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1 Introduction and preliminaries
In this paper, N, N+ and R are used to denote the set of all nonnegative integer numbers,
the set of all positive integer numbers, and the set of all real numbers, respectively.

The Banach contraction mapping principle in metric spaces is an important tool in non-
linear analysis, many authors have been devoting in generalizing metric spaces and the Ba-
nach contraction mapping principle. And then, many generalized metric spaces were in-
troduced. In 2013, Alghamdi et al. [1] proposed the concept of b-metric-like spaces which
is considered to be an interesting generalization of metric spaces, b-metric spaces [2] and
metric-like spaces [3]. After that, some fixed point theorems were investigated by many
authors [4–8]. Firstly, let us recall some definitions about b-metric-like spaces.

Definition 1.1 ([1]) A b-metric-like on a nonempty set X is a function b : X×X → [0, +∞)
such that, for all x, y, z ∈ X and a constant s ≥ 1, the following three conditions hold true:

(b1) if b(x, y) = 0 then x = y;
(b2) b(x, y) = b(y, x);
(b3) b(x, z) ≤ s[b(x, y) + b(y, z)].

The pair (X, b) is then called a b-metric-like space with coefficient s.

Some concepts in b-metric-like spaces were introduced as follows.
Each b-metric-like b on X generalizes a topology τb on X whose base is the family of

open b-balls Bb(x, ε) = {y ∈ X : |b(x, y) – b(x, x)| < ε} for all x ∈ X and ε > 0.
A sequence {xn} in a b-metric-like space (X, b) converges to a point x ∈ X if and only if

b(x, x) = limn→+∞ b(x, xn).
A sequence {xn} in a b-metric-like space (X, b) is called a Cauchy sequence if

limn,m→+∞ b(xm, xn) exists and is finite.
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A b-metric-like space is called to be complete if every Cauchy sequence {xn} in X
converges with respect to τb to a point x ∈ X such that limn→+∞ b(x, xn) = b(x, x) =
limn,m→+∞ b(xm, xn).

Let B be the family of all functions β :[0,∞) → [0, 1) which satisfy the condition:
limn→+∞ β(tn) = 1 implies limn→+∞ tn = 0.

On the other hand, in [9], Geraghty extended the Banach contraction mapping principle
in metric spaces and obtained the following theorem.

Theorem 1.1 ([9]) Let (X, d) be a complete metric space and T : X → X be a mapping. If
T satisfies d(Tx, Ty) ≤ β(d(x, y))d(x, y) for any x, y ∈ X, where β ∈ B, then T has a unique
fixed point.

Recently, many papers about generalization of Geraghty contraction appeared [10–13].
In 2017, Fulga et al. [12] introduced the concept of ϕE-Geraghty contraction and estab-
lished a fixed point theorem for such contraction in complete metric spaces. The new
Geraghty type contraction was studied on metric-like spaces in [14], and the following
theorem was obtained.

Theorem 1.2 ([14]) Let (X,σ ) be a complete metric-like space and T : X → X be a map-
ping. If there exists β ∈ B such that σ (Tx, Ty) ≤ β(F(x, y))F(x, y) for all x, y ∈ X, where
F(x, y) = σ (x, y) + |σ (x, Tx) – σ (y, Ty)|, then T has a unique fixed point.

In this paper, we define the new concept of (T , g)F -contraction of Geraghty type and
investigate common fixed point theorems for such contraction in b-metric-like spaces.
An application about the unique solution of an integral equation is given.

2 Main results
In this section, we begin with the following definitions.

Definition 2.1 ([15]) Let X be a nonempty set, f and g be self-mappings on X and C(f , g) =
{x ∈ X : fx = gx}. The pair f and g are called to be weakly compatible if fgx = gfx for all
x ∈ C(f , g). If w = fx = gx for some x ∈ X, then x is called to be a coincidence of f and g ,
and w is called to be a point of coincidence of f and g .

