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Abstract
In this paper, we present two iterative algorithms for approximating a solution of the
split feasibility problem on zeros of a sum of monotone operators and fixed points of
a finite family of nonexpansive mappings. Weak and strong convergence theorems
are proved in the framework of Hilbert spaces under some mild conditions. We apply
the obtained main result for the problem of finding a common zero of the sum of
inverse strongly monotone operators and maximal monotone operators, for finding a
common zero of a finite family of maximal monotone operators, for finding a solution
of multiple sets split common null point problem, and for finding a solution of
multiple sets split convex feasibility problem. Some applications of the main results
are also provided.
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1 Introduction
A very common problem in different areas of mathematics and physical sciences consists
of finding a point in the intersection of convex sets and is formulated as finding a point
z ∈ H satisfying the property

z ∈
M⋂

i=1

Ci,

where Ci, i = 1, . . . , M, are nonempty, closed, and convex subsets of a Hilbert space H . This
problem is called the convex feasibility problem (CFP). There are various applications of
CFP in many applied disciplines as diverse as applied mathematics, approximation theory,
image recovery and signal processing, control theory, biomedical engineering, communi-
cations, and geophysics (see [1–7] and the references therein).

The problem of finding z ∈ H1 such that z ∈ C and Lz ∈ D is called the split feasi-
bility problem (SFP), where C and D are nonempty, closed, and convex subsets of real
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Hilbert spaces H1 and H2, respectively, and L : H1 → H2 is a bounded linear operator. Let
L–1(D) = {x : Lx ∈ D}, then the SFP can be viewed as a special case of the CFP since it
can be rewritten as z ∈ C ∩ L–1D. However, the methodologies for studying the SFP are
actually different from those for the CFP; see [8–14].

The theory of monotone operators has appeared as a powerful and effective tool for
studying a wide class of problems arising in different branches of social, engineering, and
pure sciences in a unified and general framework. There is a notion about monotone op-
erators and it is one of generalized sums of two monotone operators; see [15, 16] and the
references therein. In recent years, monotone operators have received a lot of attention for
treating zero points of monotone operators and fixed point of mappings which are Lips-
chitz continuous; see [17–22] and the references therein. The first algorithm for approx-
imating the zero points of the maximal monotone operator was introduced by Martinet
[23]. He considered the proximal point algorithm for finding zero points of a maximal
monotone operator. Then, Passty [24] introduced a forward-backward algorithm method
for finding zero points of the sum of two operators. There are various applications of the
problem of finding zero points of the sum of two operators; see [25–29] for example and
the references therein.

Therefore, there are some generalizations of the CFP, which can be formulated in various
ways such as: finding a common fixed point of nonexpansive operators, finding a common
minimum of convex functionals, finding a common zero of maximal monotone operators,
solving a system of variational inequalities, and solving a system of convex inequalities.
Surveys of methods for solving such problems can be found in [2, 4].

Recently, some authors introduced and studied algorithms to get a common solution
to inclusion problems and fixed point problems in the framework of Hilbert spaces; see
[30–32]. Cho et al. [30] considered the problem of finding a common solution to the zero
point problems involving two monotone operators and fixed point problems involving
asymptotically strictly pseudocontractive mappings based on a one-step iterative method
and proved the weak convergence theorems in the framework of Hilbert spaces.

In this paper, motivated and inspired by the above literature, we consider an iterative al-
gorithm for finding a solution of split feasibility problem for a point in zeros of a finite sum
of α-inverse strongly monotone operators and maximal monotone operators and fixed
points of nonexpansive mappings. That is, we are going to consider the following prob-
lem: Let H1 and H2 be real Hilbert spaces. Let Ai : H1 → H1, i = 1, . . . , M, be αi-inverse
strongly monotone operators and Bi : H1 → 2H1 , i = 1, . . . , M, be maximal monotone op-
erators, Tj : H2 → H2, j = 1, . . . , N , be nonexpansive mappings, L : H1 → H2 be a bounded
linear operator. We are interested in considering the problem of finding a solution p ∈ H1

such that

p ∈
( M⋂

i=1

(Ai + Bi)–1(0)

)
∩ L–1

( N⋂

j=1

F(Tj)

)
=: F , (1.1)

where F �= ∅. Weak and strong convergence theorems will be provided under some mild
conditions.

The paper is organized as follows. Section 2 gathers some definitions and lemmas of
geometry of Hilbert spaces and monotone operators, which will be needed in the remain-
ing sections. In Sect. 3, we prepare an iterative algorithm and prove the weak and strong
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convergence theorems. Finally, in Sect. 4, the results of Sect. 3 are applied to solve CFP,
multiple-set null point problems, variational inequality problems, fixed point problems,
and equilibrium problems.

2 Preliminaries
Throughout this paper, H will be a Hilbert space with norm ‖ · ‖ and inner product 〈·, ·〉,
respectively. We now provide some basic concepts, definitions, and lemmas which will be
used in the sequel. We write xn → x to indicate that the sequence {xn} converges strongly
to x and xn ⇀ x to indicate that {xn} converges weakly to x.

Let T : H → H be a mapping. We say that T is a Lipschitz mapping if there exists L ≥ 0
such that

‖Tx – Ty‖ ≤ L‖x – y‖, ∀x, y ∈ H .

The number L, associated with T , is called a Lipschitz constant. If L = 1, we say that T is
a nonexpansive mapping, that is,

‖Tx – Ty‖ ≤ ‖x – y‖, ∀x, y ∈ H .

