

BR0 (0)

|u|2∗(β)

|x|β dx
) q

2∗(β)

� |f |∞CR0,β ,q

(∫

BR0 (0)

|u|2∗(β)

|x|β dx
) q

2∗(β)

≤ |f |∞CR0,β ,qS– q
2

μ,β‖u‖q. (1.5)

For the convenience of narration, we set

λ1 �
2(2 – α)

√
2abS

q
2
μ,β

(2∗(α) – q)|f +|∞CR0,β ,q

[
2
√

ab(2 – q)(4 – α – q)S
2∗(α)

2
μ,α

2∗(α) – q

] 6–α–2q
6–3α

> 0,

λ2 �
a(4 – 2α)S

q
2
μ,β

(2∗(α) – q)|f +|∞CR0,β ,q

[
a(2 – q)S

2∗(α)
2

μ,α

2∗(α) – q

] 2–q
4–2α

> 0,

λ3 �
1
2

(aSμ,α)
(3–α)(2–q)

2(2–α)

[
2 – α

2C0(3 – α)

] 2–q
2

> 0,

λ4 �
( tq

1
∫
R3 f (x)|U|q|x|–β dx

C0q

) 2–q
q

> 0,

λ5 =
aqS

q
2
μ,β (2∗(α) – 2)

2|f |∞CR0,β ,q(2∗(α) – q)

[
a2∗(α)S

2∗(α)
2

μ,α (2 – q)
2(2∗(α) – q)

] 2–q
2∗(α)–2

> 0,

�1 � max{λ1.λ2},
�2 � max

{
qλ1/

√
2(4 – α), qλ2/2

}
,

and

�∗ � min{�1,λ3,λ4}, �∗∗ � min{�2,λ3,λ4}, �M � min{λ3,λ4,λ5},

where C0 > 0 is given by Lemma 3.3 and t1 ∈ (0, 1) only depends on λ3.

Remark 1.1 It is easy to see that the constants λi for i ∈ {3, 4, 5} are independent of b, and
then �M is also independent of b.

We are ready to state our first result.

Theorem 1.2 Assume (F), μ ∈ [0, 1/4), α,β ∈ [0, 2), and q ∈ (1, 2), then for any a, b > 0
problem (1.1) admits at least one positive solution for λ ∈ (0,�∗) and two positive solutions
for λ ∈ (0,�∗∗).

Remark 1.3 If the whole space R
3 is replaced by a bounded domain � and f (x) ≡ 1 with

β = 0, Theorem 1.2 can be seen as an improvement of the main results in [3, 7]. On the
other hand, Theorem 1.2 extends the results of [6] to a more general case.
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Inspired by the works in [8, 24, 25], we prefer to study the asymptotic behavior of mul-
tiple solutions to (1.1) because the solutions depend on the parameter b. By analyzing the
convergence property, we establish the following result in this paper.

Theorem 1.4 Assume (F), μ ∈ [0, 1/4), α,β ∈ [0, 2), and q ∈ (1, 2), then (1.1) has at least
two positive solutions u1

b and u2
b for any λ ∈ (0,λM). Moreover, let λ ∈ (0,λM) and a > 0

be fixed constants, then there exist subsequences still denoted by themselves {u1
b} and {u2

b}
such that ui

b → ui in D1,2(R3) as b ↘ 0+ for i ∈ {1, 2}, where u1 and u2 are two nontrivial
solutions of

a
(

–�u – μ
u

|x|2
)

=
|u|2∗(α)–2u

|x|α + λ
f (x)|u|q–2u

|x|β . (1.6)

Remark 1.5 A natural question is why we do not study the convergence of solutions ob-
tained in Theorem 1.2. In fact, if we do this step by step, we can only prove that equation
(1.6) has at least one nontrivial solution. The main reason for this phenomenon is that
we cannot prove there exists d1 < 0 independent of b such that m+ < d1 (see Lemma 2.5
for details). To explain this in a little more detail, we assume there exists a sequence
{ub} ⊂ D1,2(R3) of solutions of (1.1) satisfying J(ub) = m– < 0. By a standard method, we
can show that there exists u ∈ D1,2(R3) such that ub → u in D1,2(R3) as b → 0+. Unfortu-
nately, we fail to prove m+

� 0 as b → 0+, which yields u 	= 0.

The outline of this paper is as follows. In Sect. 2, we present some preliminary results.
In Sect. 3, we obtain the existence of two local minimax solutions of (1.1). In Sect. 4, we
prove the convergence property on the parameter b > 0.

Notations Throughout this paper we shall denote by C and Ci (i = 1, 2, . . .) various pos-
itive constants whose exact value may change from lines to lines but are not essential to
the analysis of problem. We use “→” and “⇀” to denote the strong and weak convergence
in the related function space, respectively. For any ρ > 0 and any x ∈R

3, Bρ(x) denotes the
ball of radius ρ centered at x, that is, Bρ(x) := {y ∈R

3 : |y – x| < ρ}.
Let (X,‖ · ‖) be a Banach space with its dual space (X∗,‖ · ‖∗), and  be its functional

on X. The Palais–Smale sequence at level d ∈ R ((PS)d sequence in short) corresponding
to  satisfies that (xn) → d and  ′(xn) → 0 as n → ∞, where {xn} ⊂ X.

