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Abstract
In this paper, we introduce the class of [m]-complex symmetric operators and study
various properties of this class. In particular, we show that if T is an [m]-complex
symmetric operator, then Tn is also an [m]-complex symmetric operator for any n ∈N.
In addition, we prove that if T is an [m]-complex symmetric operator, then σa(T ),
σSVEP(T ), σβ (T ), and σ(β)ε (T ) are symmetric about the real axis. Finally, we investigate
the stability of an [m]-complex symmetric operator under perturbation by nilpotent
operators commuting with T .
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1 Introduction
Let H be a complex separable Hilbert space, and let B(H) denote the algebra of all bounded
linear operators on H . For T ∈ B(H), we denote the approximate point spectrum of T by
σa(T).

Let A and B be given operators in B(H). Recall the definition of the usual derivation
operator δA,B(X) given by δA,B(X) = AX – XB for X ∈ B(H). For every positive integer k, we
have δk

A,B(X) = δA,B(δk–1
A,B (X)) for X ∈ B(H). Let A and B be in B(H). An operator B is said to

be in Heltonk(A) if δk
A,B(I) = 0.

In operator theory, one of the most important topics is local spectral theory. In the fol-
lowing we consider several properties in local spectral theory such as the single-valued
extension property, property (β), property (β)ε, and so on. Let D(λ, r) be the open disc
centered at λ ∈C and with radius r > 0. For an open set U in C, we denote by O(U , H) and
ξ (U , H) the Fréchet space of all H-valued analytic functions on U and the Fréchet space
of all H-valued C∞-functions on U , respectively.

An operator T ∈ B(H) is said to have the single-valued extension property (SVEP for
short) at λ0 ∈ C if, for every open neighborhood G of λ0, the only analytic function f :
G → H which satisfies the equation (λI – T)f (λ) = 0 for all λ ∈ G is the function f ≡ 0. An
operator T is said to have SVEP if T has SVEP at every point λ ∈C. An operator T ∈ B(H)
is said to satisfy Bishop’s property (β) at λ0 ∈ C (resp. (β)ε) if there exists r > 0 such that,
for every open subset U ⊂ D(λ, r) and for any sequence (fn) in O(U , H) (resp. in ξ (U , H)),
whenever (T – z)fn(z) → 0 in O(U , H) (resp. in ξ (U , H)), then fn → 0 in O(U , H) (resp. in
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ξ (U , H)). An operator T is said to have Bishop’s property (β) (resp. (β)ε) if T has Bishop’s
property (β) (resp. (β)ε) at every point λ ∈C.

Define

σSVEP(T) = {λ ∈ C : T – λ fails to SVEP at λ};
σβ (T) =

{
λ ∈ C : T – λ fails to property (β) at λ

}
;

σ(β)ε (T) =
{
λ ∈C : T – λ fails to property (β)ε at λ

}
.

An antilinear operator C on H is said to be conjugation if C satisfies C2 = I and (Cx, Cy) =
(y, x) for all x, y ∈ H . An operator T ∈ B(H) is said to be complex symmetric if T∗ = CTC.
Many standard operators such as normal operators, algebraic operators of order 2, Hankel
matrices, finite Toeplitz matrices, all truncated Toeplitz operators, and Volterra integra-
tion operators are included in the class of complex symmetric operators. Several authors
have studied the structure of a complex symmetric operator. We refer the reader to [6–11]
for further details. As a generalization of complex symmetric operators, in [3], Chō et al.
introduced m-complex symmetric operators with conjugation C as follows: For an oper-
ator T ∈ B(H) and an integer m ≥ 1, T is said to be an m-complex symmetric operator if
there exists some conjugation C such that

m∑

j=0

(–1)m–j

(
m
j

)

T∗j.CTm–jC = 0.

In 1990s, Agler and Stankus [1] intensively studied the following operator: For a fixed
positive integer m, an operator T ∈ B(H) is said to be an m-isometric operator if it satisfies
the following equation:

m∑

j=0

(–1)j

(
m
j

)

T∗m–jTm–j = 0.

m-isometric operators are connected to Toeplitz operators, classical function theory, or-
dinary differential equations, distributions, classical conjugate point theory, Fejer–Riesz
factorization, stochastic processes, and other topics.

In [4], Chō et al. introduced (m, C)-isometric operators with conjugation C as follows:
For an operator T ∈ B(H) and an integer m ≥ 1, T is said to be an (m, C)-isometric oper-
ator if there exists some conjugation C such that

m∑

j=0

(–1)j

(
m
j

)

T∗m–j.CTm–jC = 0.