We will say that T is firmly nonexpansive if

〈Tx – Ty, x – y〉 ≥ ‖Tx – Ty‖2, ∀x, y ∈ H .

The set of fixed points of T will be denoted by F(T), that is, F(T) = {x ∈ H : Tx = x}. It
is well known that if T is nonexpansive, then F(T) is closed and convex. Moreover, every
nonexpansive operator T : H → H satisfies the following inequality:

〈
(x – Tx) – (y – Ty), Ty – Tx

〉 ≤ 1
2
∥∥(Tx – x) – (Ty – y)

∥∥2, ∀x, y ∈ H .

Therefore, for all x ∈ H and y ∈ F(T),

〈x – Tx, y – Tx〉 ≤ 1
2
‖Tx – x‖2, ∀x, y ∈ H , (2.1)

see [33, 34].

Lemma 2.1 ([35]) Let H be a real Hilbert space and T : H → H be a nonexpansive map-
ping with F(T) �= ∅. Then the mapping I –T is demiclosed at zero, that is, if {xn} is a sequence
in H such that xn ⇀ x and ‖xn – Txn‖ → 0, then x ∈ F(T).

A mapping T : H → H is called α-averaged if there exists α ∈ (0, 1) such that T = (1 –
α)I + αS, where S is a nonexpansive mapping of H into H . It should be observed that
firmly nonexpansive mappings are 1

2 -averaged mappings.
We now recall the concepts and facts on the class of monotone operators, for both single

and multi-valued operators.
An operator A : H → H is called α-inverse strongly monotone (α-ism) for a positive

number α if

〈Ax – Ay, x – y〉 ≥ α‖Ax – Ay‖2, ∀x, y ∈ H .
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Lemma 2.2 ([21]) Let C be a nonempty, closed, and convex subset of a real Hilbert space H .
Let the mapping A : C → H be α-inverse strongly monotone and r > 0 be a constant. Then
we have

∥∥(I – rA)x – (I – rA)y
∥∥2 ≤ ‖x – y‖2 + r(r – 2α)‖Ax – Ay‖2

for all x, y ∈ C. In particular, if 0 < r ≤ 2α, then I – rA is nonexpansive.

We have the following properties from [36, 37].

Lemma 2.3 We have
(a) The composite of finitely many averaged mappings is averaged. In particular, if Ti is

αi-averaged, where αi ∈ (0, 1) for i = 1, 2, then the composite T1T2 is α-averaged,
where α = α1 + α2 – α1α2.

(b) If A is β-ism and r ∈ (0,β], then T := I – rA is firmly nonexpansive.

A multifunction B : H → 2H is called a monotone operator if, for every x, y ∈ H ,

〈
x∗ – y∗, x – y

〉 ≥ 0, ∀x∗ ∈ B(x),∀y∗ ∈ B(y).

A monotone operator B : H → 2H is said to be maximal monotone, when its graph is not
properly included in the graph of any other monotone operators on the same space. For
a maximal monotone operator B on H , and λ > 0, we define the single-valued resolvent
JB
λ : H → D(B) by JB

λ = (I + λB)–1. It is well known that JB
λ is firmly nonexpansive, and

F(JB
λ ) = B–1(0).

Next, we collect some useful facts on monotone operators that will be used in our proof.

Lemma 2.4 ([38]) Let C be a nonempty, closed, and convex subset of a real Hilbert space
H and A : C → H be an operator. If B : H → 2H is a maximal monotone operator, then
F(JB

λ (I – λA)) = (A + B)–1(0).

Lemma 2.5 ([39]) Let B : H → 2H be a maximal monotone operator. For λ > 0, μ > 0, and
x ∈ H ,

JB
λ x = JB

μ

(
μ

λ
x +

(
1 –

μ

λ

)
JB
λ x

)
.

For each sequence {xn} ⊂ H , we put

ωw(xn) :=
{

x∗ ∈ H : there is a subsequence {xnj} ⊂ {xn} such that xnj ⇀ x∗}.

The following lemma plays an important role in concluding our results.

Lemma 2.6 ([37]) Let C be a nonempty closed convex subset of a real Hilbert space H . Let
{xn} be a sequence in H satisfying the properties:

(i) limn→∞ ‖xn – u‖ exists for each u ∈ C;
(ii) ωw(xn) ⊂ C.

Then {xn} converges weakly to a point in C.
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3 Parallel algorithm
Let H1 and H2 be real Hilbert spaces. Let Ai : H1 → H1, i = 1, . . . , M, be αi-inverse strongly
monotone operators and Bi : H1 → 2H1 , i = 1, . . . , M, be maximal monotone operators,
Tj : H2 → H2, j = 1, . . . , N , be nonexpansive mappings, L : H1 → H2 be a bounded linear
operator. We will denote by L∗ the adjoint operator of L. Let {βn} and {λn} be sequences
of positive real numbers. For x1 ∈ H1, we introduce the following parallel algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj,n = xn + λnL∗(Tj – I)Lxn, j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

zi,n = JBi
βn (I – βnAi)yn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

xn+1 = zin ,n.

(3.1)

We start by some lemmas.

Lemma 3.1 Let α = min{α1, . . . ,αM}. If
(i) {βn} ⊂ (0, 2α) and

(ii) {λn} ⊂ (a, 1
‖L‖2 ) for some a > 0,

then the sequences {xn} and {yn} generated by (3.1) are bounded.