2 Nehari manifold and fibering map
In this section, we study the so-called Nehari manifold because the variational functional
J(u) is not bounded from below on D1,2(R3). Let us define

N =
{

u ∈ D1,2(
R

3)\{0} :
〈
J ′(u), u

〉
= 0

}
,

and then any nontrivial solution of (1.1) belongs to N . Obviously, u ∈N if and only if

a‖u‖2 + b‖u‖4–α –
∫

R3
|u|2∗(α)|x|–α dx – λ

∫

R3
f (x)|u|q|x|–β dx = 0 and u 	= 0.

The following lemma tells us the behavior of J(u) on N .
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Lemma 2.1 The functional J(u) is coercive and bounded from below on N .

Proof For any u ∈N , since α ∈ (0, 2) and q ∈ (1, 2), we get

J(u) = J(u) –
1

2∗(α)
〈
J ′(u), u

〉 ≥ 2 – α

6 – 2α
‖u‖2 –

(
1
q

–
1

2∗(α)

)
|f |∞CR0,β ,qS– q

2
μ,β‖u‖q,

which yields that J(u) is coercive and bounded from below on N . �

The Nehari manifold N is closely linked to the functions ϕu(t) = J(tu) for any t > 0. As
we all know, the above maps were introduced by Drábek and Pohozaev [9] and discussed
in Brown and Zhang [4] (or Chen et al. [6]). For any u ∈ D1,2(R3), we have

ϕu(t) =
a
2

t2‖u‖2 +
b

4 – α
t4–α‖u‖4–α –

t2∗(α)

2∗(α)

∫

R3

|u|2∗(α)

|x|α dx –
tq

q
λ

∫

R3

f (x)|u|q
|x|β dx,

ϕ′
u(t) = at‖u‖2 + bt3–α‖u‖4–α – t2∗(α)–1

∫

R3

|u|2∗(α)

|x|α dx – tq–1λ

∫

R3

f (x)|u|q
|x|β dx,

ϕ′′
u(t) = a‖u‖2 + b(3 – α)t2–α‖u‖4–α –

(
2∗(α) – 1

)
t2∗(α)–2

∫

R3

|u|2∗(α)

|x|α dx

– (q – 1)tq–2λ

∫

R3

f (x)|u|q
|x|β dx.

It is easy to see that for any u ∈ D1,2(R3)\{0} and t > 0 we obtain

tϕ′
u(t) = at2‖u‖2 + bt4–α‖u‖4–α – t2∗(α)

∫

R3

|u|2∗(α)

|x|α dx – tqλ

∫

R3

f (x)|u|q
|x|β dx,

which gives that ϕ′
u(t) = 0 if and only if tu ∈N . In particular, ϕ′

u(1) = 0 if and only if u ∈N .
Arguing as Brown and Zhang [4], we split N into three parts:

N + =
{

u ∈N : ϕ′′
u(1) > 0

}
,

N 0 =
{

u ∈N : ϕ′′
u(1) = 0

}
,

N – =
{

u ∈N : ϕ′′
u(1) < 0

}
.

Therefore, for any u ∈N , we have

ϕ′′
u(1) = a‖u‖2 + b(3 – α)‖u‖4–α – (5 – 2α)

∫

R3

|u|2∗(α)

|x|α dx – (q – 1)λ
∫

R3

f (x)|u|q
|x|β dx

= a(2 – q)‖u‖2 + b(4 – α – q)‖u‖4–α –
(
2∗(α) – q

)∫

R3

|u|2∗(α)

|x|α dx (2.1)

= a(2α – 4)‖u‖2 + b(α – 2)‖u‖4–α +
(
2∗(α) – q

)
λ

∫

R3

f (x)|u|q
|x|β dx. (2.2)

It is similar to the argument in Brown and Zhang [4, Theorem 2.3] that we can derive
the following result.

Lemma 2.2 Suppose u ∈ D1,2(R3) is a local minimizer for J(u) on N and u /∈ N 0, then
J ′(u) = 0 in (D1,2(R3))∗.
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Inspired by the above lemma, we will study when N 0 = ∅ is established.

Lemma 2.3 If 0 < λ < �1 � max{λ1,λ2}, then N 0 = ∅.

Proof We argue it indirectly and assume that, for any u ∈N 0, using (2.1) and (2.2) we have

2
√

ab(2 – q)(4 – α – q)‖u‖ 6–α
2

≤ a(2 – q)‖u‖2 + b(4 – α – q)‖u‖4–α

=
(
2∗(α) – q

)∫

R3

|u|2∗(α)

|x|α dx ≤ (
2∗(α) – q

)
S– 2∗(α)

2
μ,α ‖u‖2∗(α)

and by (1.5)

2(2 – α)
√

2ab‖u‖ 6–α
2 ≤ a(4 – 2α)‖u‖2 + b(2 – α)‖u‖4–α

=
(
2∗(α) – q

)
λ

∫

R3

f (x)|u|q
|x|β

≤ (
2∗(α) – q

)
λ|f |∞CR0,β ,qS– q

2
μ,β‖u‖q,

which yields that

[
2
√

ab(2 – q)(4 – α – q)S
2∗(α)

2
μ,α

2∗(α) – q

] 2
6–3α ≤ ‖u‖ ≤

[
(2∗(α) – q)λ|f |∞CR0,β ,q

2(2 – α)
√

2abS
q
2
μ,β

] 2
6–α–2q

. (2.3)