Definition 2.2 Let (X, b) be a b-metric-like space with coefficient s ≥ 1 and T , g : X → X
be two mappings. We say that the pair (T , g) is a (T , g)F -contraction of Geraghty type if
there exists β ∈ B such that

b(Tx, Ty) ≤ β
(
Fg(x, y)

)
Fg(x, y) (1)

for all x, y ∈ X, where Fg(x, y) = 1
s2 [b(gx, gy) + |b(gx, Tx) – b(gy, Ty)|].

Lemma 2.1 Let (X, b) be a b-metric-like space, T and g be self-mappings on X such that
(T , g) is a (T , g)F -contraction of Geraghty type. If v ∈ X is a point of coincidence of T and
g , then b(v, v) = 0.

Proof Suppose that v ∈ X is a point of coincidence of T and g , then there exists u ∈ X such
that Tu = gu = v. Assume b(v, v) > 0, we get b(v, v) = b(Tu, Tu) ≤ β(Fg(u, u))Fg(u, u), since
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Fg(u, u) = 1
s2 [b(gu, gu) + |b(gu, Tu) – b(gu, Tu)|] = 1

s2 b(v, v), then we have b(v, v) < 1
s2 b(v, v),

which is a contradiction, hence b(v, v) = 0. �

Theorem 2.1 Let (X, b) be a b-metric-like space with coefficient s ≥ 1, T , g : X × X → X be
two mappings with TX ⊆ gX and gX is complete. If the pair (T , g) is a (T , g)F -contraction
of Geraghty type, then T and g have a unique point of coincidence. In addition, if T and g
are weakly compatible, then T and g have a unique common fixed point.

Proof For an arbitrary x0 ∈ X, since TX ⊆ gX, we can construct a sequence {yn} by

yn = gxn = Txn–1 (2)

for all n ∈N
+. Now, we prove that T and g have a point of coincidence. If there exists some

n0 ∈ N
+ such that b(yn0 , yn0+1) = 0, then yn0 = yn0+1, which implies gxn0 = Txn0 , thus, xn0 is

a coincidence point of T and g , so w0 = gxn0 = Txn0 is a point of coincidence of T and g .
We assume that b(yn, yn+1) > 0 for all n ∈ N

+. From (1), we have

b(yn, yn+1) = b(Txn–1, Txn)

≤ β
(
Fg(xn–1, xn)

)
Fg(xn–1, xn), (3)

where

Fg(xn–1, xn) =
1
s2

[
b(gxn–1, gxn) +

∣∣b(gxn–1, Txn–1) – b(gxn, Txn)
∣∣]

=
1
s2

[
b(yn–1, yn) +

∣∣b(yn–1, yn) – b(yn, yn+1)
∣∣].

Assume that there exists n0 ∈ N
+ such that b(yn0–1, yn0 ) ≤ b(yn0 , yn0+1). By (3), we get

b(yn0 , yn0+1) = b(Txn0–1, Txn0 )

≤ β
(
Fg(xn0–1, xn0 )

)
Fg(xn0–1, xn0 )

< Fg(xn0–1, xn0 )

=
1
s2

[
b(gxn0–1, gxn0 ) +

∣
∣b(gxn0–1, Txn0–1) – b(gxn0 , Txn0 )

∣
∣]

=
1
s2

[
b(yn0–1, yn0 ) +

∣∣b(yn0–1, yn0 ) – b(yn0 , yn0+1)
∣∣]

=
1
s2 b(yn0 , yn0+1) ≤ b(yn0 , yn0+1),

which is a contradiction. Thus, we obtain

b(yn–1, yn) > b(yn, yn+1) (4)

for all n ∈N
+. Therefore, there exists a ≥ 0 such that

lim
n→+∞ b(yn–1, yn) = a. (5)
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(3) and (4) yield that

b(yn, yn+1) = b(Txn–1, Txn)

≤ β
(
Fg(xn–1, xn)

)
Fg(xn–1, xn)

= β

[
1
s2

(
2b(yn–1, yn) – b(yn, yn+1)

)] · 1
s2

(
2b(yn–1, yn) – b(yn, yn+1)

)

≤ β

[
1
s2

(
2b(yn–1, yn) – b(yn, yn+1)

)] · (2b(yn–1, yn) – b(yn, yn+1)
)

< 2b(yn–1, yn) – b(yn, yn+1). (6)