Proof Let u ∈F . We have

‖yn – u‖2 =
∥∥xn + λnL∗(Tjn – I)Lxn – u

∥∥2

= ‖xn – u‖2 + 2λn
〈
xn – u, L∗(Tjn – I)Lxn

〉

+ λ2
n
∥∥L∗(Tjn – I)Lxn

∥∥2. (3.2)

By (2.1), we get

〈
xn – u, L∗(Tjn – I)Lxn

〉

= 〈Lxn – Tjn Lxn + Tjn Lxn – Lu, Tjn Lxn – Lxn〉
= –‖Tjn Lxn – Lxn‖2 + 〈Tjn Lxn – Lu, Tjn Lxn – Lxn〉

≤ –‖Tjn Lxn – Lxn‖2 +
1
2
‖Tjn Lxn – Lxn‖2

= –
1
2
‖Tjn Lxn – Lxn‖2. (3.3)

It follows from (3.2) and (3.3) that

‖yn – u‖2 ≤ ‖xn – u‖2 – λn‖Tjn Lxn – Lxn‖2 + λ2
n‖L‖2‖Tjn Lxn – Lxn‖2

= ‖xn – u‖2 – λn
(
1 – λn‖L‖2)‖Tjn Lxn – Lxn‖2

≤ ‖xn – u‖2. (3.4)
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Hence, from Lemma 2.2, Lemma 2.4, and the control conditions on {βn} and {λn}, we have

‖xn+1 – u‖2 = ‖zin ,n – u‖2

=
∥∥JBin

βn (I – βnAin )yn – JBin
βn (I – βnAin )u

∥∥2

≤ ∥∥(I – βnAin )yn – (I – βnAin )u
∥∥2

= ‖yn – u‖2 + β2
n‖Ain yn – Ain u‖2 – 2βn〈yn – u, Ain yn – Ain u〉

≤ ‖yn – u‖2 + β2
n‖Ain yn – Ain u‖2 – 2βnαin‖Ain yn – Ain u‖2

≤ ‖yn – u‖2 + βn(βn – 2αin )‖Ain yn – Ain u‖2

≤ ‖yn – u‖2

≤ ‖xn – u‖2.

This means that ‖xn – u‖ is a nonincreasing sequence of nonnegative real numbers, so it
follows that it is a convergent sequence. Also, from the above inequality, we have ‖xn – u‖
and ‖yn – u‖ converge to the same limit point. These imply that the sequences {xn} and
{yn} are bounded, and the proof is completed. �

Lemma 3.2 If 0 < a ≤ λn ≤ b < 1
2‖L‖2 , then ωw(Lxn) ⊂ ⋂N

j=1 F(Tj).

Proof By (3.4) we have

λn
(
1 – λn‖L‖2)‖Tjn Lxn – Lxn‖2 ≤ ‖xn – u‖2 – ‖yn – u‖2 → 0, n → ∞,

and hence,

‖Tjn Lxn – Lxn‖ → 0, n → ∞.

Therefore, from (3.1), we get

∥∥L∗(TjLxn – Lxn)
∥∥ =

1
λn

‖yj,n – xn‖

≤ 1
λn

‖yn – xn‖

=
∥∥L∗(Tjn Lxn – Lxn)

∥∥

≤ ‖L‖‖Tjn Lxn – Lxn‖ → 0, n → ∞, (3.5)

for each j = 1, . . . , N , which implies that

∥∥L∗(TjLxn – Lxn)
∥∥ → 0, n → ∞. (3.6)

From (2.1), we have

〈
λnL∗(TjLxn – Lxn) + xn – u, –λnL∗(TjLxn – Lxn)

〉

= –λ2
n
∥∥L∗(TjLxn – Lxn)

∥∥2 – λn〈Lxn – Lu, TjLxn – Lxn〉
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= –λ2
n
∥∥L∗(TjLxn – Lxn)

∥∥2 – λn〈Lxn – TjLxn + TjLxn – Lu, TjLxn – Lxn〉
= –λ2

n
∥∥L∗(TjLxn – Lxn)

∥∥2 + λn‖TjLxn – Lxn‖2 – λn〈TjLxn – Lu, TjLxn – Lxn〉

≥ –λ2
n‖L‖2‖TjLxn – Lxn‖2 + λn‖TjLxn – Lxn‖2 –

1
2
λn‖TjLxn – Lxn‖

= λn

(
1
2

– λn‖L‖2
)

‖TjLxn – Lxn‖2 ≥ 0 (3.7)

for each j = 1, . . . , N . Thus, by (3.6) and the assumption of {λn}, we have

‖TjLxn – Lxn‖ → 0, n → ∞, (3.8)

for each j = 1, . . . , N . From Lemma 2.1, we obtain ωw(Lxn) ⊂ F(Tj) for each j = 1, . . . , N .
This completes the proof. �

Lemma 3.3 Let α = min{α1, . . . ,αM}. If {βn} ⊂ (0, 2α). Then, for each i = 1, . . . , M, we have
‖xn – zi,n‖ → 0.

