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Abstract
In this article, we discuss a new Hadamard fractional differential system with
four-point boundary conditions

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

HDαu(t) + f (t, v(t)) = lf , t ∈ (1, e),
HDβv(t) + g(t,u(t)) = lg, t ∈ (1, e),

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n – 2,

u(e) = av(ξ ), v(e) = bu(η), ξ ,η ∈ (1, e),

where a,b are two parameters with 0 < ab(logη)α–1(log ξ )β–1 < 1, α,β ∈ (n – 1,n] are
two real numbers and n ≥ 3, f ,g ∈ C([1, e]× (–∞, +∞), (–∞, +∞)), lf , lg > 0 are
constants, and HDα , HDβ are the Hadamard fractional derivatives of fractional order.
Based upon a fixed point theorem of increasing ϕ-(h, r)-concave operators, we
establish the existence and uniqueness of solutions for the problem dependent on
two constants lf , lg.
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1 Introduction
In this article, we discuss the following new Hadamard fractional differential system with
four-point boundary conditions:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HDαu(t) + f (t, v(t)) = lf , t ∈ (1, e),
HDβv(t) + g(t, u(t)) = lg , t ∈ (1, e),

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n – 2,

u(e) = av(ξ ), v(e) = bu(η), ξ ,η ∈ (1, e),

(1.1)

where a, b are two parameters with 0 < ab(logη)α–1(log ξ )β–1 < 1, α,β ∈ (n – 1, n] are two
real numbers and n ≥ 3, f , g ∈ C([1, e] × (–∞, +∞), (–∞, +∞)), lf , lg are constants, and
HDα , HDβ are the Hadamard fractional derivatives of fractional order. A pair of functions
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(u, v) ∈ C[1, e] × C[1, e] is called a solution of system (1.1) if it satisfies (1.1). We will con-
sider system (1.1) under the case lf , lg > 0. We use a recent fixed point theorem for ϕ-(h, r)-
concave operators to study system (1.1).

The study of fractional differential equations has made fast development and it has many
applications in some fields such as physics, chemistry, engineering, and biological science;
see [1–18] and the references therein. We can see that the topic of the work are most
Riemann–Liouville and Caputo-type fractional equations. As we know, there is another
kind of fractional derivative which can be seen in the literature due to Hadamard intro-
duced in 1892 (see [19]). This kind of derivative includes a logarithmic function of arbi-
trary exponent in the kernel of the integral appearing in its definition. Recently, there have
been some papers reported on boundary value problems of Hadamard fractional differen-
tial equations, see [20–34]. Ahmad and Ntouyas [20, 21] discussed some fractional integral
boundary value problems involving Hadamard fractional differential equations/systems
and obtained the existence and uniqueness of solutions by applying the Banach fixed point
theorem and Leray–Schauder alternative, respectively.

In [22], the authors studied the boundary value problem of Hadamard fractional differ-
ential inclusions

⎧
⎨

⎩

HDαx(t) ∈ F(t, x(t)), 1 < t < e, 1 < α ≤ 2,

x(1) = 0, x(e) = HIβx(η), 1 < η < e,
(1.2)

where F : [1, e] × (–∞, +∞) → �(–∞, +∞) is a multivalued map, �(–∞, +∞) is the family
of all nonempty subsets of (–∞, +∞). By using standard fixed point theorems for multi-
valued maps, the existence of solutions was established.

In [24], the authors applied Leggett–Williams and Guo–Krasnoselskii’s fixed point the-
orems to get multiple positive solutions for Hadamard fractional differential equations on
the infinite interval

⎧
⎨

⎩

HDαu(t) + a(t)f (u(t)) = 0, 1 < α ≤ 2, t ∈ (1,∞),

u(1) = 0, Dα–1u(∞) =
∑m

i=1 λi
HIβi u(η),

(1.3)

where η ∈ (1,∞),λi ≥ 0,βi > 0 (i = 1, 2, . . . , m) are constants.
In [35], the author considered positive solutions for the Hadamard fractional differential

system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HDαu(t) + λf (t, u(t), v(t)) = 0, t ∈ (1, e),
HDβv(t) + λg(t, u(t), v(t)) = 0, t ∈ (1, e),

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n – 2,

u(e) = av(ξ ), v(e) = bu(η), ξ ,η ∈ (1, e),

(1.4)

where λ, a, b are three parameters, α,β ∈ (n – 1, n] are two real numbers, and n ≥ 3. By
applying Guo–Krasnoselskii’s fixed point theorem, at least one positive solution was given.

From the papers mentioned above, we can see that system (1.1) is different from (1.2)–
(1.4), and it is a new type of Hadamard fractional differential equations. Motivated by
the recent papers [34, 36], we study the uniqueness of solutions for Hadamard fractional
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differential system (1.1). By using a fixed point theorem of increasing ϕ-(h, r)-concave op-
erators, we establish the existence and uniqueness of solutions for system (1.1) dependent
on two constants.

2 Preliminaries
For the convenience of the reader, we present some concepts of Hadamard type fractional
calculus to facilitate the analysis of system (1.1).

Definition 2.1 (see [6]) For a function g : [1,∞) → R, the Hadamard fractional integral
of order γ is

HIγ g(t) =
1


(γ )

∫ t

1

(

log
t
s

)γ –1 g(s)
s

ds, γ > 0

provided the integral exists.

