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Abstract
In this paper we investigate the upper bound and the lower bound of the Choquet
integral for log-convex functions. Firstly, for a monotone log-convex function, we
state the similar Hadamard inequality of the Choquet integral in the framework of
distorted measure. Secondly, we estimate the upper bound of the Choquet integral
for a general log-convex function, respectively, in the case of distorted Lebesgue
measure and in the non-additive measure. Finally, we present Jensen’s inequality of
the Choquet integral for log-convex functions, which can be used to estimate the
lower bound of this kind when the non-additive measure is concave. We provide
some examples in the framework of the distorted Lebesgue measure to illustrate all
the results.
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1 Introduction
It is well known that the concept of non-additive measure [1] can be used to deal with
some uncertainty phenomena which cannot be easily modeled by using additive measure,
and the Choquet integral, which also covers the classical Lebesgue integral, is one kind of
nonlinear expectations. Many authors developed the Choquet theory with its applications
in many areas such as multicriteria decision making, risk measuring, option pricing, and
so on. Readers may refer to the references [2–17]. Here we specially mention that Mesiar et
al. [9] discussed the integral inequalities known for the Lebesgue integral in the framework
of the Choquet integral.

A strong property of convexity is log-convexity. It is known that every log-convex func-
tion is also convex. In many applications, assumptions about the log-convexity of a prob-
ability distribution allow just enough special structure to yield a workable theory. The
log-convexity (log-concavity) of probability densities and their integrals has interesting
qualitative implications in many areas of economics, in political science, in biology, and
in industrial engineering [18].

Thus the study of the Choquet integral of log-convex functions is an important and
interesting topic for further research. It is well known that the Hadamard inequality is a
famous and important result, which provides the upper (lower) bound for the mean value
of a log-convex (log-concave) function. Abbaszadeh et al. [19] studied the Sugeno fuzzy
integral of log-convex functions and showed that the Hadamard inequality is not valid for
this kind of Sugeno fuzzy integral. Motivated by [19], we naturally wonder whether the

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13660-018-1803-y
http://crossmark.crossref.org/dialog/?doi=10.1186/s13660-018-1803-y&domain=pdf
mailto:xiahongwang@163.com


Wang Journal of Inequalities and Applications  (2018) 2018:210 Page 2 of 17

Hadamard inequality still holds for the Choquet integral. If the Hadamard inequality is
not valid, then it is necessary to estimate the upper bound and the lower bound of the
Choquet integral for log-convex functions.

In this paper, we shall study the upper bound and the lower bound of the Choquet in-
tegral for log-convex functions. The rest of this paper is organized as follows. Section 2
is for preliminaries and notations of the non-additive measure, the Choquet integral, and
log-convex function that will be used later. In Sect. 3, the main results are shown. Firstly,
we shall point out that the Hadamard inequality is not valid in the framework of distorted
Lebesgue measure and shall present a similar Hadamard inequality for monotone log-
convex functions. Secondly, the upper bound of the Choquet integral for the general log-
convex function is presented. Finally, we shall investigate Jensen’s inequality of the Cho-
quet integral for a log-convex function, which can be used to estimate the lower bound
of this kind. At the end of the paper, some conclusions are drawn and some problems for
further investigation are suggested.

2 Preliminaries
Throughout the paper, assume that (X,F ) is a measurable space and (R+) R is the set of
all (nonnegative) real numbers.

We first recall some concepts and some elementary results of capacity and the Choquet
integral [1, 2].

Definition 2.1 A set function μ : F → R+ is called a non-additive measure if it satisfies
(1) μ(∅) = 0;
(2) μ(A) ≤ μ(B) for any A ⊆ B and A, B ∈F .

Given a non-additive measure μ on (X,F ), with μ(X) finite (i.e., μ(X) < ∞), we define its
conjugate or dual as the measure μ̄ defined as follows: μ̄(A) = μ(X) – μ(Ac) for all A ∈F .
Here and in the sequel Ac denotes the complement set of A. When a measure μ is additive,
it holds that μ(A) = μ̄(A).

The non-additive measure μ is called concave if

μ(A ∪ B) + μ(A ∩ B) ≤ μ(A) + μ(B)

for all A, B ∈ F . In the literature the concave non-additive measure is known as submod-
ular or 2-alternating non-additive measure. If the above inequality is reversed, μ is called
convex. Similarly, convexity is called supermodularity or 2-monotonicity, too.

First note that the Lebesgue measure λ for an interval [a, b] is defined by λ([a, b]) = b – a,
and that given a distortion function m, which is increasing (or non-decreasing) and such
that m(0) = 0, the measure μ(A) = m(λ(A)) is a distorted Lebesgue measure. We denote
a Lebesgue measure with distortion m by μ = μm. It is not difficult to know that μm is
concave (convex) if m is a concave (convex) function.