Proof Since JBi
βn and I – βnAi are firmly nonexpansive, they are both 1

2 -averaged and hence
Ti,n := JBi

βn (I – βnAi) is 3
4 -averaged by Lemma 2.3. Thus, for each n ∈ N and 1 ≤ i ≤ M, we

can write

Ti,n =
1
4

I +
3
4

Si,n,

where Si,n is a nonexpansive mapping and F(Si,n) = F(Ti,n) = F(JBi
βn (I –βnAi)) = (Ai +Bi)–1(0)

for each n ∈ N and 1 ≤ i ≤ M. Then we can rewrite xn+1 as

xn+1 = Tin ,n(yn) =
1
4

yn +
3
4

Sin ,n(yn). (3.9)

Let u ∈ ⋂M
i=1(Ai + Bi)–1(0), we have

‖xn+1 – u‖2 =
∥∥∥∥

1
4

(yn – u) +
3
4
(
Sin ,n(yn) – u

)∥∥∥∥
2

=
1
4
‖yn – u‖2 +

3
4
∥∥Sin ,n(yn) – u

∥∥2 –
3

16
∥∥yn – Sin ,n(yn)

∥∥2

≤ ‖yn – u‖2 –
3

16
∥∥yn – Sin ,n(yn)

∥∥2,

and hence,

3
16

∥∥yn – Sin ,n(yn)
∥∥2 ≤ ‖yn – u‖2 – ‖xn+1 – u‖2.

Then

∥∥yn – Sin ,n(yn)
∥∥ → 0, n → ∞.
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From (3.9),

‖yn – xn+1‖ =
3
4
∥∥yn – Sin ,n(yn)

∥∥ → 0, n → ∞. (3.10)

By (3.5), we get

‖xn – yn‖ = ‖xn – yjn ,n‖ → 0, n → ∞. (3.11)

Now, from (3.1), (3.10), and (3.11), we obtain

‖xn – zi,n‖ ≤ ‖xn – zin ,n‖ ≤ ‖xn – yn‖ + ‖yn – xn+1‖ → 0, n → ∞. (3.12)
�

Lemma 3.4 Assume that βn → β for some positive real number β . Then, for each i =
1, . . . , M, we have ‖xn – JBi

β (I – βAi)xn‖ → 0, n → ∞.

Proof Set wi,n = (I – βnAi)yn, so zi,n = JBi
βn wi,n. By Lemma 2.5, we have

∥∥JBi
βn (I – βnAi)yn – JBi

β (I – βnAi)yn
∥∥

=
∥∥JBi

βn wi,n – JBi
β wi,n

∥∥

=
∥∥∥∥JBi

β

(
β

βn
wi,n +

(
1 –

β

βn

)
JBi
βn wi,n

)
– JBi

β wi,n

∥∥∥∥

≤
∥∥∥∥

β

βn
wi,n +

(
1 –

β

βn

)
JBi
βn wi,n – wi,n

∥∥∥∥

=
∣∣∣∣1 –

β

βn

∣∣∣∣
∥∥JBi

βn wi,n – wi,n
∥∥. (3.13)

On the other hand, we have

∥∥JBi
βn wi,n – wi,n

∥∥ = ‖zi,n – wi,n‖
= ‖zi,n – yn + βnAiyn‖
≤ ‖zi,n – xn‖ + ‖xn – yn‖ + βn‖Aiyn‖.

Since Ai is inverse strongly monotone, {yn} is bounded, (3.11) and (3.12) we know that
{‖JBi

βn wi,n – wi,n‖} is bounded. It follows from βn → β and (3.13) that

∥∥JBi
βn (I – βnAi)yn – JBi

β (I – βnAi)yn
∥∥ → 0, n → ∞. (3.14)

We also have

∥∥JBi
β (I – βnAi)yn – JBi

β (I – βAi)xn
∥∥

≤ ∥∥(I – βnAi)yn – (I – βAi)xn
∥∥

≤ ‖yn – xn‖ + βn‖Aiyn – Aixn‖ + ‖βnAixn – βAixn‖
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≤ ‖yn – xn‖ +
βn

α
‖yn – xn‖ + |βn – β|‖Aixn‖

≤
(

1 +
βn

α

)
‖yn – xn‖ + |βn – β|‖Aixn‖ → 0, n → ∞. (3.15)

It follows form (3.12), (3.14), and (3.15) that

∥∥xn – JBi
β (I – βAi)xn

∥∥

≤ ‖xn – zi,n‖ +
∥∥JBi

βn (I – βnAi)yn – JBi
β (I – βnAi)yn

∥∥

+
∥∥JBi

β (I – βnAi)yn – JBi
β (I – βAi)xn

∥∥ → 0, n → ∞,

for each i = 1, . . . , M. This completes the proof of the lemma. �

Now, the weak convergence of algorithm (3.1) is given by the following theorem.

Theorem 3.5 Let H1 and H2 be real Hilbert spaces. Let Tj : H2 → H2, j = 1, . . . , N , be
nonexpansive mappings, L : H1 → H2 be a bounded linear operator, Ai : H1 → H1, i =
1, . . . , M, be αi-inverse strongly monotone operators, and Bi : H1 → 2H1 , i = 1, . . . , M, be
maximal monotone operators such that F = (

⋂M
i=1(Ai + Bi)–1(0)) ∩ L–1(

⋂N
j=1 F(Tj)) �= ∅. Let

α = min{α1, . . . ,αM}, βn ∈ (0, 2α) for each n ∈ N and 0 < a ≤ λn ≤ b < 1
2‖L‖2 , then the se-

quence {xn} generated by (3.1) converges weakly to a point p ∈F .

Proof In Lemma 3.1, we show that limn→∞ ‖xn – u‖ exists for each u ∈ F . From Lem-
mas 3.2 and 3.4 we imply that ωw(xn) ⊂ F . Then it follows from Lemma 2.6 that {xn}
converges weakly to a point p ∈F . �

Recall that for a subset C of H , a mapping T : C → C is said to be semi-compact if
for any bounded sequence {xn} ⊂ C such that ‖xn – Txn‖ → 0 (n → ∞), there exists a
subsequence {xnj} of {xn} such that {xnj} converges strongly to x ∈ C.