Definition 2.2 (see [6]) For a function g : [1,∞) → R, the Hadamard fractional derivative
of fractional order γ is

HDγ g(t) =
1


(n – γ )

(

t
d
dt

)n ∫ t

1

(

log
t
s

)n–γ –1 g(s)
s

ds, n – 1 < γ < n, n = [γ ] + 1,

where [γ ] denotes the integer part of the real number γ and log(·) = loge(·).

Set �q(t) = (log t)q–1(1 – log t) and ρq(t) = (1 – log t)q–1 log t for q > 2, t ∈ [1, e], and

Gq(t, s) =
1


(q)

⎧
⎨

⎩

(log t)q–1(1 – log s)q–1 – (log(t/s))q–1, 1 ≤ s ≤ t ≤ e,

(log t)q–1(1 – log s)q–1, 1 ≤ t ≤ s < e.
(2.1)

Lemma 2.1 (see [35]) The function Gq(t, s) in (2.1) has the following properties:
(i) Gq(t, s) is continuous on (t, s) ∈ [1, e]2 and Gq(t, s) > 0 for t, s ∈ (1, e);

(ii) �q(t)ρq(s) ≤ 
(q)Gq(t, s) ≤ (q – 1)ρq(s) for t, s ∈ [1, e];
(iii) �q(t)ρq(s) ≤ 
(q)Gq(t, s) ≤ (q – 1)�q(s) for t, s ∈ [1, e].
Next we also need some properties of the Green’s function to study system (1.1).

Lemma 2.2 (see [35]) Let x, y ∈ C[0, 1]. Then the following system

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

HDαu(t) + x(t) = 0, t ∈ (1, e),
HDβv(t) + y(t) = 0, t ∈ (1, e),

u(j)(1) = v(j)(1) = 0, 0 ≤ j ≤ n – 2,

u(e) = av(ξ ), v(e) = bu(η), ξ ,η ∈ (1, e),

(2.2)

has an integral representation

⎧
⎨

⎩

u(t) =
∫ e

1 K1(t, s) x(s)
s ds +

∫ e
1 H1(t, s) y(s)

s ds,

v(t) =
∫ e

1 K2(t, s) y(s)
s ds +

∫ e
1 H2(t, s) x(s)

s ds,
(2.3)
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where

K1(t, s) = Gα(t, s) +
ab(log ξ )β–1(log t)α–1

1 – ab(logη)α–1(log ξ )β–1 Gα(η, s), (2.4)

K2(t, s) = Gβ (t, s) +
ab(logη)α–1(log t)β–1

1 – ab(logη)α–1(log ξ )β–1 Gα(ξ , s), (2.5)

H1(t, s) =
a(log t)α–1

1 – ab(logη)α–1(log ξ )β–1 Gβ (ξ , s),

H2(t, s) =
b(log t)β–1

1 – ab(logη)α–1(log ξ )β–1 Gα(η, s). (2.6)

Lemma 2.3 (see [35]) For t, s ∈ [1, e], the functions K1(t, s) and H1(t, s) in (2.4) and (2.6)
satisfy

ab(log ξ )β–1�α(η)
(1 – ab(logη)α–1(log ξ )β–1)
(α)

(log t)α–1ρα(s)

≤ K1(t, s)

≤ ab(log ξ )β–1(1 – (logη)α–1)
(1 – ab(logη)α–1(log ξ )β–1)
(α – 1)

ρα(s),

a�β (ξ )
(1 – ab(logη)α–1(log ξ )β–1)
(β)

(log t)α–1ρβ (s)

≤ H1(t, s)

≤ a
(1 – ab(logη)α–1(log ξ )β–1)
(β – 1)

ρβ (s),

K1(t, s) ≤ ab(log ξ )β–1(1 – (logη)α–1)
(1 – ab(logη)α–1(log ξ )β–1)
(α – 1)

(log t)α–1,

H1(t, s) ≤ a
(1 – ab(logη)α–1(log ξ )β–1)
(β – 1)

(log t)α–1.

Lemma 2.4 (see [35]) For t, s ∈ [1, e], the functions K2(t, s) and H2(t, s) in (2.5) and (2.6)
satisfy

ab(logη)β–1�β (ξ )
(1 – ab(logη)α–1(log ξ )β–1)
(β)

(log t)β–1ρβ (s)

≤ K2(t, s)

≤ ab(logη)α–1(1 – (log ξ )β–1)
(1 – ab(logη)α–1(log ξ )β–1)
(β – 1)

ρβ (s),

b�α(η)
(1 – ab(logη)α–1(log ξ )β–1)
(α)

(log t)β–1ρα(s)

≤ H2(t, s)

≤ b
(1 – ab(logη)α–1(log ξ )β–1)
(α – 1)

ρα(s),

K2(t, s) ≤ ab(logη)α–1(1 – (log ξ )β–1)
(1 – ab(logη)α–1(log ξ )β–1)
(α – 1)

(log t)β–1,
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H2(t, s) ≤ b
(1 – ab(logη)α–1(log ξ )β–1)
(α – 1)

(log t)β–1.