The family of all the nonnegative, measurable functions f : (X,F ) → (R+,B(R+)) is de-
noted as L∞

+ , where B(R+) is the Borel σ -field of R+. The concept of the integral with
respect to a non-additive measure was introduced by Choquet [1].
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Definition 2.2 Let f ∈ L∞
+ . The Choquet integral of f with respect to non-additive mea-

sure μ on A ∈F is defined by

(C)
∫

A
f dμ =

∫ +∞

0
μ

({
x : f (x) ≥ t

} ∩ A
)

dt, (1)

where the integrals on the right-hand side are taken in the sense of Lebesgue.

Instead of (C)
∫

X f dμ, we shall write (C)
∫

f dμ. If (C)
∫

f dμ < ∞, we say that f is Cho-
quet integrable. For f ∈ L∞

+ , we write

L+
C(μ) =

{
f : (C)

∫
f dμ < ∞

}
.

The subsequent lemma summarizes the basic properties of Choquet integrals [2].

Lemma 2.1 Assume that f , g ∈ L+
C(μ).

(1) (C)
∫

1A dμ = μ(A), A ∈F .
(2) (Positive homogeneity) For all λ ∈ R+, we have (C)

∫
λf dμ = λ · (C)

∫
f dμ.

(3) (Translation invariance) For all c ∈ R, we have (C)
∫

(f + c) dμ = (C)
∫

f dμ + c.
(4) (Monotonicity in the integrand) If f ≤ g , then we have

(C)
∫

f dμ ≤ (C)
∫

g dμ;

(Monotonicity in the set function) If μ ≤ ν , then we have (C)
∫

f dμ ≤ (C)
∫

f dν .
(5) (Subadditivity) If μ is concave, then

(C)
∫

(f + g) dμ ≤ (C)
∫

f dμ + (C)
∫

g dμ;

(Superadditivity) If μ is convex, then

(C)
∫

(f + g) dμ ≥ (C)
∫

f dμ + (C)
∫

g dμ.

(6) (Comonotonic additivity) If f and g are comonotonic, then

(C)
∫

(f + g) dμ = (C)
∫

f dμ + (C)
∫

g dμ,

where we say that f and g are comonotonic, if for any x, x′ ∈ X , then

(
f (x) – f

(
x′))(g(x) – g

(
x′)) ≥ 0.

We review now the excellent results from the article [20], which permits us to compute
the Choquet integral when the non-additive measure is a distorted Lebesgue measure.

Lemma 2.2 Let f be a nonnegative and measurable function on R+ and μ = μm be a dis-
torted Lebesgue measure. And assume that m(x) and f (x) are both continuously differen-
tiable. When f is an increasing (non-decreasing) function on R+, the Choquet integral of f
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with respect to μm on [0, t] is represented as

(C)
∫

[0,t]
f dμm =

∫ t

0
m′(t – x)f (x) dx; (2)

however, when f is a decreasing (non-increasing) function on R+, the Choquet integral of f
is

(C)
∫

[0,t]
f dμm =

∫ t

0
m′(x)f (x) dx. (3)

The following lemma, about Jensen’s inequality of the Choquet integral, comes from [9,
15].

Lemma 2.3 Assume that f ∈ L+
C(μ) and the non-additive measure μ is concave on (X,F ).

If � : R+ → R+ is a convex function, then

�

(
(C)

∫
f dμ

)
≤ (C)

∫
� ◦ f dμ. (4)

In the following subsection, we shall list some preliminaries about the log-convex func-
tions. Concerning more definitions and more results of the log-convexity, readers could
refer to Zhang and Jiang’s excellent article [21].

Recall the definition of a log-convex (log-concave) function.

Definition 2.3 Let f : [a, b] ⊆ R → R+. Then f is called a log-convex (log-concave) func-
tion, if for any x, y ∈ [a, b] and λ ∈ [0, 1] we have

f
(
λx + (1 – λ)y

) ≤ (≥)f (x)λf (y)1–λ. (5)

If the reverse inequality holds, f is termed log-concave.

The logarithmic mean L(x, y) of two positive numbers x, y is given by

L(x, y) =

⎧⎨
⎩

x–y
ln x–ln y , x = y,

x, x = y.