Strong convergence of algorithm (3.1), under the concept of semi-compact assumption,
is given by the following theorem.

Theorem 3.6 Let H1 and H2 be real Hilbert spaces. Let Tj : H2 → H2, j = 1, . . . , N , be
nonexpansive mappings, L : H1 → H2 be a bounded linear operator, Ai : H1 → H1, i =
1, . . . , M, be αi-inverse strongly monotone operators, and Bi : H1 → 2H1 , i = 1, . . . , M, be
maximal monotone operators such that F = (

⋂M
i=1(Ai + Bi)–1(0)) ∩ L–1(

⋂N
j=1 F(Tj)) �= ∅. Let

α = min{α1, . . . ,αM}, βn ∈ (0, 2α) for each n ∈N and 0 < a ≤ λn ≤ b < 1
2‖L‖2 . If at least one of

the maps Tj is semi-compact, then the sequence {xn} generated by (3.1) converges strongly
to a point p ∈F .

Proof Let Tj be semi-compact for some fixed j ∈ {1, . . . , N}. Since limn→∞ ‖TjLxn – Lxn‖ =
0 by (4.7), there exists a subsequence {xnk } of {xn} such that it converges strongly to q. Since
{xn} converges weakly to p, we get p = q. On the other hand, limn→∞ ‖xn – p‖ exists and
limn→∞ ‖xnk – p‖ = 0, which show that {xn} converges strongly to p ∈ F . This completes
the proof of the theorem. �
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3.1 Deduced results of parallel algorithm
One can obtain some results from Theorem 3.5. We give some of them in the following.

If we take M = N = 1, we have the following corollary.

Corollary 3.7 Let H1 and H2 be real Hilbert spaces. Let T : H2 → H2 be a nonexpan-
sive mapping, L : H1 → H2 be a bounded linear operator, A : H1 → H1 be an α-inverse
strongly monotone operator, and B : H1 → 2H1 be a maximal monotone operator such that
(A + B)–1(0) ∩ L–1(F(T)) �= ∅. Suppose that the sequence {xn} is defined by the following
algorithm:

⎧
⎨

⎩
yn = xn + λnL∗(T – I)Lxn,

xn+1 = JB
β (I – βnA)yn,

where x1 ∈ H1, 0 < a ≤ λn ≤ b < 1
2‖L‖2 , and βn ∈ (0, 2α) for each n ∈ N. Then the sequence

{xn} converges weakly to a point p ∈ (A + B)–1(0) ∩ L–1(F(T)). If T be semi-compact, then
the convergence is strong.

From Theorem 3.5, we have the following corollary for the problem of finding a com-
mon zero of the sum of α-inverse strongly monotone operators and maximal monotone
operators.

Corollary 3.8 Let H be a real Hilbert space, Ai : H → H , i = 1, . . . , M, be αi-inverse strongly
monotone operators, and Bi : H → 2H , i = 1, . . . , M, be maximal monotone operators such
that F =

⋂M
i=1(Ai + Bi)–1(0) �= ∅ and α = min{α1, . . . ,αM}. Suppose that the sequence {xn} is

defined by the following algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

zi,n = JBi
βn (I – βnAi)xn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

xn+1 = zin ,n,

where x1 ∈ H and βn ∈ (0, 2α) for each n ∈ N. Then the sequence {xn} converges weakly to
a point p ∈ ⋂M

i=1(Ai + Bi)–1(0).

In the following corollary, we have a result for finding a common zero of a finite family
of maximal monotone operators.

Corollary 3.9 Let H be a real Hilbert space, Bi : H → 2H , i = 1, . . . , M, be maximal mono-
tone operators such that

⋂M
i=1 B–1

i (0) �= ∅. Suppose that the sequence {xn} is defined by the
following algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

zi,n = JBi
βn xn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

xn+1 = zin ,n,

where x1 ∈ H and βn > 0 for each n ∈ N. Then the sequence {xn} converges weakly to a point
p ∈ ⋂M

i=1 B–1
i (0).
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Corollary 3.10 Let H be a real Hilbert space, Ai : H → H , i = 1, . . . , M, be αi-inverse
strongly monotone operators such that

⋂M
i=1 A–1

i (0) �= ∅ and α = min{α1, . . . ,αM}. Suppose
that the sequence {xn} is defined by the following algorithm:

⎧
⎪⎪⎨

⎪⎪⎩

zi,n = xn – βnAixn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

xn+1 = zin ,n,

where x1 ∈ H and βn ∈ (0, 2α) for each n ∈ N. Then the sequence {xn} converges weakly to
a point p ∈ ⋂M

i=1 A–1
i (0).

Corollary 3.11 Let H1 and H2 be real Hilbert spaces and Tj : H2 → H2, j = 1, . . . , N ,
be nonexpansive mappings and L : H1 → H2 be a bounded linear operator such that
F = L–1(

⋂N
j=1 F(Tj)) �= ∅. Suppose that the sequence {xn} is defined by the following algo-

rithm:

⎧
⎪⎪⎨

⎪⎪⎩

yj,n = xn + λnL∗(Tj – I)Lxn, j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

xn+1 = yjn ,n,

where x1 ∈ H and 0 < a ≤ λn ≤ b < 1
2‖L‖2 . Then the sequence {xn} converges weakly to a point

p ∈ ⋂N
j=1 F(Tj). If Tj is semi-compact for some 1 ≤ j ≤ N , then the convergence is strong.