On the other hand, using (2.1) and (2.2) again we have

a(2 – q)‖u‖2 ≤ a(2 – q)‖u‖2 + b(4 – α – q)‖u‖4–α

=
(
2∗(α) – q

)∫

R3

|u|2∗(α)

|x|α dx

≤ (
2∗(α) – q

)
S– 2∗(α)

2
μ,α ‖u‖2∗(α),

and by (1.5)

a(4 – 2α)‖u‖2 ≤ a(4 – 2α)‖u‖2 + b(2 – α)‖u‖4–α

=
(
2∗(α) – q

)
λ

∫

R3

f (x)|u|q
|x|β

≤ (
2∗(α) – q

)
λ|f |∞CR0,β ,qS– q

2
μ,β‖u‖q,

which yields that

[
a(2 – q)S

2∗(α)
2

μ,α

2∗(α) – q

] 1
4–2α ≤ ‖u‖ ≤

[
(2∗(α) – q)λ|f |∞CR0,β ,q

a(4 – 2α)S
q
2
μ,β

] 1
2–q

. (2.4)

Combining (2.3) and (2.4), we obtain λ ≥ �1 = max{λ1,λ2}, which is a contradiction.
Hence N 0 = ∅ for any 0 < λ < �1 = max{λ1,λ2}. The proof is complete. �
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To find solutions of (1.1), it is necessary to consider whether N± are nonempty.

Lemma 2.4 Assume (F) and for any 0 < λ < �1, then for any u ∈ D1,2(R3)\{0} there exist
t0 > 0 and unique t+ and t– with 0 < t+ < t0 < t– such that t±u ∈N± and

J
(
t+u

)
= inf

0≤t≤t0
J(tu) and J

(
t–u

)
= sup

t≥t0
J(tu).

Proof Compared with the results in [6], the proof is standard after some simple modifica-
tions and we omit it. �

From Lemma 2.3, we know that N = N + ∪N – for any 0 < λ < �1 � max{λ1,λ2}. More-
over, by Lemma 2.4 we have N± 	= ∅ and by Lemma 2.1 we may define

m = inf
u∈N

J(u), m+ = inf
u∈N +

J(u), m– = inf
u∈N–

J(u).

Then we have the following result.

Lemma 2.5 Under the assumptions of Theorem 1.2, we have
(i) If 0 < λ < �1 = max{λ1.λ2}, then m+ < 0;

(ii) If 0 < λ < �2 � max{qλ1/
√

2(4 – α), qλ2/2}, then there exists d0 > 0 independent of b
such that m– > d0. In particular, we have m+ = m < 0 < m–.

Proof (i) For any u ∈N +, by (2.1) we know

a(2 – q)‖u‖2 + b(4 – α – q)‖u‖4–α >
(
2∗(α) – q

)∫

R3

|u|2∗(α)

|x|α dx,

which implies that

J(u) = –
a(2 – q)

2q
‖u‖2 –

b(4 – α – q)
q(4 – α)

‖u‖4–α +
2∗(α) – q

2∗(α)q

∫

R3

|u|2∗(α)

|x|α dx

<
a(2 – q)(2 – 2∗(α))

2q2∗(α)
‖u‖2 +

b(4 – α – q)(α – 2)
q(4 – α)2∗(α)

‖u‖4–α < 0.

Thus we obtain that m+ < 0.
(ii) To end the proof, we split it into the following two cases.
Case 1: 0 < λ < qλ1/

√
2(4 – α).

Similar to (2.3), we can derive

‖u‖ >
[

2
√

ab(2 – q)(4 – α – q)S
2∗(α)

2
μ,α

2∗(α) – q

] 2
6–3α

for any u ∈N –. (2.5)

Then, for any u ∈N – ⊂N and by (1.5), we have that

J(u) =
a(2∗(α) – 2)

22∗(α)
‖u‖2 +

b(2 – α)
(4 – α)2∗(α)

‖u‖4–α –
λ(2∗(α) – q)

q2∗(α)

∫

R3

f (x)|u|q
|x|β dx

≥ ‖u‖q
[

2(2 – α)
√

2ab√
2(4 – α)2∗(α)

‖u‖ 6–α–2q
2 –

λ(2∗(α) – q)
q2∗(α)

|f |∞CR0,β ,qS– q
2

μ,β

]
. (2.6)
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Combining (2.5) and (2.6), we know that if λ < qλ1/
√

2(4 – α), there exists d0 > 0 indepen-
dent of b such that m– ≥ d0.

Case 2: 0 < λ < qλ2/2.
Similar to (2.4), we can derive

‖u‖ >
[

a(2 – q)S
2∗(α)

2
μ,α

2∗(α) – q

] 1
4–2α

for any u ∈N –. (2.7)

Then, for any u ∈N – ⊂N and by (1.5), we have that

J(u) =
a(2∗(α) – 2)

22∗(α)
‖u‖2 +

b(2 – α)
(4 – α)2∗(α)

‖u‖4–α –
λ(2∗(α) – q)

q2∗(α)

∫

R3

f (x)|u|q
|x|β dx

≥ ‖u‖q
[

a(4 – 2α)
22∗(α)

‖u‖2–q –
λ(2∗(α) – q)

q2∗(α)
|f |∞CR0,β ,qS– q

2
μ,β

]
. (2.8)

Combining (2.7) and (2.8), we know that if λ < qλ2/2, there exists d0 > 0 independent of b
such that m– ≥ d0. The proof is complete. �

3 Proof of Theorem 1.2
In this section, we prove Theorem 1.2. Using Ekeland’s variational principle [10] and the
argument in [6, Lemma 5.2], we have the following result.