The following Hadamard inequality provides the upper (lower) bound for the mean
value of a measurable and log-convex (log-concave) function f : [a, b] → R+ (see [22]):

1
b – a

∫ b

a
f (x) dx ≤ (≥)L

(
f (a), f (b)

)
. (6)

3 Main results
In this paper, we shall study the Choquet integral for log-convex (log-concave) functions.

Firstly, we shall investigate whether the Hadamard inequality for the Choquet integral
still holds. The following theorem shows that the Hadamard inequality is not valid in the
distorted measure theory. However, we can obtain a similar Hadamard inequality under
some certain conditions.

Hereafter, let m(x) and f (x) be continuously differentiable.
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Theorem 3.1
(1) Let f be a positive, measurable, decreasing, and log-convex (log-concave) function on

R+ and μ = μm be a distorted Lebesgue measure. Then there exists ξ ∈ (0, 1) such that

(C)
∫

[0,1]
f (x) dμm ≤ (≥)m′(ξ )L

(
f (0), f (1)

)
. (7)

(2) Let f be a positive, measurable, increasing, and log-convex (log-concave) function on
R+ and μ = μm be a distorted Lebesgue measure. Then there exists θ ∈ (0, 1) such that

(C)
∫

[0,1]
f (x) dμm ≤ (≥)m′(1 – θ )L

(
f (0), f (1)

)
. (8)

Proof (1) Since the log-convexity (log-concavity) of the function f , easily we get

∫ 1

0
f (x) dx ≤ (≥)L

(
f (0), f (1)

)

due to the Hadamard inequality. On the other hand, since f is non-increasing, we know
that

(C)
∫

[0,1]
f (x) dμm =

∫ 1

0
m′(x)f (x) dx

due to Lemma 2.2. Considering that f (x) > 0 on [0, 1], we know that there exists ξ ∈ (0, 1)
such that

∫ 1

0
m′(x)f (x) dx = m′(ξ )

∫ 1

0
f (x) dx

by the mean value theorems for definite integrals. So we have

(C)
∫

[0,1]
f (x) dμm = m′(ξ )

∫ 1

0
f (x) dx ≤ (≥)m′(ξ )L

(
f (0), f (1)

)
, ξ ∈ (0, 1),

which completes the proof.
(2) In an analogous way as in the proof of (1), we can obtain the desired result. �

Example 3.1 Taking the positive, increasing, and log-convex function f (x) = 2x2–3 on R+,
easily we get

∫ 1

0
f (x) dx =

∫ 1

0
2x2–3 dx ≤ L

(
f (0), f (1)

) ≈ 0.1800

due to the Hadamard inequality. On the other hand, if we put g(x) = x2, then

(C)
∫

[0,1]
f (x) dμg =

∫ 1

0
2(1 – x)2x2–3 dx.

Since 2x2–3 > 0 on [0, 1], we know that there exists θ ∈ (0, 1) such that

∫ 1

0
2(1 – x)2x2–3 dx = 2(1 – θ )

∫ 1

0
2x2–3 dx
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by the mean value theorems for definite integrals. So we have

(C)
∫

[0,1]
f (x) dμg = 2(1 – θ )

∫ 1

0
2x2–3 dx ≤ 2(1 – θ )L

(
f (0), f (1)

)
, θ ∈ (0, 1).

In fact,
∫ 1

0
2x2–3 dx ≈ 0.1610

and

(C)
∫

[0,1]
f (x) dμg =

∫ 1

0
2(1 – x)2x2–3 dx ≈ 0.1417,

so in this case θ ≈ 0.5599.

The next theorem is the general case of Theorem 3.1.

Theorem 3.2
(1) Let f be a positive, measurable, decreasing, and log-convex (log-concave) function on

R+ and μ = μm be a distorted Lebesgue measure. For [a, b] ⊂ R+, we know there
exists ξ ∈ (0, b – a) such that

1
b – a

(C)
∫

[a,b]
f (x) dμm ≤ (≥)m′(ξ )L

(
f (a), f (b)

)
. (9)

(2) Let f be a positive, measurable, increasing and log-convex (log-concave) function on
R+ and μ = μm be a distorted Lebesgue measure. For [a, b] ⊂ R+, we know there
exists θ ∈ (0, b – a) such that

1
b – a

(C)
∫

[a,b]
f (x) dμm ≤ (≥)m′(b – a – θ )L

(
f (a), f (b)

)
. (10)

Proof (1) We know that

(C)
∫

[a,b]
f (x) dμm = (C)

∫
[0,b–a]

f (a + x) dμm.