4 Parallel hybrid algorithm
Notice that, in order to guarantee the strong convergence theorem of the introduced al-
gorithm (3.1), we proposed an additional assumption to one of the operators Tj, as a semi-
compact assumption (see Theorem 3.6). Next, we propose the following hybrid algorithm
to obtain a strong convergence theorem for finding a point in zeros of a finite family of
sums of α-inverse strongly monotone operators and maximal monotone operators and
nonexpansive mappings. Of course, the strong convergence theorems of the following al-
gorithm will be guaranteed without any additional assumptions on the considered opera-
tors. To do this, we recall some necessary concepts and facts: let C be a closed and convex
subset of a Hilbert space H . The operator PC is called a metric projection operator if it
assigns to each x ∈ H its nearest point y ∈ C such that

‖x – y‖ = min
{‖x – z‖ : z ∈ C

}
.

An element y is called the metric projection of H onto C and is denoted by PCx. It exists and
is unique at any point of the Hilbert space. It is known that the metric projection operator
PC is a firmly nonexpansive mapping. Also, the following characterization is very useful
in our proof.

Lemma 4.1 Let H be a Hilbert space and C be a nonempty, closed, and convex subset of
H . Then, for all x ∈ H , the element z = PCx if and only if

〈x – z, z – y〉 ≥ 0, ∀y ∈ C.
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Now we are in a position to introduce the aforementioned algorithm: Let x1 ∈ C1 = H1

and {xn} be a sequence generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj,n = xn + λnL∗(Tj – I)Lxn, j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

zi,n = JBi
βn (I – βnAi)yn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

zn = zin ,n,

Cn+1 = {z ∈ Cn : ‖zn – z‖ ≤ ‖yn – z‖ ≤ ‖xn – z‖},
xn+1 = PCn+1 x1.

(4.1)

Theorem 4.2 Let H1 and H2 be real Hilbert spaces. Let Tj : H2 → H2, j = 1, . . . , N , be
nonexpansive mappings, L : H1 → H2 be a bounded linear operator, Ai : H1 → H1, i =
1, . . . , M, be αi-inverse strongly monotone operators, and Bi : H1 → 2H1 , i = 1, . . . , M, be
maximal monotone operators such that F = (

⋂M
i=1(Ai + Bi)–1(0)) ∩ L–1(

⋂N
j=1 F(Tj)) �= ∅. Let

α = min{α1, . . . ,αM}, βn ∈ (0, 2α) for each n ∈ N and 0 < a ≤ λn ≤ b < 1
2‖L‖2 . Then the se-

quence {xn} generated by (4.1) converges strongly to q = PF (x1).

Proof We prove that the sequence {xn} generated by (4.1) is well defined. We first show
that Cn is closed and convex for each n ∈ N. C1 = H1 is closed and convex and suppose
that Cn is closed and convex for some n > 1. Set

C1
n =

{
z ∈ H1 : ‖zn – z‖ ≤ ‖yn – z‖},

C2
n =

{
z ∈ H1 : ‖yn – z‖ ≤ ‖xn – z‖},

then Cn+1 = Cn ∩ C1
n ∩ C2

n . For each p ∈ C1
n , we obtain

‖zn – p‖ ≤ ‖yn – p‖
⇐⇒ ‖zn – yn + yn – p‖2 ≤ ‖yn – p‖2

⇐⇒ ‖zn – yn‖2 + ‖yn – p‖2 + 2〈zn – yn, yn – p〉 ≤ ‖yn – p‖2

⇐⇒ ‖zn – yn‖2 + 2〈zn – yn, yn – p〉 ≤ 0.

This implies that C1
n is closed and convex. In a similar manner, C2

n is closed and convex
and so is Cn+1 = Cn ∩ C1

n ∩ C2
n . By the induction, Cn is closed and convex for each n ≥ 1.

We show that F ⊂ Cn for each n ≥ 1. Let p ∈F . From Lemmas 2.2 and 2.4 and (4.1), we
have

‖zn – p‖ =
∥∥JBin

βn (I – βnAin )yn – JBin
βn (I – βnAin )p

∥∥

≤ ∥∥(I – βnAin )yn – (I – βnAin )p
∥∥

≤ ‖yn – p‖.

This together with (3.4) implies that p ∈ Cn+1. Then {xn} is well defined.



Petrot et al. Journal of Inequalities and Applications  (2018) 2018:205 Page 13 of 24

Since F is nonempty, closed, and convex, there exists a unique element q ∈F ⊂ Cn such
that q = PFx1. From xn+1 = PCn+1 (x1), we get

‖xn+1 – x1‖ ≤ ‖x1 – q‖. (4.2)

Since again xn = PCn (x1) and xn+1 = PCn+1 (x1) ∈ Cn+1 ⊂ Dn, we get

‖xn – x1‖ ≤ ‖xn+1 – x1‖. (4.3)

Thus, the sequence {‖xn – x1‖} is a bounded above and nondecreasing sequence, so
limn→∞ ‖xn – x1‖ exists, and the sequence {xn} is bounded. By (3.4) the sequence {yn}
is bounded too.

We show that ‖xn+1 – xn‖ → 0, ‖xn – yn‖ → 0, and ‖yn – zn‖ → 0. From xn = PCn (x1),
xn+1 = PCn+1 (x1) ∈ Cn+1 ⊂ Cn, and Lemma 4.1, we obtain

〈x1 – xn, xn – xn+1〉 ≥ 0.