Lemma 3.1 Under the assumptions of Theorem 1.2, we have
(i) If 0 < λ < �1, then J(u) has a (PS)m sequence {un} ⊂N ;

(ii) If 0 < λ < �2, then J(u) has a (PS)m– sequence {un} ⊂N –.

The following lemma provides the interval where the (PS) condition holds for J(u).

Lemma 3.2 If λ ∈ (0,�∗), any (PS)c sequence of J(u) contains a strongly convergent subse-
quence whenever c < c∗

μ,α – C0λ
2/(2–q), where

c∗
μ,α =

a(2 – α)
2(3 – α)

Sμ,α

(bS
4–α

2
μ,α +

√
b2S4–α

μ,α + 4aSμ,α

2

) 2
2–α

+
b(2 – α)

2(3 – α)(4 – α)
S

4–α
2

μ,α

(bS
4–α

2
μ,α +

√
b2S4–α

μ,α + 4aSμ,α

2

) 4–α
2–α

(3.1)

and C0 is a positive constant given by Lemma 3.3 below.

Proof Let {un} ⊂ D1,2(R3) be a (PS)c sequence of J(u), and we conclude that {un} is
bounded in D1,2(R3). In fact

c + 1 + o(1)‖un‖ ≥ J(un) –
1

4 – α

〈
J ′(un), un

〉

≥ a(2 – α)
2(4 – α)

‖un‖2 –
4 – α – q
q(4 – α)

λ|f |∞CR0,β ,qS– q
2

μ,β‖un‖q,
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which yields that {un} is bounded in D1,2(RN ) since 1 < q < 2. Up to a subsequence if
necessary, there exists u ∈ D1,2(R3) such that un ⇀ u in D1,2(R3), un → u in Lr

loc(R3) for
r ∈ [1, 2∗(α)) and un → u a.e. in R

3. Next we prove that un → u in D1,2(R3).
By the concentration compactness principle [22], there exist a countable set �, a set of

different points {xj} ⊂R
3\{0}, nonnegative real numbers μxj , νxj for j ∈ �, and nonnegative

real numbers μ0, γ0, and ν0 such that

|∇un|2 ⇀ dμ̃ ≥ |∇u|2 +
∑
j∈�

μxjδxj + μ0δ0,

u2
n|x|–2 ⇀ dγ = u2|x|–2 + γ0δ0,

|un|2∗(α)|x|–α ⇀ dν = |u|2∗(α)|x|–α +
∑
j∈�

νxjδxj + ν0δ0,

where δx is the Dirac mass at x ∈ R
3. Without loss of generality, we only consider the

possibility of concentration at the singular point 0 ∈ R
3. To do it, for any ε > 0, we let

xj /∈ Bε(0) for all j ∈ � and choose ϕε to be a smooth cut-off function such that 0 ≤ ϕε ≤ 1,
ϕε ≡ 0 when x ∈ Bc

ε(0), ϕε ≡ 1 when x ∈ Bε/2(0) and |∇ϕε | ≤ 4/ε. Then

lim
ε→0

lim
n→∞

∫

R3
|∇un|2ϕε dx = lim

ε→0

∫

R3
ϕε dμ̃ ≥ μ0,

lim
ε→0

lim
n→∞

∫

R3
u2

n|x|–2ϕε dx = lim
ε→0

∫

R3
ϕε dγ = γ0,

lim
ε→0

lim
n→∞

∫

R3
|un|2∗(α)|x|–αϕε dx = lim

ε→0

∫

R3
ϕε dν = ν0,

lim
ε→0

lim
n→∞

∫

R3
un∇unϕ

ε dx = 0,

lim
ε→0

lim
n→∞

∫

R3
f (x)|un|q|x|–βϕε dx = 0.

(3.2)

Since {un} is bounded, using (3.2) we have

0 = lim
ε→0

lim
n→∞

〈
J ′(un), unϕ

ε
〉

= lim
ε→0

lim
n→∞

{(
a + b‖un‖2–α

)(∫

R3
|∇un|2ϕε + un∇unϕ

ε – μ
u2

n
|x|2 ϕε dx

)

–
∫

R3

|un|2∗(α)

|x|α ϕε
j dx – λ

∫

R3

f (x)|un|q
|x|β ϕε dx

}

≥ a(μ0 – μγ0) + b(μ0 – μγ0)(4–α)/2 – ν0.

In view of Sobolev inequality (1.3), that is, S2∗(α)/2
μ,α ν0 ≤ (μ0 – μγ0)2∗(α)/2, we derive

S–(3–α)
μ,α (μ0 – μγ0)2–α – b(μ0 – μγ0)

2–α
2 – a ≥ 0,

which gives that

(μ0 – μγ0) ≥ Sμ,α

(bS
4–α

2
μ,α +

√
b2S4–α

μ,α + 4aSμ,α

2

) 1
2–α

.
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Therefore we have

c + o(1)

= J(un) –
1

4 – α

〈
J ′(un), un

〉

=
a(2 – α)
2(4 – α)

‖un‖2 +
2 – α

2(4 – α)(3 – α)

∫

R3

|un|2∗(α)

|x|α dx –
4 – α – q
q(4 – α)

λ

∫

R3

f (x)|un|q
|x|β dx

≥ a(2 – α)
2(4 – α)