Taking n → +∞ in (6), we get limn→+∞ β[ 2b(yn–1,yn)–b(yn ,yn+1)
s2 ] = 1, hence

limn→+∞ 2b(yn–1,yn)–b(yn ,yn+1)
s2 = 0. On the other hand, limn→+∞ 2b(yn–1,yn)–b(yn ,yn+1)

s2 = a
s2 , there-

fore a = 0. Hence,

lim
n→+∞ b(yn–1, yn) = 0. (7)

Now, we prove

lim
m,n→+∞ b(ym, yn) = 0. (8)

If (8) does not hold, then there exists ε > 0, for which we can find two subsequences {ym(k)}
and {yn(k)} of {yn}, where m(k) is the smallest index for which m(k) > n(k) > k with

b(ym(k), yn(k)) ≥ ε, b(ym(k)–1, yn(k)) < ε. (9)

Applying (1) and (9), we have

ε ≤ b(ym(k), yn(k))

= b(Txm(k)–1, Txn(k)–1)

≤ β
(
Fg(xm(k)–1, xn(k)–1)

)
Fg(xm(k)–1, xn(k)–1)

< Fg(xm(k)–1, xn(k)–1), (10)

where

Fg(xm(k)–1, xn(k)–1)

=
1
s2

[
b(gxm(k)–1, gxn(k)–1) +

∣∣b(gxm(k)–1, Txm(k)–1) – b(gxn(k)–1, Txn(k)–1)
∣∣]

=
1
s2

[
b(ym(k)–1, yn(k)–1) +

∣∣b(ym(k)–1, ym(k)) – b(yn(k)–1, yn(k))
∣∣]. (11)

Next, we discuss two cases.
Case I: Case of s > 1. Applying (7), (10), and (11), we obtain

ε ≤ lim inf
n→+∞

1
s2 b(ym(k)–1, yn(k)–1). (12)
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Moreover, from (9), we have

b(ym(k)–1, yn(k)–1) ≤ sb(ym(k)–1, yn(k)) + sb(yn(k), yn(k)–1) < sε + sb(yn(k), yn(k)–1).

Taking n → +∞ in the above inequalities, we have

lim inf
n→+∞ b(ym(k)–1, yn(k)–1) ≤ sε. (13)

(12) and (13) imply ε ≤ ε
s , which is a contradiction.

Case II: Case of s = 1. From (9), we have

ε ≤ b(ym(k), yn(k))

≤ b(ym(k), ym(k)–1) + b(ym(k)–1, yn(k)–1) + b(yn(k)–1, yn(k))

≤ b(ym(k), ym(k)–1) + b(ym(k)–1, yn(k)) + 2b(yn(k)–1, yn(k))

< b(ym(k), ym(k)–1) + ε + 2b(yn(k)–1, yn(k)). (14)

By (7), taking n → +∞ in (14), we have

lim
n→+∞ b(ym(k)–1, yn(k)–1) = ε. (15)

Since s = 1, by (10) and (11), we have

ε ≤ β
(
Fg(xm(k)–1, xn(k)–1)

)
Fg(xm(k)–1, xn(k)–1)

< b(ym(k)–1, yn(k)–1) +
∣
∣b(ym(k)–1, ym(k)) – b(yn(k)–1, yn(k))

∣
∣. (16)

(7), (15) and (16) yield

lim
n→+∞β

(
Fg(xm(k)–1, xn(k)–1)

)
Fg(xm(k)–1, xn(k)–1) = ε. (17)

From (11) and (15), and taking s = 1 into account, we get limn→+∞ Fg(xm(k)–1, xn(k)–1) = ε,
which together with (17) implies

lim
n→+∞β

(
Fg(xm(k)–1, xn(k)–1)

)
= 1,

thus limn→+∞ Fg(xm(k)–1, xn(k)–1) = 0, which is contradictive with limn→+∞ Fg(xm(k)–1,
xn(k)–1) = ε.