Remark 2.1 (see [35]) For t, s ∈ [1, e],

ν(log t)α–1ρα(s) ≤ K1(t, s) ≤ μρα(s), K1(t, s) ≤ μ(log t)α–1,

ν(log t)α–1ρβ (s) ≤ H1(t, s) ≤ μρβ (s), H1(t, s) ≤ μ(log t)α–1,

ν(log t)β–1ρβ (s) ≤ K2(t, s) ≤ μρβ (s), K2(t, s) ≤ μ(log t)β–1,

ν(log t)β–1ρα(s) ≤ H2(t, s) ≤ μρα(s), H2(t, s) ≤ μ(log t)β–1,

where

ν = min

{
min{ab(log ξ )β–1�α(η), b�α(η)}
(1 – ab(logη)α–1(log ξ )β–1)
(α)

,

min{ab(logη)α–1�β (ξ ), a�β(ξ )}
(1 – ab(logη)α–1(log ξ )β–1)
(β)

}

,

μ = max

{
max{b, ab(log ξ )β–1(1 – (logη)α–1)}
(1 – ab(logη)α–1(log ξ )β–1)
(α – 1)

,

max{a, ab(logη)α–1(1 – (log ξ )β–1)}
(1 – ab(logη)α–1(log ξ )β–1)
(β – 1)

}

.

Now we present a fixed point theorem which can be easily used to study some systems
of differential equations.

Suppose that (E,‖ · ‖) is a real Banach space and it is partially ordered by a cone P ⊂ E.
For any x, y ∈ E, x ∼ y denotes that there are ψ > 0 and ω > 0 such that ψx ≤ y ≤ ωx. Take
h > θ (i.e., h ≥ θ and h 
= θ ), we consider a set Ph = {x ∈ E|x ∼ h}. Clearly, Ph ⊂ P. Take
another element r ∈ P with θ ≤ r ≤ h, we define Ph,r = {x ∈ E|x + r ∈ Ph}.

Definition 2.3 (see [36]) Assume that A : Ph,r → E is an operator which satisfies: for any
x ∈ Ph,r and λ ∈ (0, 1), there exists ϕ(λ) > λ such that A(λx + (λ– 1)r) ≥ ϕ(λ)Ax + (ϕ(λ) – 1)r.
Then we call A a ϕ-(h, r)-concave operator.

Lemma 2.5 (see [36]) Suppose that P is normal and A is an increasing ϕ-(h, r)-concave
operator satisfying Ah ∈ Ph,r . Then A has a unique fixed point x∗ in Ph,r . In addition, for any
w0 ∈ Ph,r , construct the sequence wn = Awn–1, n = 1, 2, . . . , then ‖wn – x∗‖ → 0 as n → ∞.

For h1, h2 ∈ P with h1, h2 
= θ . Let h = (h1, h2), then h ∈ P := P × P. Take θ ≤ r1 ≤ h1,
θ ≤ r2 ≤ h2, and let θ = (θ , θ ), r = (r1, r2). Then θ = (θ , θ ) ≤ (r1, r2) ≤ (h1, h2) = h. That is,
θ ≤ r ≤ h. If P is normal, then P = P × P is normal (see [37]).

Lemma 2.6 (see [38]) Ph = Ph1 × Ph2 .

Lemma 2.7 (see [39]) Ph,r = Ph1,r1 × Ph2,r2 .

3 Existence and uniqueness of solutions
In this section, let E = C[1, e], then E is a Banach space with the norm ‖u‖ = maxt∈[1,e] |u(t)|.
We will consider (1.1) in E × E. For (u, v) ∈ E × E, let ‖(u, v)‖ = max{‖u‖,‖v‖}. It is clear
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that (E × E,‖(·, ·)‖) is a Banach space. Let P = {(u, v) ∈ E × E|u(t) ≥ 0, v(t) ≥ 0}, P = {u ∈ E |
u(t) ≥ 0, t ∈ [1, e]}, then the cone P ⊂ E × E and P = P × P is normal, and the space E × E
has a partial order: (u1, v1) ≤ (u2, v2) ⇔ u1(t) ≤ u2(t), v1(t) ≤ v2(t), t ∈ [1, e].

Suppose f (t, x), g(t, x) are continuous, from Lemma 2.2, (u, v) ∈ E × E is a solution of
(1.1) if and only if (u, v) ∈ E × E is a solution of the following equations:

⎧
⎨

⎩

u(t) =
∫ e

1 K1(t, s)f (s, v(s)) ds
s +

∫ e
1 H1(t, s)g(s, u(s)) ds

s – lf
∫ e

1 (K1(t, s) + H1(t, s)) ds
s ,

v(t) =
∫ e

1 K2(t, s)g(s, u(s)) ds
s +

∫ e
1 H2(t, s)f (s, v(s)) ds

s – lg
∫ e

1 (K2(t, s) + H2(t, s)) ds
s .