(
μ0 – μγ0 + ‖u‖2) +

2 – α

2(4 – α)(3 – α)
ν0 –

4 – α – q
q(4 – α)

λ|f |∞CR0,β ,qS– q
2

μ,β‖u‖q

≥ a(2 – α)
2(4 – α)

(μ0 – μγ0) +
2 – α

2(4 – α)(3 – α)
[
a(μ0 – μγ0) + b(μ0 – μγ0)

4–α
2

]
– C0λ

2
2–q

=
a(2 – α)
2(3 – α)

(μ0 – μγ0) +
b(2 – α)

2(4 – α)(3 – α)
(μ0 – μγ0)

4–α
2 – C0λ

2
2–q ≥ c∗

μ,α – C0λ
2

2–q ,

a contradiction! Hence we have
∫

R3
|un|2∗(α)|x|–α dx →

∫

R3
|u|2∗(α)|x|–α dx,

which together with (1.5) implies

∫

R3
f (x)|un|q|x|–β dx →

∫

R3
f (x)|u|q|x|β dx.

Hence there holds

o(1) =
〈
J ′(un) – J ′(u), un – u

〉

=
(
a + b‖un‖2–α

)
(un, un – u) –

(
a + b‖u‖2–α

)
(u, un – u) + o(1)

=
(
a + b‖un‖2–α

)
(un – u, un – u) + b

(‖un‖2–α – ‖u‖2–α
)
(u, un – u) + o(1)

≥ a‖un – u‖2 + o(1),

which yields that un → u in D1,2(R3). The proof is complete. �

To apply in Lemma 3.2, we have the following result.

Lemma 3.3 Under the assumptions of Theorem 1.2, there holds

sup
t≥0

J(tU) < c∗
μ,α – C0λ

2
2–q , C0 =

a(2 – α)(2 – q)
2q(4 – α)

[
(4 – α – q)|f |∞CR0,β ,q

a(2 – α)Sq/2
μ,β

] 2
2–q

> 0

for any λ ∈ (0,�∗). In particular, m– < c∗
μ,α – C0λ

2
2–q for any λ ∈ (0,�∗).

Proof For cμ,α > 0 given by (3.1), we have that

c∗
μ,α – C0λ

2
2–q > 0 for any λ ∈ (0,λ3).
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Let us define

g(t) =
a
2

t2‖U‖2 +
b

4 – α
t4–α‖U‖4–α –

t2∗(α)

2∗(α)

∫

R3

|U|2∗(α)

|x|α dx

� C1t2 + C2t4–α – C3t2∗(α), t ≥ 0.

As a consequence of (1.4), we have

C1 =
a
2

S
3–α
2–α
μ,α , C2 =

b
4 – α

S
(4–α)(3–α)

2(2–α)
μ,α , C3 =

1
2∗(α)

S
3–α
2–α
μ,α .

By some elementary calculations, we have

g ′(t) = 2C1t + C2(4 – α)t3–α – C32∗(α)t5–2α = 0, t ≥ 0,

which is equivalent to

2C1 + C2(4 – α)t2–α – C32∗(α)t4–2α = 0, t ≥ 0.

Since 4 – 2α = 2(2 – α), we know that g ′(t) = 0 has a unique root, that is,

t̃ = S
– 1

2(2–α)
μ,α

(bS
4–α

2
μ,α +

√
b2S4–α

μ,α + 4aSμ,α

2

) 1
2–α

> 0.

Therefore we can conclude that

max
t≥0

g(t) = g (̃t) = C1̃t2 + C2̃t4–α –
2C1̃t2 + C2(4 – α̃t4–α

2∗(α)

=
2 – α

3 – α
C1̃t2 +

2 – α

2(3 – α)
C2̃t4–α = c∗

μ,α ,

which implies that

J(tU) = g(t) –
tq

q
λ

∫

R3

f (x)|U|q
|x|β dx ≤ c∗

μ,α –
tq

q
λ

∫

R3

f (x)|U|q
|x|β dx for any t ≥ 0. (3.3)

Since J(0) = 0, there exists t1 ∈ (0, 1) only depending on λ3 such that

max
0≤t≤t1

J(tU) < c∗
μ,α – C0λ

2
2–q for any λ ∈ (0,λ3).

On the other hand, by (3.3) we have that

max
t≥t1

J(tU) ≤ c∗
μ,α –

tq
1
q

λ

∫

R3
f (x)|U|q|x|–β dx,

which gives

max
t≥t1

J(tU) < c∗
μ,α – C0λ

2
2–q for any 0 < λ < λ4.
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Finally, we can deduce that

max
t≥0

J(tU) < c∗
μ,α – C0λ

2
2–q for any 0 < λ < �∗.

Since U ∈ D1,2(R3)\{0}, by Lemma 2.4 there exists unique t±
U such that t±

U U ∈ N±. Con-
sequently, we have m– ≤ J(t–

UU) ≤ maxt≥0 J(tU), which completes the proof. �

Now, we establish the existence of a local minimum for J(u) on N .

Proposition 3.4 Assume (F), μ ∈ [0, 1/4), α,β ∈ [0, 2), and q ∈ (1, 2), then for any λ ∈
(0,�∗) there exists uλ ∈ D1,2(R3) such that

(i) uλ is a positive solution of (1.1) and J(uλ) = m = m+;
(ii) ‖uλ‖ → 0 as λ → 0+.