From the above discussions, we get that (8) holds. Therefore, the sequence {yn} = {gxn}
is a Cauchy sequence in gX. Since gX is complete, then there exist v, u ∈ X such that v = gu,
and the following equalities hold:

lim
n,m→+∞ b(yn, v) = b(v, v) = lim

n,m→+∞ b(yn, ym) = lim
n→+∞ b(yn, gu) = 0. (18)

By (1), we have

b(yn, Tu) = b(Txn–1, Tu) ≤ β
(
Fg(xn–1, u)

)
Fg(xn–1, u) < Fg(xn–1, u), (19)



Yu et al. Journal of Inequalities and Applications  (2018) 2018:222 Page 6 of 10

where

Fg(xn–1, u) =
1
s2

[
b(gxn–1, gu) +

∣∣b(gxn–1, Txn–1) – b(gu, Tu)
∣∣]

=
1
s2

[
b(yn–1, v) +

∣
∣b(yn–1, yn) – b(v, Tu)

∣
∣]. (20)

Next, we prove b(Tu, v) = 0 in two cases:
Case I. s > 1. Suppose b(Tu, v) > 0. Letting n → +∞ in (19), applying (20), we obtain

lim inf
n→+∞ b(yn, Tu) ≤ 1

s2 b(v, Tu). (21)

By the triangle inequality, we get b(v, Tu) ≤ sb(yn, v) + sb(yn, Tu), which yields

b(v, Tu) ≤ s lim inf
n→+∞ b(yn, Tu). (22)

Applying (22), we have lim infn→∞ b(yn, Tu) ≥ 1
s b(v, Tu) > 0. From (21) and (22), we get

b(v, Tu) ≤ 1
s b(v, Tu) < b(v, Tu), this is a contradiction, therefore b(Tu, v) = 0.

Case II. s = 1. Taking n → +∞ in (20), and taking s = 1 into account, we obtain

lim
n→+∞ Fg(xn–1, u) = b(v, Tu). (23)

On the other hand, from (1), we have

b(v, Tu) ≤ b(v, yn) + b(yn, Tu)

= b(v, yn) + b(Txn–1, Tu)

≤ b(v, yn) + β
(
Fg(xn–1, u)

)
Fg(xn–1, u)

< b(v, yn) + Fg(xn–1, u). (24)

Letting n → +∞ in (24), by (23), we get limn→+∞ β(Fg(xn–1, u)) = 1, hence
limn→+∞ Fg(xn–1, u) = 0, by (23), we get b(Tu, v) = 0. The above two cases mean b(Tu, v) = 0,
which implies Tu = v, thus Tu = v = gu. Therefore, T and g have a coincidence point u, and
v is a point of coincidence of T and g . By Lemma 2.1, we get b(v, v) = 0. Suppose that v1 is
also a point of coincidence of T and g , then we can find u1 ∈ X such that Tu1 = v1 = gu1

and b(v1, v1) = 0. Now, we prove b(v, v1) = 0 by contradiction. Suppose b(v, v1) > 0, applying
(1), we have

b(v, v1) = b(Tu, Tu1) ≤ β
(
Fg(u, u1)

)
Fg(u, u1) < Fg(u, u1), (25)

where

Fg(u, u1) =
1
s2

[
b(gu, gu1) +

∣∣b(gu, Tu) – b(gu1, Tu1)
∣∣]

=
1
s2

[
b(v, v1) +

∣∣b(v, v) – b(v1, v1)
∣∣]

=
1
s2 b(v, v1). (26)
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From (25) and (26), we obtain b(v, v1) < 1
s2 b(v, v1), which is a contradiction, thus b(v, v1) = 0,

which implies v = v1, therefore T and g have a unique point of coincidence. Moreover, T
and g are weakly compatible, then we have Tv = gv. Let Tv = gv = ω. From the uniqueness
of the point of coincidence, we have Tv = gv = ω = v, that is, Tv = gv = v. Therefore, T and
g have a unique common fixed point. �

Letting g = Ix (identity mapping) in Theorem 2.1, we can get the following corollary.

Corollary 2.1 Let (X, b) be a complete b-metric-like space with coefficient s ≥ 1, and T :
X → X be a mapping. If there exists β ∈ B such that b(Tx, Ty) ≤ β(F(x, y))F(x, y) for any
x, y ∈ X, where F(x, y) = 1

s2 [b(x, y) + |b(x, Tx) – b(y, Ty)|], then T has a unique fixed point.