For (u, v) ∈ E × E, we define three operators A1, A2, and T by

A1u(t) =
∫ e

1
K1(t, s)f

(
s, v(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s, u(s)

)ds
s

– lf

∫ e

1

(
K1(t, s) + H1(t, s)

)ds
s

,

A2v(t) =
∫ e

1
K2(t, s)g

(
s, u(s)

)ds
s

+
∫ e

1
H2(t, s)f

(
s, v(s)

)ds
s

– lg

∫ e

1

(
K2(t, s) + H2(t, s)

)ds
s

,

and T(u, v)(t) = (A1u(t), A2v(t)). Then A1, A2 : E → E and T : E × E → E × E. Evidently,
(u, v) is the solution of system (1.1) if and only if (u, v) is the fixed point of operator T . Let

r1(t) = lf

∫ e

1

(
K1(t, s) + H1(t, s)

)ds
s

, r2(t) = lg

∫ e

1

(
K2(t, s) + H2(t, s)

)ds
s

, (3.1)

h1(t) = M1(log t)α–1, h2(t) = M2(log t)β–1, t ∈ [1, e], (3.2)

where M1 ≥ 2μlf , M2 ≥ 2μlg .

Theorem 3.1 Let α,β ∈ (n – 1, n], lf > 0, lg > 0, and r1, r2, h1, h2 be given as in (3.1), (3.2).
Assume that f , g ∈ C([1, e] × (–∞, +∞), (–∞, +∞)); moreover,

(H1) f : [1, e] × [–r∗
2 , +∞) → (–∞, +∞) is increasing with respect to the second variable,

where r∗
2 = max{r2(t) : t ∈ [1, e]}; g : [1, e] × [–r∗

1 , +∞) → (–∞, +∞) is increasing
with respect to the second variable, where r∗

1 = max{r1(t) : t ∈ [1, e]};
(H2) for λ ∈ (0, 1), there exists ϕ(λ) > λ such that

f
(
t,λx + (λ – 1)y

) ≥ ϕ(λ)f (t, x), t ∈ [1, e], x ∈ (–∞, +∞), y ∈ [
0, r∗

2
]
,

g
(
t,λx + (λ – 1)y

) ≥ ϕ(λ)g(t, x), t ∈ [1, e], x ∈ (–∞, +∞), y ∈ [
0, r∗

1
]
;

(H3) f (t, 0) ≥ 0, g(t, 0) ≥ 0 with f (t, 0) 
≡ 0, g(t, 0) 
≡ 0 for t ∈ [1, e].
Then:
(1) system (1.1) has a unique solution (u∗, v∗) in Ph,r , where

r(t) =
(
r1(t), r2(t)

)
, h(t) =

(
h1(t), h2(t)

)
, t ∈ [1, e];

(2) for a given point (u0, v0) ∈ Ph,r , construct the following sequences:

un+1(t) =
∫ e

1
K1(t, s)f

(
s, vn(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s, un(s)

)ds
s

– lf

∫ e

1

(
K1(t, s) + H1(t, s)

)ds
s

,
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vn+1(t) =
∫ e

1
K2(t, s)g

(
s, un(s)

)ds
s

+
∫ e

1
H2(t, s)f

(
s, vn(s)

)ds
s

– lg

∫ e

1

(
K2(t, s) + H2(t, s)

)ds
s

,

n = 0, 1, 2, . . . , we have un+1(t) → u∗(t), vn+1(t) → v∗(t) as n → ∞.

Proof By Lemma 2.1, for t ∈ [1, e],

r1(t) = lf

∫ e

1

(
K1(t, s) + H1(t, s)

)ds
s

≥ 0, r2(t) = lg

∫ e

1

(
K2(t, s) + H2(t, s)

)ds
s

≥ 0.

From Remark 2.1, for t ∈ [1, e],

r1(t) = lf

∫ e

1

(
K1(t, s) + H1(t, s)

)ds
s

≤ lf

∫ e

1
2μ(log t)α–1 ds

s

= 2μlf (log t)α–1
∫ e

1

ds
s

≤ M1(log t)α–1 = h1(t),

r2(t) = lg

∫ e

1

(
K2(t, s) + H2(t, s)

)ds
s

≤ lg

∫ e

1
2μ(log t)β–1 ds

s

= 2μlg(log t)β–1
∫ e

1

ds
s

≤ M2(log t)β–1 = h2(t).

That is, 0 ≤ r1 ≤ h1, 0 ≤ r2 ≤ h2.
In the following, we prove that T : Ph,r → E×E is a ϕ-(h, r)-concave operator. For (u, v) ∈

Ph,r , λ ∈ (0, 1), we obtain

T
(
λ(u, v) + (λ – 1)r

)
(t) = T

(
λ(u, v) + (λ – 1)(r1, r2)

)
(t)

= T
(
λu + (λ – 1)r1,λv + (λ – 1)r2

)
(t)

=
(
A1

(
λu + (λ – 1)r1

))
, A2

(
λv + (λ – 1)r2

)
)(t).