Proof (i) In view of Proposition 3.1(i), any minimizing sequence {un} ⊂ N of m can be
chosen as a (PS)m sequence of J(u), that is,

J(un) → m + o(1) and J ′(un) = o(1) as n → ∞.

By Lemma 2.1, we know that {un} is bounded in D1,2(R3). Going to a subsequence if nec-
essary, there exists uλ ∈ D1,2(R3) such that un ⇀ uλ in D1,2(R3). It follows from the defi-
nitions of m and m± that m ≤ m±. Hence un → uλ in D1,2(R3) by Lemmas 3.2–3.3, then
J(uλ) = m and J ′(uλ) = 0. Since m ≤ m+ < 0, we can derive uλ is a nontrivial solution of (1.1)
by Lemma 2.2. By the fact that J(u) is translation invariant, we know that J(|uλ|) = J(uλ) = m
and J ′(|uλ|) = J ′(uλ) = 0. By using Harnack’s inequality [26], it follows that uλ(x) > 0 in R

3

and then uλ is a positive solution of (1.1). We now claim that uλ ∈N +. Indeed, we argue it
indirectly and assume uλ ∈N – by Lemma 2.3. It follows from Lemma 2.4 that there exist
unique t+

λ and t–
λ such that t±

λ uλ ∈ N± with 0 < t+
λ < t–

λ ≡ 1. By the same idea used in [6,
Lemma 4.2], we know that ϕuλ

(t) = J(tuλ) is strictly increasing on (t+
λ , t–

λ ) and hence

m+ ≤ J
(
t+
λ uλ

)
< J

(
t–
λ uλ

)
= J(uλ) = m ≤ m+,

a contradiction! So, we can obtain uλ ∈ N +, which implies that m+ ≤ J(uλ) = m ≤ m+.
Consequently, the proof of (i) is complete.

(ii) Since uλ ∈N +, then similar to (2.3) and (2.4) we have

‖uλ‖ < min

{[
(2∗(α) – q)λ|f |∞CR0,β ,q

2(2 – α)
√

2abS
q
2
μ,β

] 2
6–α–2q

,
[

(2∗(α) – q)λ|f |∞CR0,β ,q

a(4 – 2α)S
q
2
μ,β

] 1
2–q

}
,

which yields ‖uλ‖ → 0 as λ → 0+. The proof is complete. �

Next, we establish the existence of a local minimum for J(u) on N –.

Proposition 3.5 Assume (F), μ ∈ [0, 1/4), α,β ∈ [0, 2), and q ∈ (1, 2), then for any λ ∈
(0,�∗∗) there exists Uλ ∈ D1,2(R3) such that

(i) J(Uλ) = m–;
(ii) Uλ is a positive solution of (1.1).



Shen Journal of Inequalities and Applications  (2018) 2018:213 Page 14 of 19

Proof It follows from Proposition 3.1(ii) that there exists a (PS)m– sequence of J(u),

J(un) → m– + o(1) and J ′(un) = o(1) as n → ∞.

Hence {un} is bounded in D1,2(R3) by Lemma 2.1 and there exists Uλ ∈ D1,2(R3) such
that un ⇀ Uλ in D1,2(R3) in the sense of a subsequence. Using Lemmas 3.2–3.3, we ob-
tain un → Uλ in D1,2(R3) and then J(Uλ) = m– and J ′(Uλ) = 0. In view of Lemma 2.2 and
Lemma 2.5(ii), we know that Uλ is a nontrivial solution of (1.1). Similar to Proposition 3.4,
we have that Uλ is positive. The proof is complete. �

We are now in a position to complete the proof of Theorem 1.2.

Proof of Theorem 1.2 The part (i) is a corollary of Proposition 3.4. If λ ∈ (0,�∗∗), we can
obtain two positive solutions uλ ∈N + and Uλ ∈N – of (1.1) by Propositions 3.4–3.5. The
definitions of N± give us N + ∩ N – = ∅, then we know that uλ and Uλ are two different
positive solutions of (1.1). �

4 Asymptotic behavior as b ↘ 0+

In this section, we regard b ∈ (0, 1] as a parameter in problem (1.1) and analyze the conver-
gence property. To do it, we have to prove that problem (1.1) admits at least two nontrivial
solutions again. We introduce the following variational functional:

Jb(u) =
a
2
‖u‖2 +

b
4 – α

‖u‖4–α –
1

2∗(α)

∫

R3
|u|2∗(α)|x|–α dx –

λ

q

∫

R3
f (x)|u|q|x|–β dx

to emphasize the independence of b ∈ (0, 1].
Now we will verify that the functional Jb(u) exhibits the mountain pass geometry.

Lemma 4.1 The functional Jb(u) satisfies the mountain pass geometry around 0 ∈ D1,2(R3)
for any λ ∈ (0,λ5), that is,

(i) there exist δ,ρ > 0 independent of b such that Jb(u) ≥ δ > 0 when ‖u‖ = ρ ;
(ii) there exists e ∈ D1,2(R3) with ‖e‖ > ρ such that J(e) < 0.