On the one hand, we get

∫ b–a

0
f (a + x) dx ≤ (≥)(b – a)L

(
f (a), f (b)

)

due to the Hadamard inequality; on the other hand, we know that

(C)
∫

[0,b–a]
f (a + x) dμm =

∫ b–a

0
m′(x)f (a + x) dx

due to Lemma 2.2. Since f (a + x) > 0 on [0, b – a], we know that there exists ξ ∈ (0, b – a)
such that

∫ b–a

0
m′(x)f (a + x) dx = m′(ξ )

∫ b–a

0
f (a + x) dx
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by the mean value theorems for definite integrals. So we have

1
b – a

(C)
∫

[a,b]
f (x) dμm =

1
b – a

m′(ξ )
∫ b–a

0
f (a + x) dx ≤ (≥)m′(ξ )L

(
f (a), f (b)

)
,

where ξ ∈ (0, b – a).
(2) In an analogous way as in the proof of (1), we can obtain the desired result. Since

f (a + x) is decreasing on [0, b – a], we know that

(C)
∫

[0,b–a]
f (a + x) dμm =

∫ b–a

0
m′(b – a – x)f (a + x) dx

due to Lemma 2.2. Since f (a + x) > 0 on [0, b – a], we know that there exists θ ∈ (0, b – a)
such that

∫ b–a

0
m′[b – a – (a + x)

]
f (a + x) dx = m′(b – a – θ )

∫ b–a

0
f (a + x) dx

by the mean value theorems for definite integrals. So we have

1
b – a

(C)
∫

[a,b]
f (x) dμm =

1
b – a

m′(b – a – θ )
∫ 1

0
f (a + x) dx

≤ (≥)m′(b – a – θ )L
(
f (a), f (b)

)
,

where θ ∈ (0, b – a). We complete the proof. �

Example 3.2 Consider the function f (x) = x2x2–2 on R+. This function is positive, increas-
ing, and log-convex. Obviously f (1) = 1/2, f (2) = 8. Let m(x) = x2. According to Theo-
rem 3.2 (2), there exists θ ∈ (0, 1) such that

(C)
∫

[1,2]
f (x) dμm ≤ 2(1 – θ )L

(
f (1), f (2)

) ≈ 5.4100(1 – θ )

due to L(f (1), f (2)) ≈ 2.7050.
In fact, we have

(C)
∫

[1,2]
f (x) dμm = (C)

∫
[0,1]

f (1 + x) dμm

=
∫ 1

0
m′(1 – x)f (1 + x) dx

=
∫ 1

0
2(1 – x)f (1 + x) dx = 2(1 – θ )

∫ 1

0
f (1 + x) dx,

where θ ∈ [0, 1]. Since

∫ 1

0
2(1 – x)f (1 + x) dx =

∫ 1

0
2(1 – x)(1 + x)2(1+x)2–2 dt ≈ 1.4615
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and

∫ 1

0
f (1 + x) dx =

∫ 1

0
(1 + x)2(1+x)2–2 dx ≈ 2.5247,

we have θ ≈ 0.7106.

Observe that Theorems 3.1 and 3.2 are based on the assumption that the log-convex
function is monotone. This suggests an open question: Can we find the upper bound of
the Choquet integral when the log-convex function is not monotone? In the following we
shall present some results concerning this issue.

Theorem 3.3 Let f be a positive, measurable, and log-convex function on R+ and μ = μm

be a distorted Lebesgue measure. If f (0) = f (1), then we have

(C)
∫

[0,1]
f (x) dμm ≤

∫ 1

0
m′(1 – x)f (0)1–xf (1)x dx (11)

for f (0) < f (1) and

(C)
∫

[0,1]
f (x) dμm ≤

∫ 1

0
m′(x)f (0)1–xf (1)x dx (12)

for f (0) > f (1).

Proof Using the log-convexity of f , for x ∈ [0, 1], we have

f (x) = f
(
(1 – x) · 0 + x · 1

) ≤ f (0)1–xf (1)x.

If f (0) < f (1), then f (0)1–xf (1)x = f (0) · ( f (1)
f (0) )x is increasing on R+. By (4) of Lemma 2.1

and Lemma 2.2, we frequently have

(C)
∫

[0,1]
f (x) dμm ≤ (C)

∫
[0,1]

f (0)1–xf (1)x dμm =
∫ 1

0
m′(1 – x)f (0)1–xf (1)x dx.

Conversely, if f (0) > f (1), then f (0)1–xf (1)x is decreasing on [0, 1]. We similarly have

(C)
∫

[0,1]
f (x) dμm ≤ (C)

∫
[0,1]

f (0)1–xf (1)x dμg =
∫ 1

0
m′(x)f (0)1–xf (1)x dx.

The proof is completed. �

Remark 3.1 When f (0) = f (1) in Theorem 3.3, we have f (x) ≤ f (0), x ∈ [0, 1]. Taking into
account (1) and (2) of Lemma 2.1, we get

(C)
∫

[0,1]
f (x) dμm ≤ (C)

∫
[0,1]

f (0) dμm = (C)
∫

f (0) · 1[0,1] dμm

= f (0) · m
(
λ
(
[0, 1]

))
= f (0)m(1).
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In the next theorem, we prove the general case of Theorem 3.3.