We discuss A1(λu + (λ – 1)r1)(t) and A2(λv + (λ – 1)r2)(t), respectively. From (H2),

A1
(
λu + (λ – 1)r1

)
(t)

=
∫ e

1
K1(t, s)f

(
s,λv(s) + (λ – 1)r2(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s,λu(s) + (λ – 1)r1(s)

)ds
s

– r1(t)

≥ ϕ(λ)
[∫ e

1
K1(t, s)f

(
s, v(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s, u(s)

)ds
s

]

– r1(t)
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= ϕ(λ)
[∫ e

1
K1(t, s)f

(
s, v(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s, u(s)

)ds
s

– r1(t)
]

+
[
ϕ(λ) – 1

]
r1(t)

= ϕ(λ)A1u(t) +
[
ϕ(λ) – 1

]
r1(t),

A2
(
λv + (λ – 1)r2

)
(t)

=
∫ e

1
K2(t, s)g

(
s,λu(s) + (λ – 1)r1(s)

)ds
s

+
∫ e

1
H2(t, s)f

(
s,λv(s) + (λ – 1)r2(s)

)ds
s

– r2(t)

≥ ϕ(λ)
[∫ e

1
K2(t, s)g

(
s, u(s)

)ds
s

+
∫ e

1
H2(t, s)f

(
s, v(s)

)ds
s

]

– r2(t)

= ϕ(λ)
[∫ e

1
K2(t, s)g

(
s, u(s)

)ds
s

+
∫ e

1
H2(t, s)f

(
s, v(s)

)ds
s

– r2(t)
]

+
[
ϕ(λ) – 1

]
r2(t)

= ϕ(λ)A2v(t) +
[
ϕ(λ) – 1

]
r2(t).

So we have

T
(
λ(u, v) + (λ – 1)r

)
(t)

≥ (
ϕ(λ)A1u(t) +

[
ϕ(λ) – 1

]
r1(t),ϕ(λ)A2v(t) +

[
ϕ(λ) – 1

]
r2(t)

)

=
(
ϕ(λ)A1u(t),ϕ(λ)A2v(t)

)
+

((
ϕ(λ) – 1

)
r1(t),

(
ϕ(λ) – 1

)
r2(t)

)

= ϕ(λ)
(
A1u(t), A2v(t)

)
+

(
ϕ(λ) – 1

)(
r1(t), r2(t)

)

= ϕ(λ)T(u, v)(t) +
(
ϕ(λ) – 1

)
)r(t).

That is,

T
(
λ(u, v) + (λ – 1)r

) ≥ ϕ(λ)T(u, v) +
[
ϕ(λ) – 1)

]
r, (u, v) ∈ Ph,r ,λ ∈ (0, 1).

Hence, T is a ϕ-(h, r)-concave operator.
Next we show that T : Ph,r → E × E is increasing. For (u, v) ∈ Ph,r , we have (u, v) + r ∈ Ph.

From Lemma 2.6, (u + r1, v + r2) ∈ Ph1 × Ph2 . So there are λ1,λ2 > 0 such that

u(t) + r1(t) ≥ λ1h1(t), v(t) + r2(t) ≥ λ2h2(t), t ∈ [1, e].

Therefore, u(t) ≥ λ1h1(t) – r1(t) ≥ –r1(t) ≥ –r∗
1 , v(t) ≥ λ2h2(t) – r2(t) ≥ –r2(t) ≥ –r∗

2 . By
(H1) and the definitions of A1, A2, we obtain T : Ph,r → E × E is increasing.

Now we prove that Th ∈ Ph,r , so we need to prove Th + r ∈ Ph. For t ∈ [1, e],

Th(t) + r(t)

= T(h1, h2)(t) + r(t) =
(
A1h1(t), A2h2(t)

)
+

(
r1(t), r2(t)

)

=
(
A1h1(t) + r1(t), A2h2(t) + r2(t)

)
.
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We discuss A1h1(t) + r1(t), A2h2(t) + r2(t), respectively. By Remark 2.1 and (H1), (H3),

A1h1(t) + r1(t)

=
∫ e

1
K1(t, s)f

(
s, h2(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s, h1(s)

)ds
s

≥
∫ e

1
ν(log t)α–1ρα(s)f

(
s, M2(log s)β–1)ds

s

+
∫ e

1
ν(log t)α–1ρβ (s)g

(
s, M1(log s)α–1)ds

s

≥ ν(log t)α–1
∫ e

1
ρα(s)f (s, 0)

ds
s

+ ν(log t)α–1
∫ e

1
ρβ (s)g(s, 0)

ds
s

=
ν

M1

∫ e

1

(
ρα(s)f (s, 0) + ρβ (s)g(s, 0)

)ds
s

· h1(t),

A1h1(t) + r1(t)

=
∫ e

1
K1(t, s)f

(
s, h2(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s, h1(s)

)ds
s

≤
∫ e

1
μ(log t)α–1f (s, M2)

ds
s

+
∫ e

1
μ(log t)α–1g(s, M1)

ds
s

= μ(log t)α–1
∫ e

1

(
f (s, M2) + g(s, M1)

)ds
s

=
μ

M1

∫ e

1

(
f (s, M2) + g(s, M1)

)ds
s

· h1(t).

From (H1), (H3), one has
∫ e

1 (f (s, M2) + g(s, M1)) ds
s ≥ ∫ e

1 (ρα(s)f (s, 0) + ρβ(s)g(s, 0)) ds
s > 0. Let

l1 :=
ν

M1

∫ e

1

(
ρα(s)f (s, 0) + ρβ (s)g(s, 0)

)ds
s

,

l2 :=
μ

M1

∫ e

1

(
f (s, M2) + g(s, M1)

)ds
s

.

Note that ρα(s) ≤ 1, ρβ (s) ≤ 1, so l1 ≤ l2, and thus l1h1(t) ≤ A1h1(t) + r1(t) ≤ l2h1(t).
This shows A1h1 + r1 ∈ Ph1 . Similarly, we can also get A2h2 + r2 ∈ Ph2 . Consequently, by
Lemma 2.7,

Th + r = (A1h1 + r1, A2h2 + r2) ∈ Ph1 × Ph2 = Ph.