Proof (i) It follows from (1.3) and (1.5) that

Jb(u) ≥ ‖u‖q
(

a
2
‖u‖2–q –

1
2∗(α)

S– 2∗(α)
2

μ,α ‖u‖2∗(α)–q –
λ

q
|f |∞CR0,β ,qS– q

2
μ,β

)

≥ ρq
{

a(2∗(α) – 2)
2(2∗(α) – q)

ρ2–q –
λ

q
|f |∞CR0,β ,qS– q

2
μ,β

}
,

where

ρ =
[

a2∗(α)S
2∗(α)

2
μ,α (2 – q)

2(2∗(α) – q)

] 1
2∗(α)–2

.

Therefore there exists δ > 0 such that Jb(u) ≥ δ > 0 when ‖u‖ = ρ > 0 for any λ ∈ (0,λ5).
(ii) Choosing u0 ∈ D1,2(R3)\{0}, then since 4 – α < 2∗(α) one has

Jb(tu0) ≤ a
2

t2‖u0‖2 +
b

4 – α
t4–α‖u0‖4–α –

t2∗(α)

2∗(α)

∫

R3

|u0|2∗(α)

|x|α dx → –∞ as t → +∞.
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Hence letting e = t0u0 ∈ D1,2(R3)\{0} with t0 sufficiently large, we have ‖e‖ > ρ and J(e) < 0.
The proof is complete. �

By Lemma 4.1 and the mountain pass theorem in [28], a (PS) sequence of the functional
J(u) at the level

cb := inf
γ∈�

max
t∈[0,1]

Jb
(
γ (t)

) ≥ δ > 0 (4.1)

can be constructed, where the set of paths is defined as

�b :=
{
γ ∈ C

(
[0, 1], D1,2(

R
3)) : γ (0) = 0, Jb

(
γ (1)

)
< 0

}
.

In other words, there exists a sequence {un} ⊂ D1,2(R3) such that

Jb(un) → cb, J ′
b(un) → 0 as n → ∞. (4.2)

Remark 4.2 By (4.1), we can conclude that cb < cμ,α – C0λ
2/(2–q) for any λ ∈ (0,λM). In fact,

in view of the proof of Lemma 3.3, we obtain

sup
t≥0

J(tU) < c∗
μ,α – C0λ

2
2–q

for any λ ∈ (0,λM). As the proof of Lemma 4.1(ii), there exists sufficiently large tU > 0
such that Jb(tUU) < 0. Hence let γ0(t) = ttUU ∈ �b, then cb ≤ supt≥0 J(tU), which yields
cb < cμ,α – C0λ

2/(2–q) for any λ ∈ (0,λM).

To obtain a solution with negative energy, we introduce the following lemma.

Lemma 4.3 (Ekeland’s variational principle [10], Theorem 1.1) Let V be a complete metric
space and F : V →R∪ {+∞} be lower semicontinuous, bounded from below. Then, for any
ε > 0, there exists some point v ∈ V with

F(v) ≤ inf
V

F + ε, F(w) ≥ F(v) – εd(v, w) for all w ∈ V .

Now, we establish the existence of multiple solutions of (1.1).

Proposition 4.4 Assume (F), μ ∈ [0, 1/4), α,β ∈ [0, 2), and q ∈ (1, 2), then equation (1.1)
has at least two positive solutions u1

b and u2
b satisfying

Jb
(
u2

b
)

< 0 < Jb
(
u1

b
)
, ∀λ ∈ (0,λM).

Proof Let {un} ⊂ D1,2(R3) satisfy (4.2), by Lemma 3.2 and Remark 4.2 we derive there
exists u1

b ∈ D1,2(R3) such that J ′
b(u1

b) = 0 and Jb(u1
b) = cb > 0.

On the other hand, for ρ > 0 given by Lemma 4.1(i), we define

Bρ =
{

u ∈ D1,2(
R

3),‖u‖ ≤ ρ
}

, ∂Bρ =
{

u ∈ D1,2(
R

3),‖u‖ = ρ
}

,
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clearly Bρ is a complete metric space with the distance d(u, v) = ‖u – v‖. It is obvious that
the functional Jb is lower semicontinuous and bounded from below on Bρ . We claim that

c̃b := inf
{

Jb(u) : u ∈ Bρ

}
< 0. (4.3)

Indeed, choosing a nonnegative function ψ ∈ C∞
0 (R3), we have

lim
t→0

Jb(tψ)
tq = –

λ

q

∫

R3

f (x)|ψ |q
|x|β dx < 0.

Therefore there exists a sufficiently small tψ > 0 such that ‖tψψ‖ ≤ ρ and Jb(tψψ) < 0,
which imply that (4.3) holds. By Lemma 4.3, for any n ∈ N , there exists ũn such that

c̃b ≤ Jb (̃un) ≤ c̃b +
1
n

, and Jb(v) ≥ Jb (̃un) –
1
n

‖̃un – v‖, ∀v ∈ Bρ .

Then a standard procedure gives that {un} is a bounded (PS)̃cb sequence of Jb. Therefore,
by Lemma 3.2 and (4.3), there exists u2

b ∈ D1,2(R3) such that J ′
b(u2

b) = 0 and Jb(u2
b) = c̃b < 0.