Taking s = 1 in Corollary 2.1, we have the following corollary.

Corollary 2.2 Let (X, b) be a complete metric-like space and T : X → X be a mapping.
If there exists β ∈ B such that b(Tx, Ty) ≤ β(F(x, y))F(x, y) for any x, y ∈ X, where F(x, y) =
b(x, y) + |b(x, Tx) – b(y, Ty)|, then T has a unique fixed point.

Remark 2.1 Corollary 2.2 is Theorem 1.2, which implies that Theorem 2.1 is the general-
ization of Theorem 1.2.

Taking s = 1 in Theorem 2.1, we have the following corollary.

Corollary 2.3 Let (X, b) be a metric-like space and T , g : X ×X → X be two mappings with
TX ⊆ gX and gX is complete. Suppose that there exists β ∈ B such that

b(Tx, Ty) ≤ β
(
Fg(x, y)

)
Fg(x, y),

where Fg(x, y) = b(gx, gy) + |b(gx, Tx) – b(gy, Ty)|. Then T and g have a unique point of coin-
cidence. In addition, if T and g are weakly compatible, then T and g have a unique common
fixed point.

Now, we use an example to illustrate the validity of our main result.

Example 2.1 Let X = {0, 1, 2}. Define b : X × X → R by b(0, 0) = 0, b(1, 1) = 3, b(2, 2) = 1,
b(0, 1) = b(1, 0) = 8, b(0, 2) = b(2, 0) = 1, b(1, 2) = b(2, 1) = 4. It is easy to prove that (X, b) is
a complete b-metric-like space with coefficient s = 8

5 . Consider T : X → X as T0 = 0, T1 =
2, T2 = 0. Take

β(t) =

⎧
⎨

⎩

1
1+ 1

100 t
, t > 0,

1
3 , t = 0.

By the following cases, we prove b(Tx, Ty) ≤ β(F(x, y))F(x, y) for any x, y ∈ X, where
F(x, y) = 1

s2 [b(x, y) + |b(x, Tx) – b(y, Ty)|].
Case 1: (x, y) = (0, 0), (x, y) = (2, 2), (x, y) = (0, 2). Since b(T0, T0) = b(0, 0) = 0, b(T2, T2) =

b(0, 0) = 0, b(T0, T2) = b(0, 0) = 0, then b(Tx, Ty) ≤ β(F(x, y))F(x, y) holds for (x, y) = (0, 0),
(x, y) = (2, 2), (x, y) = (0, 2).
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Case 2: (x, y) = (0, 1).
We get b(T0, T1) = b(0, 2) = 1 and F(0, 1) = 25

64 [b(0, 1) + |b(0, T0) – b(1, T1)|] = 300
64 . Hence

b(T0, T1) = 1 < β(F(0, 1))F(0, 1) = 1
1+ 1

100
300
64

300
64 = 300

94 .
Case 3: (x, y) = (1, 1).
We get b(T1, T1) = b(2, 2) = 1 and F(1, 1) = 25

64 [b(1, 1) + |b(1, T1) – b(1, T1)|] = 75
64 . Hence

b(T1, T1) = 1 < β(F(1, 1))F(1, 1) = 1
1+ 1

100
75
64

75
64 = 750

715 .
Case 4: (x, y) = (1, 2).
We get b(T1, T2) = b(2, 0) = 1 and F(1, 2) = 25

64 [b(1, 2) + |b(1, T1) – b(2, T2)|] = 175
64 . Hence

b(T1, T2) = 1 < β(F(0, 1))F(0, 1) = 1
1+ 1

100
175
64

175
64 = 1750

815 .
From the above discussions, we know that b(Tx, Ty) ≤ β(F(x, y))F(x, y) for any x, y ∈ X,

where F(x, y) = 1
s2 [b(x, y) + |b(x, Tx) – b(y, Ty)|]. By Corollary 2.1, we obtain that T has a

unique fixed point, 0 is the unique fixed point of T .