Finally, by using Lemma 2.5, T has a unique fixed point (u∗, v∗) ∈ Ph,r . In addition, for any
given (u0, v0) ∈ Ph,r , the sequence

(un, vn) = (A1un–1, A2vn–1), n = 1, 2, . . .

converges to (u∗, v∗) as n → ∞. Therefore, system (1.1) has a unique solution (u∗, v∗) in
Ph,r ; taking any point (u0, v0) ∈ Ph,r , construct the following sequences:

un+1(t) =
∫ e

1
K1(t, s)f

(
s, vn(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s, un(s)

)ds
s
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– lf

∫ e

1

(
K1(t, s) + H1(t, s)

)ds
s

,

vn+1(t) =
∫ e

1
K2(t, s)g

(
s, un(s)

)ds
s

+
∫ e

1
H2(t, s)f

(
s, vn(s)

)ds
s

– lg

∫ e

1

(
K2(t, s) + H2(t, s)

)ds
s

,

n = 0, 1, 2, . . . , we have un+1(t) → u∗(t), vn+1(t) → v∗(t) as n → ∞. �

4 Example
We consider the following Hadamard fractional boundary value problem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

HD 5
2 u(t) + ( 25

√
15·k 3

2

18·k
5
2

2

v(t) + 1)
1
5 (k2 – k log t)

1
5 (log t) 3

10 = 1, t ∈ (1, e),

HD 5
2 v(t) + ( 25

√
15·k 3

2

18·k
5
2

1

u(t) + 1)
1
5 (k1 – k log t)

1
5 (log t) 3

10 = 1, t ∈ (1, e),

u(1) = v(1) = u′(1) = v′(1) = 0,

u(e) = v(e 1
2 ), v(e) = 2u(e 1

3 ),

(4.1)

where α = β = 5
2 , n = 3, a = 1, b = 2, ξ = e 1

2 , η = e 1
3 with 0 < ab(logη)α–1(log ξ )β–1 = 1 × 2 ×

(log e 1
3 ) 3

2 × (log e 1
2 ) 3

2 =
√

6
18 < 1, and

k1 =
8
√

π

15π
+

432
√

6π + 144
√

π

21,465
+

54
√

2π + 6
√

3π

795π
,

k2 =
8
√

π

15π
+

288
√

2π + 1728
√

3π

21,465
+

12
√

6π + 4
√

π

795π
, k =

8
√

π

15π
,

f (t, x) =
(

25
√

15 · k 3
2

18 · k
5
2

2

x + 1
) 1

5
(k2 – k log t)

1
5 (log t)

3
10 ,

g(t, x) =
(

25
√

15 · k 3
2

18 · k
5
2

1

x + 1
) 1

5
(k1 – k log t)

1
5 (log t)

3
10 ,

lf = lg = 1. Obviously, k1, k2 > k, and

f (t, 0) = (k2 – k log t)
1
5 (log t)

3
10 ≥ 0,

g(t, 0) = (k1 – k log t)
1
5 (log t)

3
10 ≥ 0,

with f (t, 0) 
≡ 0, g(t, 0) 
≡ 0. And �α(η) = ( 1
3 ) 3

2 × (1 – 1
3 ) = 2

√
3

27 , �β (ξ ) = ( 1
2 ) 3

2 (1 – 1
2 ) =

√
2

8 .

Gα(t, s) =
1


( 5
2 )

⎧
⎨

⎩

(log t) 3
2 (1 – log s) 3

2 – (log(t/s)) 3
2 , 1 ≤ s ≤ t ≤ e,

(log t) 3
2 (1 – log s) 3

2 , 1 ≤ t ≤ s < e,

Gα(η, s) =
1


( 5
2 )

⎧
⎨

⎩

( 1
3 ) 3

2 (1 – log s) 3
2 – ( 1

3 – log s) 3
2 , 1 ≤ s ≤ η ≤ e,

( 1
3 ) 3

2 (1 – log s) 3
2 , 1 ≤ η ≤ s < e,
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Gβ (ξ , s) =
1


( 5
2 )

⎧
⎨

⎩

( 1
2 ) 3

2 (1 – log s) 3
2 – ( 1

2 – log s) 3
2 , 1 ≤ s ≤ ξ ≤ e,

( 1
2 ) 3

2 (1 – log s) 3
2 , 1 ≤ ξ ≤ s < e,

Gβ (t, s) =
1


( 5
2 )

⎧
⎨

⎩

(log t) 3
2 (1 – log s) 3

2 – (log(t/s)) 3
2 , 1 ≤ s ≤ t ≤ e,

(log t) 3
2 (1 – log s) 3

2 , 1 ≤ t ≤ s < e,

Gα(ξ , s) =
1


( 5
2 )

⎧
⎨

⎩

( 1
2 ) 3

2 (1 – log s) 3
2 – ( 1

2 – log s) 3
2 , 1 ≤ s ≤ ξ ≤ e,

( 1
2 ) 3

2 (1 – log s) 3
2 , 1 ≤ ξ ≤ s < e,

ν = min

{
min{ab(log ξ )β–1�α(η), b�α(η)}
(1 – ab(logη)α–1(log ξ )β–1)
(α)