It is similar to Proposition 3.4 that u1
b and u2

b are positive. �

For b ∈ (0, 1], we can obtain two sequences {u1
b} and {u2

b} of solutions of (1.1) by Propo-
sition 4.4, that is,

J ′
b
(
u1

b
)

= 0, Jb
(
u1

b
)

= cb, (4.4)

and

J ′
b
(
u2

b
)

= 0, Jb
(
u2

b
)

= c̃b, (4.5)

The variational functional corresponding to (1.6) is given by

J0(u) =
a
2
‖u‖2 –

1
2∗(α)

∫

R3

|u|2∗(α)

|x|α dx –
λ

q

∫

R3

f (x)|u|q
|x|β dx

which is of class of C1 due to [28]. For any b ∈ (0, 1], we have

c∗
μ,α ≤ a(2 – α)

2(3 – α)
Sμ,α

(S
4–α

2
μ,α +

√
S4–α

μ,α + 4aSμ,α

2

) 2
2–α

+
(2 – α)

2(3 – α)(4 – α)
S

4–α
2

μ,α

(S
4–α

2
μ,α +

√
S4–α

μ,α + 4aSμ,α

2

) 4–α
2–α

� M0 < +∞,

where M0 is independent of b.

Proof of Theorem 1.4 To end the proof clearly, we will split it into several steps.
Step 1: There exist four constants independent of b ∈ (0, 1] such that

0 < δ ≤ cb < M0 – C0λ
2

2–q and – C0λ
2

2–q ≤ c̃b ≤ –
λ

2q

∫

R3

f (x)|ψ0|q
|x|β dx < 0. (4.6)
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In fact, the constant δ > 0 given by Lemma 4.1 is independent of any b > 0, then by (4.1)
we have that Jb(u1

b) ≥ δ. On the other hand, using (1.5) we have

Jb
(
u2

b
)

= Jb
(
u2

b
)

–
1

4 – α

〈
J ′
b
(
u2

b
)
, u2

b
〉

≥ a(2 – α)
2(4 – α)

∥∥u2
b
∥∥2 –

2∗(α) – q
q2∗(α)

λ|f |∞CR0,β ,qS– q
2

μ,β
∥∥u2

b
∥∥q ≥ –C0λ

p
p–q .

Let ψ0 ∈ C∞
0 (R3) satisfy ‖ψ0‖ ≤ (2qC0/|f |∞CR0,β ,q)

1
q λ

1
2–q S

1
2
μ,β and since

lim
t→0

Jb(tψ0)
tq = –

λ

q

∫

R3

f (x)|ψ0|q
|x|β dx < 0,

we can let t0 > 0 such that ‖t0ψ‖ ≤ ρ , where ρ > 0 is given by Lemma 4.1(ii). Therefore we
can obtain

c̃b = inf
{

Jb(u) : u ∈ Bρ

} ≤ –
λ

2q

∫

R3

f (x)|ψ0|q
|x|β dx < 0.

So the proof of Step 1 is complete.
Step 2: The sequences {ui

b} (i ∈ {1, 2}) contain strongly convergent subsequences.
By (4.4) and (4.5), we know that {ui

b} (i ∈ {1, 2}) are (PS) sequences of the functionals
Jb(u). We claim that {ui

b} (i ∈ {1, 2}) are bounded. In fact,

M > Jb
(
ui

b
)

= Jb
(
ui

b
)

–
1

4 – α

〈
J ′
b
(
ui

b
)
, ui

b
〉

≥ a(2 – α)
2(4 – α)

∥∥ui
b
∥∥2 –

2∗(α) – q
q2∗(α)

λ|f |∞CR0,β ,qS– q
2

μ,β
∥∥ui

b
∥∥q,

which yields that {ui
b} are bounded in D1,2(R3) since 1 < q < 2. With (4.4) and (4.5) in hand,

we can see Lemma 3.2 as a special case to show that the sequences {ui
b} (i ∈ {1, 2}) contain

strongly convergent subsequences with cb < 1
2 (2 – α)(3 – α)–1(aSμ,α)(3–α)/(2–α). Hence there

exist subsequences still denoted by themselves and ui ∈ D1,2(R3) such that ui
b → ui in

D1,2(R3) as b → 0+ for i ∈ {1, 2}. Therefore, ∀ϕ ∈ C∞
0 (R3) we have

0 =
(
a + b

∥∥ui
b
∥∥2–α)∫

R3
∇ui

b∇ϕ – μui
bϕ|x|–2 dx –

∫

R3

∣∣ui
b
∣∣2∗(α)–2ui

bϕ|x|–α dx

– λ

∫

R3

f (x)|ui
b|q–2ui

bϕ

|x|β dx

→ a
∫

R3
∇ui∇ϕ – μuiϕ|x|–2 dx –

∫

R3

∣∣ui∣∣2∗(α)–2uiϕ|x|–α dx

–λ

∫

R3
f (x)

∣∣ui∣∣q–2uiϕ|x|–β dx

as b → 0+, which yields that ui ∈ D1,2(R3) are solutions of (1.6) for i ∈ {1, 2}.
Step 3: J0(u2) < 0 < J0(u1).
Indeed,

J0
(
u1) = lim

b→0+
Jb

(
u1

b
) ≥ δ > 0
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and

J0
(
u2) = lim

b→0+
Jb

(
u2

b
) ≤ –

λ

2q

∫

R3

f (x)|ψ0|q
|x|β dx < 0.

Summing the above three steps, we obtain that u1 and u2 are two nontrivial solutions of
(1.6). The proof is complete. �

5 Conclusion
This paper is concerned with the qualitative analysis of solutions of a nonlocal problem
with Sobolev–Hardy exponent of Kirchhoff type. Meanwhile, it seems that the study of
Kirchhoff type equation involving Hardy term and singular nonlinearity via the Nehari
manifold and fibering maps is new.
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