Theorem 3.4 Let f be a positive, measurable, and log-convex function on R+ and μ = μm

be a distorted Lebesgue measure. If f (a) = f (b), then we have

(C)
∫

[a,b]
f (x) dμg ≤

∫ b–a

0
m′(b – a – x)f (a)

b–a–x
b–a f (b)

x
b–a dx (13)

for f (a) < f (b); and

(C)
∫

[a,b]
f (x) dμg ≤

∫ b–a

0
m′(x)f (a)

b–a–x
b–a f (b)

x
b–a dx (14)

for f (a) > f (b).

Proof We know that

(C)
∫

[a,b]
f (x) dμg = (C)

∫
[0,b–a]

f (a + x) dμg .

Using the log-convexity of f , for t = x
b–a ∈ [0, 1], we have

f (a + x) = f
(
(1 – t)a + tb

) ≤ (≥)f (a)1–tf (b)t .

If f (a) < f (b), then f (a)1–tf (b)t is increasing. By (4) of Lemma 2.1 and Lemma 2.2, we
frequently have

(C)
∫

[a,b]
f (x) dμg = (C)

∫
[0,b–a]

f (a + x) dμg

≤ (C)
∫

[0,b–a]
f (a)1–tf (b)t dμg

=
∫ b–a

0
m′(b – a – x)f (a)1–tf (b)t dx,

where t = x
b–a .

Conversely, if f (a) > f (b), then f (a)1–tf (b)t is decreasing. We similarly have

(C)
∫

[a,b]
f (x) dμg ≤ (C)

∫
[0,b–a]

f (a)1–tf (b)t dμg =
∫ b–a

0
m′(x)f (a)1–tf (b)t dx,

where t = x
b–a .

The proof is completed. �

Remark 3.2 In the case f (a) = f (b) in Theorem 3.4, we can get

(C)
∫

[a,b]
f (x) dμm ≤ (C)

∫
[a,b]

f (a) dμm

= (C)
∫

f (a) · 1[a,b] dμm = f (a) · μm
(
[a, b]

)

= f (a) · m(λ
(
[a, b]

)
= f (a) · m(b – a).
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Remark 3.3 We need to point out that Theorems 3.3 and 3.4 hold for the general log-
convex function; that is to say, the two theorems do not require that f is monotone. Of
course, even so, they hold for a monotone log-convex function.

Example 3.3 Consider the function f (x) = 2x2–3 on R+ and the distorted Lebesgue measure
μ = μm, where m(x) = x2 in Example 3.1. We have, according to Theorem 3.3,

(C)
∫

[0,1]
2x2–3 dμg ≤ (C)

∫
[0,1]

f (0)1–xf (1)x dμg = (C)
∫

[0,1]
2x–3 dμg

=
∫ 1

0
2(1 – x)2x–3 dx ≈ 0.1597.

Example 3.4 Consider the function f (x) = x2x2–2 on R+ and the distorted Lebesgue mea-
sure μ = μm, where m(x) = x2 in Example 3.2. We have, according to Theorem 3.4,

(C)
∫

[1,2]
x2x2–2 dμg ≤ (C)

∫
[0,1]

f (1)1–xf (2)x dμg = (C)
∫

[0,1]
24x–1 dμg

=
∫ 1

0
2(1 – x)24x–1 dt ≈ 1.5906.

In the following, we shall discuss the upper bound of the Choquet integral for the log-
convex function in the framework of the general non-additive measure.

Theorem 3.5 Let f be a nonnegative, measurable, and log-convex function on R+ and μ

be a non-additive measure. If f (0) = f (1), then we have

(C)
∫

[0,1]
f (x) dμ ≤

∫ +∞

0
μ

(
[0, 1] ∩ {

x : f (0)1–xf (1)x ≥ r
})

dr. (15)

Furthermore, if f (0) < f (1), then

(C)
∫

[0,1]
f (x) dμ ≤ μ

(
[0, 1]

)
f (0) + ln

f (1)
f (0)

∫ 1

0
μ

(
[x, 1]

)
f (0)1–xf (1)x dx;

if f (0) > f (1), then

(C)
∫

[0,1]
f (x) dμ ≤ μ

(
[0, 1]

)
f (1) – ln

f (1)
f (0)

∫ 1

0
μ

(
[0, x]

)
f (0)1–xf (1)x dx.