,
min{ab(logη)α–1�β (ξ ), a�β(ξ )}
(1 – ab(logη)α–1(log ξ )β–1)
(β)

}

= min

{
min{1 × 2 × ( 1

2 ) 3
2 × 2

√
3

27 , 2 × 2
√

3
27 }

[1 – 1 × 2 × ( 1
3 ) 3

2 × ( 1
2 ) 3

2 ]
( 5
2 )

,
min{1 × 2 × ( 1

3 ) 3
2 ×

√
2

8 , 1 ×
√

2
8 }

[1 – 1 × 2 × ( 1
3 ) 3

2 × ( 1
2 ) 3

2 ]
( 5
2 )

}

= min

{
min{

√
6

27 , 4
√

3
27 }

54
√

π–3
√

6π

72

,
min{

√
6

36 ,
√

2
8 }

54
√

π–3
√

6π

72

}

=
√

π (6
√

6 + 2)
159π

,

μ = max

{
max{b, ab(log ξ )β–1(1 – (logη)α–1)}
(1 – ab(logη)α–1(log ξ )β–1)
(α – 1)

,
max{a, ab(logη)α–1(1 – (log ξ )β–1)}
(1 – ab(logη)α–1(log ξ )β–1)
(β – 1)

}

= max

{
max{2, 1 × 2 × ( 1

2 ) 3
2 × (1 – ( 1

3 ) 3
2 )}

[1 – 1 × 2 × ( 1
3 ) 3

2 × ( 1
2 ) 3

2 ]
( 5
2 – 1)

,
max{1, 1 × 2 × ( 1

3 ) 3
2 × (1 – ( 1

2 ) 3
2 )}

[1 – 1 × 2 × ( 1
3 ) 3

2 × ( 1
2 ) 3

2 ]
( 5
2 – 1)

}

= max

{
max{2, 9

√
2–

√
6

18 }
18

√
π–

√
6π

36

,
max{1, 4

√
3–

√
6

18 }
18

√
π–

√
6π

36

}

=
12

√
π (

√
6 + 18)

53π
.

Further,

r1(t) = lf

∫ e

1

(
K1(t, s) + H1(t, s)

)ds
s

=
∫ e

1
Gα(t, s)

ds
s

+
ab(log ξ )β–1(log t)α–1

1 – ab(logη)α–1(log ξ )β–1

∫ e

1
Gα(η, s)

ds
s

+
a(log t)α–1

1 – ab(logη)α–1(log ξ )β–1

∫ e

1
Gβ (ξ , s)

ds
s

=
∫ e

1
Gα(t, s)

ds
s

+
27

√
2 + 3

√
3

53
· (log t)

3
2

∫ e

1
Gα(η, s)

ds
s

+
54 + 3

√
6

53
· (log t)

3
2

∫ e

1
Gβ (ξ , s)

ds
s

=
(

8
√

π

15π
+

432
√

6π + 144
√

π

21,465
+

54
√

2π + 6
√

3π

795π

)

· (log t)
3
2 –

8
√

π

15π
· (log t)

5
2 ,

r2(t) = lg

∫ e

1

(
K2(t, s) + H2(t, s)

)ds
s
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=
∫ e

1
Gβ (t, s)

ds
s

+
ab(logη)α–1(log t)β–1

1 – ab(logη)α–1(log ξ )β–1

∫ e

1
Gα(ξ , s)

ds
s

+
b(log t)β–1

1 – ab(logη)α–1(log ξ )β–1

∫ e

1
Gα(η, s)

ds
s

=
∫ e

1
Gβ (t, s)

ds
s

+
12

√
3 + 2

√
2

53
· (log t)

3
2

∫ e

1
Gα(ξ , s)

ds
s

+
108 + 6

√
6

53
· (log t)

3
2

∫ e

1
Gα(η, s)

ds
s

=
(

8
√

π

15π
+

288
√

2π + 1728
√

3π

21,465
+

12
√

6π + 4
√

π

795π

)

· (log t)
3
2 –

8
√

π

15π
· (log t)

5
2 .

So

r∗
1 = max

{
r1(t) : t ∈ [1, e]

}
= k1

(
3k1

5k

) 3
2

– k
(

3k1

5k

) 5
2

=
6
√

15 · k
5
2

1

125 · k 3
2

,

r∗
2 = max

{
r2(t) : t ∈ [1, e]

}
= k2

(
3k2

5k

) 3
2

– k
(

3k2

5k

) 5
2

=
6
√

15 · k
5
2

2

125 · k 3
2

.

Take h1(t) = M1(log t) 3
2 , h2(t) = M2(log t) 3

2 , where

M1 ≥ 2μlf =
24

√
π (18 +

√
6)

53π
,

M2 ≥ 2μlg =
24

√
π (18 +

√
6)

53π
.