In [5], Chō et al. introduced [m, C]-isometric operators with conjugation C as follows:
For an operator T ∈ B(H) and an integer m ≥ 1, T is said to be an [m, C]-isometric oper-
ator if there exists some conjugation C such that

m∑

j=0

(–1)j

(
m
j

)

CTm–jC.Tm–j = 0.



Shen Journal of Inequalities and Applications  (2018) 2018:209 Page 3 of 9

According to the definitions of complex symmetric, m-complex symmetric, m-isometric,
(m, C)-isometry, and [m, C]-isometry, we define [m]-complex symmetric T as follows: An
operator T is said to be an [m]-complex symmetric operator if there exists some conjuga-
tion C such that

m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–j = 0.

For an operator T ∈ B(H) and a conjugation C, we define the operator wm(T , C) by

wm(T , C) =
m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–j.

Then T is an [m]-complex symmetric operator if and only if wm(T , C) = 0. Moreover, it
holds that

CTC.wm(T , C) – wm(T , C).T = wm+1(T , C).

Hence if T is an [m]-complex symmetric operator, then T is an [n]-complex symmetric
operator for every n ≥ m.

The following example provides an operator which is a [3]-complex symmetric operator
but not a [2]-complex symmetric operator.

Example 1.1 Let H = C
2, and let C be a conjugation on H given by C(x, y) = (y, x). If T =

( 0 1
0 0

)
on C

2, we have CTC =
( 0 0

1 0

)
, then

(CTC)2 – 2CTC.T + T2

=

(
0 0
1 0

)2

– 2

(
0 0
1 0

)(
0 1
0 0

)

+

(
0 1
0 0

)2

=

(
0 0
0 –2

)

.

Hence T is not a [2]-complex symmetric operator.
On the other hand, since

(CTC)3 – 3(CTC)2.T + 3(CTC).T2 – T3

=

(
0 0
1 0

)3

– 3

(
0 0
1 0

)2 (
0 1
0 0

)

+ 3

(
0 0
1 0

)(
0 1
0 0

)2

–

(
0 1
0 0

)3

= 0.

Hence T is a [3]-complex symmetric operator.
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Example 1.2 Let T ∈ B(H) and C be a conjugation on H . If T is nilpotent of order k, then T
is a [2k – 1]-complex symmetric operator with conjugation C. Indeed, since T is nilpotent
of order k, it gives that CTjC = Tj = 0 for all j ≥ k. Then since max{j, 2k – 1 – j} ≥ k for any
j (j = 0, 1, 2, . . . , 2k – 1), we get

2k–1∑

j=0

(–1)2k–1–j

(
2k – 1

j

)

CTjC.T2k–1–j = 0.

Hence T is a [2k – 1]-complex symmetric operator with conjugation C.

Example 1.3 Let C be a conjugation on H and R ∈ B(H) satisfy R = CRC. If RQ = QR
and Qk = 0 for some k, then T = R + Q is a [2k – 1]-complex symmetric operator with
conjugation C.

Indeed, we will show that wm(T , C) = wm(Q, C) for any m ∈N. It is clear if m = 1. Suppose
that

wm–1(T , C) =
m–1∑

j=0

(–1)m–1–j

(
m – 1

j

)

CTjC.Tm–1–j

=
m–1∑

j=0

(–1)m–1–j

(
m – 1

j

)

CQjC.Qm–1–j

= wm–1(Q, C).

Then, since CRC = R and R commutes with wm–1(T), we have

wm(T , C) =
m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–j

= CTC

⎡

⎣
m–1∑

j=0

(–1)m–1–j

(
m – 1

j

)

CTjC.Tm–1–j

⎤

⎦

–

⎡

⎣
m–1∑

j=0

(–1)m–1–j

(
m – 1

j

)

CTjC.Tm–1–j

⎤

⎦T

= CQC

⎡

⎣
m–1∑

j=0

(–1)m–1–j

(
m – 1

j

)

CQjC.Qm–1–j

⎤

⎦

–

⎡

⎣
m–1∑

j=0

(–1)m–1–j

(
m – 1

j

)

CQjC.Qm–1–j

⎤

⎦Q

=
m∑

j=0

(–1)m–j

(
m
j

)

CQjC.Qm–j

= wm(Q, C).
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Since Q is a [2k – 1]-complex symmetric operator, i.e.,

2k–1∑

j=0

(–1)2k–1–j

(
2k – 1

j

)

CQjC.Q2k–1–j = 0.

Then T = R + Q is a [2k – 1]-complex symmetric operator with conjugation C.