Proof Using the log-convexity of f , for x ∈ [0, 1], we have

f (x) = f
(
(1 – x) · 0 + x · 1

) ≤ f (0)1–xf (1)x.

Due to (4) of Lemma 2.1, we frequently have

(C)
∫

[0,1]
f (x) dμ ≤ (C)

∫
[0,1]

f (0)1–xf (1)x dμ

=
∫ +∞

0
μ

(
[0, 1] ∩ {

x : f (0)1–xf (1)x ≥ r
})

dr.
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For simplicity, we denote F(x) = f (0)1–xf (1)x. It is easy to get F(0) = f (0), F(1) = f (1), and
F ′(x) = f (0)1–xf (1)x ln f (1)

f (0) .
If f (0) < f (1), then we have

∫ +∞

0
μ

(
[0, 1] ∩ {

x : F(x) ≥ r
})

dr

=
∫ +∞

0
μ

(
[0, 1] ∩ {

x : x ≥ F–1(r)
})

dr

=
∫ f (0)

0
μ

(
[0, 1]

)
dr +

∫ f (1)

f (0)
μ

([
F–1(r), 1

])
dr

= μ
(
[0, 1]

)
f (0) +

∫ 1

0
μ

(
[x, 1]

)
F ′(x) dx.

Conversely, if f (0) > f (1), then we have

∫ +∞

0
μ

(
[0, 1] ∩ {

x : F(x) ≥ r
})

dr

=
∫ +∞

0
μ

(
[0, 1] ∩ {

x : x ≥ F–1(r)
})

dr

=
∫ f (1)

0
μ

(
[0, 1]

)
dr +

∫ f (0)

f (1)
μ

([
0, F–1(r)

])
dr

= μ
(
[0, 1]

)
f (1) –

∫ 1

0
μ

(
[0, x]

)
F ′(x) dx.

The proof is completed. �

Remark 3.4 Specially, when μ = μm is a distorted Lebesgue measure, Theorem 3.5 still
holds.

Example 3.5 Consider the function f (x) = 2x2–3 on R+ and the distorted Lebesgue measure
μ = μm, where m(x) = x2, in Examples 3.1 and 3.3. We have f (0) = 1/8, f (1) = 1/4, and

(C)
∫

[0,1]
2x2–3 dμ ≤ (C)

∫
[0,1]

2–3(1–x) · 2–2x dμ

= (C)
∫

[0,1]
2x–3 dμ

=
∫ +∞

0
m

(
λ
(
[0, 1] ∩ {

x : 2x–3 ≥ r
}))

dr

=
∫ +∞

0
m

(
λ
(
[0, 1] ∩ {

x ≥ logr
2 +3

}))
dr

=
∫ 1/8

0
m

(
λ
(
[0, 1]

))
dr +

∫ 1/4

1/8
m

(
λ
([

logr
2 +3, 1

]))
dr

=
1
8

+
∫ 1

0
m

(
λ
(
[x, 1]

))(
2x–3)′ dx

=
1
8

+
∫ 1

0
(1 – x)22x–3 ln 2 dx ≈ 0.1597.
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The next theorem is the general case of Theorem 3.5.

Theorem 3.6 Let f be a nonnegative, measurable, and log-convex function on R+ and μ

be a non-additive measure. For [a, b] ⊂ R+, if f (a) = f (b), then we have

(C)
∫

[a,b]
f (x) dμ ≤

∫ +∞

0
μ

(
[a, b] ∩ {

x : f (a)1–xf (b)x ≥ r
})

dr. (16)

Furthermore, if f (a) < f (b), then

(C)
∫

[a,b]
f (x) dμ ≤ μ

(
[a, b]

)
f (a) +

1
L(f (a), f (b))

∫ b

a
μ

(
[x, b]

)
f (a)1–tf (b)t dx;

and, if f (a) > f (b), then

(C)
∫

[a,b]
f (x) dμ ≤ μ

(
[a, b]

)
f (b) –

1
L(f (a), f (b))

∫ b

a
μ

(
[a, x]

)
f (a)1–tf (b)t dx,

where t = x–a
b–a .

Proof Using the log-convexity of f , for x ∈ [a, b], we have

f (x) = f
((

1 –
x – a
b – a

)
· a +

x – a
b – a

· b
)

≤ f (a)1–tf (b)t = G(x),

where t = x–a
b–a . We have G(a) = f (a), G(b) = f (b), and

G′(x) =
f (a)1–tf (b)t

L(f (a), f (b))
.

Due to (4) of Lemma 2.1, we have

(C)
∫

[a,b]
f (x) dμ ≤ (C)

∫
[a,b]

G(x) dμ

=
∫ +∞

0
μ

(
[a, b] ∩ {

x : G(x) ≥ r
})

dr.