Then we get

‖xn – xn+1‖2

= ‖xn – x1 + x1 – xn+1‖2

= ‖xn – x1‖2 + 2〈xn – x1, x1 – xn+1〉 + ‖x1 – xn+1‖2

= ‖xn – x1‖2 + 2〈xn – x1, x1 – xn〉 + 2〈xn – x1, xn – xn+1〉 + ‖x1 – xn+1‖2

≤ ‖xn – x1‖2 – 2〈xn – x1, xn – x1〉 + ‖x1 – xn+1‖2

= ‖xn – x1‖2 – 2‖xn – x1‖2 + ‖x1 – xn+1‖2

= –‖xn – x1‖2 + ‖x1 – xn+1‖2 → 0, n → ∞,

and hence,

‖xn – xn+1‖ → 0, n → ∞.

By xn+1 = PCn+1 (x1) ∈ Cn+1 ⊂ Cn and the definition of Cn, we obtain

‖xn+1 – zn‖ ≤ ‖xn+1 – yn‖ ≤ ‖xn+1 – xn‖,

and then

‖xn – yn‖ ≤ ‖xn – xn+1‖ + ‖xn+1 – yn‖ ≤ 2‖xn – xn+1‖,

which implies that

‖xn – yn‖ → 0, n → ∞. (4.4)
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Also, we have

‖yn – zn‖ ≤ ‖yn – xn+1‖ + ‖xn+1 – zn‖
≤ 2‖xn – xn+1‖,

therefore,

‖yn – zn‖ → 0, n → ∞. (4.5)

By (4.4) and (4.5), we obtain

‖xn – zn‖ → 0, n → ∞. (4.6)

Now, we show that ωw(xn) ⊂F . From (3.5), (3.7), and (4.4), we get

‖TjLxn – Lxn‖ → 0, n → ∞, (4.7)

for each j = 1, . . . , N . It follows from Lemma 2.1 that ωw(Lxn) ⊂ ⋂N
j=1 F(Tj). By arguing

similarly to the proof of Lemma 3.4, (4.4), and (4.6), we conclude ωw(xn) ⊂ F(JBi
β (I –βAi)) =⋂M

i=1(Ai + Bi)–1(0). Therefore,

ωw(xn) ⊂F . (4.8)

Finally, we show that the sequence {xn} generated by (4.1) converges strongly to q =
PF (x1). Since xn = PCn (x1) and q ∈F ⊂ Cn, we get

‖xn – x1‖ ≤ ‖q – x1‖. (4.9)

Let {xnk } be an arbitrary subsequence of {xn} converging weakly to p ∈ H1. Then p ∈F by
(4.8) and hence it follows from the lower semi-continuity of the norm that

‖q – x1‖ ≤ ‖p – x1‖
≤ lim inf

k→∞
‖xnk – x1‖

≤ lim sup
k→∞

‖xnk – x1‖

≤ ‖q – x1‖.

Thus, we obtain that limk→∞ ‖xnk – x1‖ = ‖p – x1‖ = ‖q – x1‖. Using the Kadec–Klee prop-
erty of H1, we get that limk→∞ xnk = p = q. Since {xnk } is an arbitrary weakly convergent
subsequence of {xn} and limn→∞ ‖xn –x1‖ exists, we can imply that {xn} converges strongly
to q. This completes the proof. �

4.1 Deduced results of the parallel hybrid algorithm
One can obtain some results from Theorem 4.2. We give some of them in the following.

If we take M = N = 1, we have the following corollary.
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Corollary 4.3 Let H1 and H2 be real Hilbert spaces. Let T : H2 → H2 be a nonexpansive
mapping, L : H1 → H2 be a bounded linear operator, A : H1 → H1 be an αi-inverse strongly
monotone operator, and B : H1 → 2H1 be a maximal monotone operator such that F =
(A + B)–1(0) ∩ L–1(F(T)) �= ∅. Suppose that the sequence {xn} is defined by the following
algorithm:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

yn = xn + λnL∗(T – I)Lxn,

zn = JB
βn (I – βnA)yn,

Cn+1 = {z ∈ Cn : ‖zn – z‖ ≤ ‖yn – z‖ ≤ ‖xn – z‖},
xn+1 = PCn+1 x1,

where x1 ∈ C1 = H1, 0 < a ≤ λn ≤ b < 1
2‖L‖2 , and βn ∈ (0, 2α) for each n ∈ N. Then the se-

quence {xn} converges strongly to q = PF (x1).

From Theorem 4.2, we have the following corollary for the problem of finding a com-
mon zero of the sum of α-inverse strongly monotone operators and maximal monotone
operators.

Corollary 4.4 Let H be a real Hilbert space, Ai : H → H , i = 1, . . . , M, be αi-inverse strongly
monotone operators, and Bi : H → 2H , i = 1, . . . , M, be maximal monotone operators such
that F =

⋂M
i=1(Ai + Bi)–1(0) �= ∅ and α = min{α1, . . . ,αM}. Suppose that the sequence {xn} is

defined by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

zi,n = JBi
βn (I – βnAi)xn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

zn = zin ,n,

Cn+1 = {z ∈ Cn : ‖zn – z‖ ≤ ‖xn – z‖},
xn+1 = PCn+1 x1,

where x1 ∈ H and βn ∈ (0, 2α) for each n ∈ N. Then the sequence {xn} converges strongly to
q = PF (x1).

5 Applications
5.1 Zeros of maximal monotone operators
In this section, we discuss some applications of the main theorems. Let Mj : H2 → 2H2 ,
j = 1, . . . , N , be maximal monotone operators. Set Tj = JMj

r , where r > 0 and j = 1, . . . , N .
We know that Tj is nonexpansive and F(Tj) = M–1

j (0) for each j = 1, . . . , N . By applying
Theorem 3.5, we can get the following results.