2 [m]-complex symmetric operators
Theorem 2.1 Let T ∈ B(H) be an [m]-complex symmetric operator. If λ ∈ σa(T), then λ ∈
σa(T). In particular, if λ is an eigenvalue of T , then λ is also an eigenvalue of T .

Proof Let {xn} be a sequence of unit vectors such that limn→∞(T – λ)xn = 0. Since T is an
[m]-complex symmetric operator and limn→∞(Tk – λk)xn = 0 for all k ∈N, it follows that

0 = lim
n→∞

⎛

⎝
m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–jxn

⎞

⎠

= C lim
n→∞

⎛

⎝
m∑

j=0

(–1)m–j

(
m
j

)

Tjλ
m–j

⎞

⎠Cxn

= C lim
n→∞(T – λ)mCxn.

Moreover, since C2 = I , it follows that limn→∞(T – λ)mCxn = 0. Since ‖Cxn‖ = 1, hence
λ ∈ σa(T). �

Theorem 2.2 Let T ∈ B(H) be an [m]-complex symmetric operator. If T has property (β)ε
at λ, then T has property (β)ε at λ. In particular, if T has property (β) at λ, then T has
property (β) at λ, and if T has SVEP at λ, then T has SVEP at λ.

Proof If T has property (β)ε at λ, then CTC has property (β)ε at λ by [2, Theorem 4.3].
Suppose that T is an [m]-complex symmetric operator. Then

m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–j = 0.

It follows that T ∈ Heltonm(CTC). Hence T has property (β)ε at λ by [2, Theorem 5.3]. �

We investigate the power Tn and the inverse T–1 of an [m]-complex symmetric operator
T and show that the class of [m]-complex symmetric operators is norm closed.

Theorem 2.3 Let C be a conjugation on H , and let T ∈ B(H). Then the following assertions
hold.

(i) If T is invertible, then T is an [m]-complex symmetric operator if and only if so is
T–1.

(ii) If T is an [m]-complex symmetric operator, then Tn is also an [m]-complex
symmetric operator for any n ∈N.
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(iii) If {Tn} is a sequence of [m]-complex symmetric operators such that
limn→∞ ‖Tn – T‖ = 0, then T is also an [m]-complex symmetric operator.

Proof (i) Suppose that T is an invertible [m]-complex symmetric operator. Since C2 = I ,
it follows that

0 =
(
CT–mC

)
⎡

⎣
m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–j

⎤

⎦T–m

=
m∑

j=0

(–1)m–j

(
m
j

)

C
(
T–1)m–jC.T–(j),

we have
∑m

j=0(–1)m–j( m
j
)
C(T–1)jC.T–(m–j) = 0. Hence T–1 is also an [m]-complex symmet-

ric operator.
(ii) Since

(
an – bn)m = (a – b)m(

an–1 + an–2b + an–3b2 + · · · + bn–1)m

= (a – b)m(
f0am(n–1) + f1am(n–1)–1b + f2am(n–1)–2b2

+ · · · + fm(n–1)bm(n–1)),

where fi, i = 0, 1, 2, . . . , m(n – 1) are coefficients, it follows that

wm
(
Tn, C

)
=

m(n–1)∑

i=0

fiCTm(n–1)–iCwm(T , C)Ti. (2.1)

From (2.1), if wm(T , C) = 0, then wm(Tn, C) = 0. Hence Tn is an [m]-complex symmetric
operator for any n ∈N.

(iii) Suppose that {Tn} is a sequence of [m]-complex symmetric operators such that
limn→∞ ‖Tn – T‖ = 0. Then

∥∥∥∥∥∥

m∑

j=0

(–1)m–j

(
m
j

)

CTj
nC.Tm–j

n –
m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–j

∥∥∥∥∥∥

≤
∥∥∥∥∥∥

m∑

j=0

(–1)m–j

(
m
j

)

CTj
nC.Tm–j

n –
m∑

j=0

(–1)m–j

(
m
j

)

CTj
nC.Tm–j

∥∥∥∥∥∥

+

∥∥∥∥∥∥

m∑

j=0

(–1)m–j

(
m
j

)

CTj
nC.Tm–j –

m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–j

∥∥∥∥∥∥

≤
m∑

j=0

(
m
j

)
∥∥CTj

nC
∥∥∥∥Tm–j

n – Tm–j∥∥ +
m∑

j=0

(
m
j

)
∥∥CTj

nC – CTjC
∥∥∥∥Tm–j∥∥

≤
m∑

j=0

(
m
j

)

‖CTnC‖j‖Tn – T‖
(m–j–1∑

i=0

‖Tn‖m–j–1–i‖T‖i

)

+
m∑

j=0

(
m
j

)

‖CTnC – CTC‖
( j–1∑

i=0

‖CTnC‖j–1–i‖T‖i

)

‖T‖m–j
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≤
m∑

j=0

(
m
j

)

‖Tn‖j‖Tn – T‖
(m–j–1∑

i=0

‖Tn‖m–j–1–i‖T‖i

)

+
m∑

j=0

(
m
j

)

‖Tn – T‖
( j–1∑

i=0

‖CTnC‖j–1–i‖T‖i

)

‖T‖m–j → 0.