3 Existence of a solution for an integral equation
Consider the following integral equation:

x(t) =
∫ 1

0
K

(
t, r, x(r)

)
dr, (27)

where K : [0, 1] × [0, 1] × R → R. The purpose of this section is to present an existence
theorem of the solution about (27). Let X = C[0, 1] be the set of continuous real functions
defined on [0, 1]. We endow X with the b-metric-like:

b(u, v) = ‖u – v‖∞ = max
t∈[0,1]

(∣∣u(t)
∣∣ +

∣∣v(t)
∣∣)p for all u, v ∈ X,

where p ≥ 1. Obviously, (X, b) is a complete b-metric-like space with coefficient s = 2p–1.
Let f (x)(t) =

∫ 1
0 K(t, r, x(r)) dr for all x ∈ X and for all t ∈ [0, 1]. Then the existence of a

solution to (27) is equivalent to the existence of a fixed point of f .
Now, we prove the following result.

Theorem 3.1 Suppose that the following hypotheses hold:
(i) K : [0, 1] × [0, 1] × R → R is continuous;

(ii) For all t, r ∈ [0, 1], there exists continuous ξ : [0, 1] × [0, 1] → [0, +∞) such that

∣∣K
(
t, r, x(r)

)∣∣ ≤ ξ (t, r)
∣∣x(r)

∣∣. (28)

(iii) There exists β ∈ B such that

sup
t∈[0,1]

∫ 1

0
ξ (t, r) dr

≤ p

√
1

22p–2 β

[
1

22p–2

(‖x – y‖∞ +
∣
∣‖x – fx‖∞ – ‖y – fy‖∞

∣
∣)

]
. (29)

Then the integral equation (27) has a unique solution x ∈ X.
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Proof From (28) and (29), for all t ∈ [0, 1], we have

(∣∣f (x)(t)
∣
∣ +

∣
∣f (y)(t)

∣
∣)p

=
(∣

∣∣∣

∫ 1

0
K

(
t, r, x(r)

)
dr

∣
∣∣∣ +

∣
∣∣∣

∫ 1

0
K

(
t, r, y(r)

)
dr

∣
∣∣∣

)p

≤
(∫ 1

0

∣
∣K

(
t, r, x(r)

)∣∣dr +
∫ 1

0

∣
∣K

(
t, r, y(r)

)∣∣dr
)p

=
(∫ 1

0

(∣∣K
(
t, r, x(r)

)∣∣ +
∣∣K

(
t, r, y(r)

)∣∣)dr
)p

≤
(∫ 1

0
ξ (t, r)

(∣∣x(r)
∣
∣ +

∣
∣y(r)

∣
∣)dr

)p

=
(∫ 1

0
ξ (t, r)

((∣∣x(r)
∣∣ +

∣∣y(r)
∣∣)p) 1

p

)
dr)p

≤
(∫ 1

0
ξ (t, r)

[
b
(
x(·), y(·))] 1

p

)
dr)p

= ‖x – y‖∞
(∫ 1

0
ξ (t, r) dr

)p

≤ ‖x – y‖∞
1

22p–2 β

[
1

22p–2

(‖x – y‖∞ +
∣
∣‖x – fx‖∞ – ‖y – fy‖∞

∣
∣)

]

≤ F(x, y)β
(
F(x, y)

)
,

where F(x, y) = 1
22p–2 (‖x – y‖∞ + |‖x – fx‖∞ – ‖y – fy‖∞|). Then we have ‖f (x) – f (y)‖∞ ≤

F(x, y)β(F(x, y)). Therefore, we get b(f (x), f (y)) ≤ F(x, y)β(F(x, y)) for all x, y ∈ X.
From the above, we can see that all the conditions of Corollary 2.1 hold and f has a

unique fixed point x ∈ X, which means that x is the unique solution for the integral equa-
tion (27). �

4 Conclusion
In this paper, we introduce a new concept of (T , g)F -contraction in b-metric-like spaces
and investigate some fixed point theorems about such contraction. Our results generalize
Theorem 2.1 in [14]. At the same time, an application about our theorem is also proposed.
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