If f (a) < f (b), then we have

∫ +∞

0
μ

(
[a, b] ∩ {

x : G(x) ≥ r
})

dr

=
∫ +∞

0
μ

(
[a, b] ∩ {

x : x ≥ G–1(r)
})

dr

=
∫ f (a)

0
μ

(
[a, b]

)
dr +

∫ f (b)

f (a)
μ

([
G–1(r), b

])
dr

= μ
(
[a, b]

)
f (a) +

∫ b

a
μ

(
[x, b]

)
G′(x) dx.
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Conversely, if f (a) > f (b), then we have

∫ +∞

0
μ

(
[a, b] ∩ {

x : G(x) ≥ r
})

dr

=
∫ +∞

0
μ

(
[a, b] ∩ {

x : x ≥ G–1(r)
})

dr

=
∫ f (b)

0
μ

(
[a, b]

)
dr +

∫ f (a)

f (b)
μ

([
a, G–1(r)

])
dr

= μ
(
[a, b]

)
f (b) –

∫ b

a
μ

(
[a, x]

)
G′(x) dx.

The proof is completed. �

Example 3.6 Consider the function f (x) = x2x2–2 on R+ and the distorted Lebesgue mea-
sure μ = μm, where m(x) = x2 in Examples 3.2 and 3.4. We have f (1) = 1/2, f (2) = 8 and,
according to Theorem 3.6,

(C)
∫

[1,2]
x2x2–2 dμm ≤ (C)

∫
[1,2]

24x–5 dμm

=
∫ +∞

0
μm

(
[1, 2] ∩ {

x : 24x–5 ≥ r
})

dr

=
∫ +∞

0
μm

(
[1, 2] ∩

{
x : x ≥ 1

4
(
logr

2 +5
)})

dr

=
∫ 1/2

0
μm

(
[1, 2]

)
dr +

∫ 8

1/2
μm

([
1
4
(
logr

2 +5
)
, 2

])
dr

=
1
2

+
∫ 8

1/2

(
2 –

1
4
(
logr

2 +5
))2

dr

=
1
2

+
1

16

∫ 8

1/2

(
3 – logr

2
)2 dr

≈ 1.5906.

The remainder of this paper will be mainly devoted to Jensen’s inequality of the Choquet
integral for log-convex functions.

It is well known that there is a result: if g : R+ → R+ is a log-convex function, then g is
convex. The proof is sketched for the readers’ convenience.

Proof We firstly come to show the following inequality (Dieudonne [23]; Kallenberg [24]):
Let x, y ≥ 0, 1 < p, q < ∞, and 1

p + 1
q = 1, then

x
1
p y

1
q ≤ x

p
+

y
q

from the concavity of the logarithm function.
Since g is a log-convex function, for all x, y ≥ 0 and λ ∈ (0, 1), we have

g
(
λx + (1 – λ)y

) ≤ g(x)λg(y)1–λ.
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Putting p = 1
λ

, q = 1
1–λ

, frequently we can get

g(x)λg(y)1–λ = g(x)
1
p g(y)

1
q ≤ λg(x) + (1 – λ)g(y).

So we obtain

g
(
λx + (1 – λ)y

) ≤ λg(x) + (1 – λ)g(y),

which means g is convex. �

Due to the above result and Lemma 2.3, we can easily show the following theorem.

Theorem 3.7 (Jensen’s inequality) Assume that f ∈ L+
C(μ) and the non-additive measure

μ is concave (convex). If g : R+ → R+ is a log-convex (log-concave) function, then we have

g
(

(C)
∫

f dμ

)
≤ (≥)(C)

∫
g ◦ f dμ. (17)

Proof Let y0 = (C)
∫

f dμ. g is log-convex, then g is convex. So there exists a line through
y0, i.e., there exist a and b such that

ay0 + b = g(y0) and ay + b ≤ g(y)

for any y ∈ R. Therefore, it follows that a · f (x) + b ≤ g ◦ f (x) for all x ∈ X. When a > 0, by
property (2) in Lemma 2.1, we have (C)

∫
a · f dμ = a · (C)

∫
f dμ; when a < 0, we have

(C)
∫

a · f dμ = –(C)
∫

(–a) · f dμ̄ ≥ –(C)
∫

(–a) · f dμ = a · (C)
∫

f dμ,

because μ is concave, which implies μ ≥ μ̄. Then, by Lemma 2.1, we have

g
(

(C)
∫

f dμ

)
= a · (C)

∫
f dμ + b ≤ (C)

∫
(a · f + b) dμ ≤ (C)

∫
g ◦ f dμ

as desired. �

Similarly we shall present the following Jensen inequality for the Choquet integral of the
log-convex function in two dimensions.