Since {Tn} is an [m]-complex symmetric operator with conjugation C,

m∑

j=0

(–1)m–j

(
m
j

)

CTj
nC.Tm–j

n = 0,

we have

m∑

j=0

(–1)m–j

(
m
j

)

CTjC.Tm–j = 0,

i.e., T is an [m]-complex symmetric operator. �

We examine the nilpotent perturbations of an [m]-complex symmetric operator.

Theorem 2.4 Let T be an [m]-complex symmetric operator with conjugation C and N be
a nilpotent operator of order n such that TN = NT . Then T + N is an [m + 2n – 2]-complex
symmetric operator with conjugation C.

Proof First we prove

wm(T + N , C) =
∑

i+j+k=m

(
m

i, j, k

)

CNjC.wk(T , C).(–N)i, (2.2)

where
( m

i,j,k
)

= m!
i!.j!,k! and λ0(∗) = I . It is easy to show that (2.2) holds for m = 1. Assume that

(2.2) holds for m, next we should prove (2.2) holds for m + 1. Since

wm+1(T + N , C) = C(T + N)C.wm(T + N , C) – wm(T + N , C).(T + N)

= C(T + N)C.
∑

i+j+k=m

(
m

i, j, k

)

CNjC.wk(T , C).(–N)i

–
∑

i+j+k=m

(
m

i, j, k

)

CNjC.wk(T , C).(–N)i(T + N)

=
∑

i+j+k=m

(
m

i, j, k

)

CNjC
[
CTC.wk(T , C) – wk(T , C).T

]
.(–N)i

+
∑

i+j+k=m

(
m

i, j, k

)

CNj+1C.wk(T , C).(–N)i

+
∑

i+j+k=m

(
m

i, j, k

)

CNjC.wk(T , C).(–N)i+1
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=
∑

i+j+k=m

(
m

i, j, k

)

CNjC.wk+1(T , C).(–N)i

+
∑

i+j+k=m

(
m

i, j, k

)

CNj+1C.wk(T , C).(–N)i

+
∑

i+j+k=m

(
m

i, j, k

)

CNjC.wk(T , C).(–N)i+1

=
∑

i+j+k=m+1

(
m + 1
i, j, k

)

CNjC.wk(T , C).(–N)i.

(2.2) holds for m + 1, and hence it holds for any m ∈N. By (2.2),

wm+2n–2(T + N , C) =
∑

i+j+k=m+2n–2

(
m + 2n – 2

i, j, k

)

CNjC.wk(T , C).(–N)i.

(i) If max{i, j} ≥ n, then CNjC = 0 or Ni = 0.
(ii) If max{i, j} ≤ n – 1, then k ≥ m and hence wk(T , C) = 0.

By (i) and (ii), wm+2n–2(T +N , C) = 0. Therefore T +N is an [m+2n–2]-complex symmetric
operator with conjugation C. �

Example 2.1 Let C be a conjugation given by C(z1, z2, z3) = (z3, z2, z1) on C
3.

If T =
(

1 m m
0 1 0
0 0 1

)
on C

3, we have CTC =
(

1 0 0
0 1 0
m m 1

)
, then

(CTC)3 – 3(CTC)2.T + 3(CTC).T2 – T3

=

⎛

⎜
⎝

1 0 0
0 1 0
m m 1

⎞

⎟
⎠

3

– 3

⎛

⎜
⎝

1 0 0
0 1 0
m m 1

⎞

⎟
⎠

2 ⎛

⎜
⎝

1 m m
0 1 0
0 0 1

⎞

⎟
⎠

+ 3

⎛

⎜
⎝

1 0 0
0 1 0
m m 1

⎞

⎟
⎠

⎛

⎜
⎝

1 m m
0 1 0
0 0 1

⎞

⎟
⎠

2

–

⎛

⎜
⎝

1 m m
0 1 0
0 0 1

⎞

⎟
⎠

3

= 0.

Hence T is a [3]-complex symmetric operator.

On the other hand, since T = I + N , where N =
(

0 m m
0 0 0
0 0 0

)
, N2 = 0, it follows from Theo-

rem 2.4 that T is a [3]-complex symmetric operator.
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