Then

r1(t) =
(

8
√

π

15π
+

432
√

6π + 144
√

π

21,465
+

54
√

2π + 6
√

3π

795π

)

· (log t)
3
2 –

8
√

π

15π
· (log t)

5
2

≤
∫ e

1
2 × 12

√
π (18 +

√
6)

53π
· (log t)

3
2

ds
s

=
24

√
π (18 +

√
6)

53π
· (log t)

3
2

∫ e

1

ds
s

≤ M1(log t)
3
2 = h1(t),

r2(t) =
(

8
√

π

15π
+

288
√

2π + 1728
√

3π

21,465
+

12
√

6π + 4
√

π

795π

)

· (log t)
3
2 –

8
√

π

15π
· (log t)

5
2

≤
∫ e

1
2 × 12

√
π (18 +

√
6)

53π
· (log t)

3
2

ds
s

=
24

√
π (18 +

√
6)

53π
· (log t)

3
2

∫ e

1

ds
s

≤ M2(log t)
3
2 = h2(t).
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In addition,

f (t, x) =
(

25
√

15 · k 3
2

18 · k
5
2

2

x + 1
) 1

5
(k2 – k log t)

1
5 (log t)

3
10

=
(

25
√

15 · k 3
2

18 · k
5
2

2

x + 1
) 1

5 [
k2(log t)

3
2 – k(log t)

5
2
] 1

5

=
(

25
√

15 · k 3
2

18 · k
5
2

2

x + 1
) 1

5 [
r2(t)

] 1
5

=
(

25
√

15 · k 3
2

18 · k
5
2

2

xr2(t) + r2(t)
) 1

5
,

g(t, x) =
(

25
√

15 · k 3
2

18 · k
5
2

1

x + 1
) 1

5
(k1 – k log t)

1
5 (log t)

3
10

=
(

25
√

15 · k 3
2

18 · k
5
2

1

x + 1
) 1

5 [
k1(log t)

3
2 – k(log t)

5
2
] 1

5

=
(

25
√

15 · k 3
2

18 · k
5
2

1

x + 1
) 1

5 [
r1(t)

] 1
5

=
(

25
√

15 · k 3
2

18 · k
5
2

1

xr1(t) + r1(t)
) 1

5
.

For λ ∈ (0, 1), x ∈ (–∞, +∞), y ∈ [0, r∗
2],

f
(
t,λx + (λ – 1)y

)

=
{

25
√

15k 3
2

18k
5
2

2

r2(t)
[
λx + (λ – 1)y

]
+ r2(t)

} 1
5

= λ
1
5

{
25

√
15k 3

2

18k
5
2

2

r2(t)
[

x +
(

1 –
1
λ

)

y
]

+
1
λ

r2(t)
} 1

5

= λ
1
5

{
25

√
15k 3

2

18k
5
2

2

r2(t)x +
(

1 –
1
λ

)
25

√
15k 3

2

18k
5
2

2

r2(t)y +
1
λ

r2(t)
} 1

5

≥ λ
1
5

{
25

√
15k 3

2

18k
5
2

2

r2(t)x +
(

1 –
1
λ

)

r2(t) +
1
λ

r2(t)
} 1

5

= λ
1
5

{
25

√
15k 3

2

18k
5
2

2

r2(t)x + r2(t)
} 1

5

= λ
1
5 f (t, x) = ϕ(λ)f (t, x),

g
(
t,λx + (λ – 1)y

)
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=
{

25
√

15k 3
2

18k
5
2

1

r1(t)
[
λx + (λ – 1)y

]
+ r1(t)

} 1
5

= λ
1
5

{
25

√
15k 3

2

18k
5
2

1

r1(t)
[

x +
(

1 –
1
λ

)

y
]

+
1
λ

r1(t)
} 1

5

= λ
1
5

{
25

√
15k 3

2

18k
5
2

1

r1(t)x +
(

1 –
1
λ

)
25

√
15k 3

2

18k
5
2

2

r1(t)y +
1
λ

r1(t)
} 1

5

≥ λ
1
5

{
25

√
15k 3

2

18k
5
2

1

r1(t)x +
(

1 –
1
λ

)

r1(t) +
1
λ

r1(t)
} 1

5

= λ
1
5

{
25

√
15k 3

2

18k
5
2

1

r1(t)x + r1(t)
} 1

5

= λ
1
5 g(t, x) = ϕ(λ)g(t, x),

here ϕ(λ) = λ
1
5 . By Theorem 3.1, system (4.1) has a unique solution (u∗, v∗) in Ph,r , where

r(t) =
(
r1(t), r2(t)

)

=
(
k1(log t)

3
2 – k(log t)

5
2 , k2(log t)

3
2 – k(log t)

5
2
)
,

h(t) =
(
h1(t), h2(t)

)
=

(
M1(log t)

3
2 , M2(log t)

3
2
)
, t ∈ [1, e].

Taking any point (u0, v0) ∈ Ph,r , we construct the following sequences:

un+1(t) =
∫ e

1
K1(t, s)f

(
s, vn(s)

)ds
s

+
∫ e

1
H1(t, s)g

(
s, un(s)

)ds
s

–
(
k1(log t)

3
2 – k(log t)

5
2
)
,

vn+1(t) =
∫ e

1
K2(t, s)g

(
s, un(s)

)ds
s

+
∫ e

1
H2(t, s)f

(
s, vn(s)

)ds
s

–
(
k2(log t)

3
2 – k(log t)

5
2
)
,

n = 0, 1, 2, . . . , we have un+1(t) → u∗(t), vn+1(t) → v∗(t) as n → ∞.
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