Theorem 3.8 (Jensen’s inequality in two dimensions) Assume that f , h ∈ L+
C(μ) and the

non-additive measure μ is concave (convex). If f , h are comonotonic and g : R+ → R+ is a
log-convex (log-concave) function, then we have

g
(

(C)
∫

f dμ, (C)
∫

h dμ

)
≤ (≥)(C)

∫
g(f , h) dμ. (18)

Proof Let y0 = (C)
∫

f dμ, z0 = (C)
∫

h dμ. g is log-convex, then g is convex. So there exists
a plane through (y0, z0), i.e., there exist a, b, c such that

ay0 + bz0 + c = g(y0, z0), ay + bz + c ≤ g(y, z)
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for any y, z ∈ R. Therefore, it follows that a · f (ω)+b ·h(ω)+c ≤ g(f (ω), h(ω)). By Lemma 2.1
and the proof of Theorem 3.7, we have

g
(

(C)
∫

f dμ, (C)
∫

h dμ

)
= a ·

∫
f dμ + b · (C)

∫
h dμ + c

≤
∫

(a · f + b · h + c) dμ

≤
∫

g(f , h) dμ.

Therefore, the conclusion holds. �

Remark 3.5
(1) Here the two discussed Jensen inequalities of the Choquet integral for log-convex

functions are valid whenever the considered non-additive measure μ is concave,
which compares also the articles [9] and [15] where all considered inequalities for
Choquet integrals hold whenever μ is concave.

In particular, when the non-additive measure μ is a plausibility function or the
concave distortion measure μ = μm, where m is a concave function, both
inequalities above hold.

(2) In fact, for the Choquet integral of log-convex functions, we might investigate the
lower bound, when the considered non-additive measure μ is concave, using
Jensen’s inequality. We shall provide an easy example below.

Example 3.7 Consider the function L(x) = 2(x+1)2 on R+. L(x) = g ◦ f is the compound func-
tion of g(u) and f (x), where g(u) = 2u2 and u = f (x) = x + 1. Evidently g(u) is a log-convex
function.

Let the distorted Lebesgue measure μ = μm, where m(x) =
√

x. m is concave, so μm is
concave. By Theorem 3.7, we have

(C)
∫

[0,1]
2(x+1)2

dμm ≥ 2[(C)
∫

[0,1](x+1) dμm]2

= 2[(C)
∫ 1

0
x+1

2
√

1–x
dx]2

= 21.66662 ≈ 6.8571.

4 Conclusions and problems for further investigation
This paper offered the readers both some new results of the upper bound and Jensen’s
inequalities of the Choquet integral for the log-convex functions.

• We firstly pointed out that the Hadamard inequality is not valid in the non-additive
measure theory, and stated the similar Hadamard inequality of the Choquet integral
for monotone log-convex function in the framework of distorted measure.

• We secondly estimated the upper bound of the Choquet integral for the general
log-convex functions both in the case of distorted measure and in the case of
non-additive measure.

• Finally, we obtained Jensen’s inequality and Jensen’s inequality in two dimensions of
the Choquet integral for log-convex functions.

These results are extensions of the Choquet theory.
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For further investigation, since we have already had a clear understanding of the upper
bound and Jensen’s inequality of the Choquet integral for log-convex functions, it is natural
to consider how to use them to estimate unsolvable integrals of this kind. Thus the study of
their applications is an interesting topic for further research. On the other hand, we shall
continue to explore some other inequalities for the Choquet integral of the log-convex
functions and also investigate their applications in some areas.

5 Methods
The aim of this paper is to study the upper bound and the lower bound of the Choquet
integral for log-convex functions. It is well known that the Hadamard inequality provides
the upper (lower) bound for the mean value of a log-convex (log-concave) function, so
we want to know whether the Hadamard inequality still holds for the Choquet integral.
If the Hadamard inequality is not valid, then how to estimate the upper bound and the
lower bound of the Choquet integral for log-convex functions? This is the author’s study-
ing route.

In the paper, we attained the similar Hadamard inequality of the Choquet integral for
a monotone log-convex function in the framework of distorted measure by Lemma 2.2
(which permits us to compute the Choquet integral when the non-additive measure is
a distorted Lebesgue measure). Then we estimated the upper bound of the Choquet in-
tegral for a general log-convex function, respectively, in the case of distorted Lebesgue
measure and in the non-additive measure using the basic properties of Choquet integrals.
Finally, we studied Jensen’s inequality of the Choquet integral for log-convex functions by
Lemma 2.3 (Jensen’s inequality of the Choquet integral).
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