Theorem 5.1 Let H1 and H2 be real Hilbert spaces, Ai : H1 → H1, i = 1, . . . , M, be αi-
inverse strongly monotone operators, Bi : H1 → 2H1 , i = 1, . . . , M, and Mj : H2 → 2H2 , j =
1, . . . , N , be maximal monotone operators, and L : H1 → H2 be a bounded linear operator
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such that F = (
⋂M

i=1(Ai + Bi)–1(0)) ∩ L–1(
⋂N

j=1 M–1
j (0)) �= ∅. Let x1 ∈ H1 and the sequence

{xn} be generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj,n = xn + λnL∗(JMj
r – I)Lxn, j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

zi,n = JBi
βn (I – βnAi)yn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

xn+1 = zin ,n.

If α = min{α1, . . . ,αM}, βn ∈ (0, 2α), and 0 < a ≤ λn ≤ b < 1
2‖L‖2 for each n ∈ N, then {xn}

converges weakly to a point p ∈F .

By Theorem 5.1, we have the following corollary for multiple sets split null point prob-
lems.

Corollary 5.2 Let H1 and H2 be real Hilbert spaces, Bi : H1 → 2H1 , i = 1, . . . , M, Mj : H2 →
2H2 , j = 1, . . . , N , be maximal monotone operators, and L : H1 → H2 be a bounded linear
operator such that (

⋂M
i=1 B–1

i (0)) ∩ L–1(
⋂N

j=1 M–1
j (0)) �= ∅. Let x1 ∈ H1 and the sequence {xn}

be generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj,n = xn + λnL∗(JMj
r – I)Lxn, j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

zi,n = JBi
βn yn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

xn+1 = zin ,n.

If βn > 0 and 0 < a ≤ λn ≤ b < 1
2‖L‖2 for each n ∈ N, then {xn} converges weakly to a point

p ∈ (
⋂M

i=1 B–1
i (0)) ∩ L–1(

⋂N
j=1 M–1

j (0)).

By applying Theorem 4.2, we have the following theorem.

Theorem 5.3 Let H1 and H2 be real Hilbert spaces, Ai : H1 → H1, i = 1, . . . , M, be αi-
inverse strongly monotone operators, Bi : H1 → 2H1 , i = 1, . . . , M, and Mj : H2 → 2H2 , j =
1, . . . , N , be maximal monotone operators, and L : H1 → H2 be a bounded linear operator
such that F = (

⋂M
i=1(Ai + Bi)–1(0)) ∩ L–1(

⋂N
j=1 M–1

j (0)) �= ∅. Let x1 ∈ H1 and the sequence
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{xn} be generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj,n = xn + λnL∗(JMj
r – I)Lxn, j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

zi,n = JBi
βn (I – βnAi)yn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

zn = zin ,n,

Cn+1 = {z ∈ Cn : ‖zn – z‖ ≤ ‖yn – z‖ ≤ ‖xn – z‖},
xn+1 = PCn+1 x1.

(5.1)

If α = min{α1, . . . ,αM}, βn ∈ (0, 2α), and 0 < a ≤ λn ≤ b < 1
2‖L‖2 for each n ∈ N, then {xn}

converges strongly to q = PF (x1).

5.2 Multiple set split convex feasibility problems
Let f : H → R∪ {+∞} be a proper, convex, and lower semi-continuous function. It is well
known that the subdifferential ∂f : H → 2H , which is defined as

∂f (x) =
{

z ∈ H : 〈y – x, z〉 ≤ f (y) – f (x),∀y ∈ H
}

,

is a maximal monotone operator. In particular, let C be a nonempty, closed, and convex
subset of a real Hilbert space H . Let us consider the indicator function of C, denoted by
ιC , which is defined as

ιC(x) =

⎧
⎨

⎩
0, x ∈ C,

+∞, x /∈ C.

We know that ιC is a proper, convex, and lower semi-continuous function on H , and it
follows that the subdifferential ∂ιC of ιC is a maximal monotone operator. Furthermore, we
get z = J∂ιC

r x if and only if z = PC(x), where x ∈ H and J∂ιC
r = (I + r∂ιC)–1 for each r > 0. Using

these facts, by Theorems 3.5 and 4.2, we have the following corollaries for the multiple set
split convex feasibility problem in Hilbert spaces.

Corollary 5.4 Let H1 and H2 be real Hilbert spaces, Ci ⊂ H1, i = 1, . . . , M, Dj ⊂ H2, j =
1, . . . , N , be nonempty, closed, and convex, and L : H1 → H2 be a bounded linear operator
such that (

⋂M
i=1 Ci) ∩ L–1(

⋂N
j=1 Dj) �= ∅. Let x1 ∈ H1 and the sequence {xn} be generated by

the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj,n = xn + λnL∗(PDj – I)Lxn, j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

zi,n = PCi yn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

xn+1 = zin ,n.
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If 0 < a ≤ λn ≤ b < 1
2‖L‖2 for each n ∈N, then {xn} converges weakly to a point p ∈ (

⋂M
i=1 Ci)∩

L–1(
⋂N

j=1 Dj).

Corollary 5.5 Let H1 and H2 be real Hilbert spaces, Ci ⊂ H1, i = 1, . . . , M, Dj ⊂ H2, j =
1, . . . , N , be nonempty, closed, and convex, and L : H1 → H2 be a bounded linear operator
such that F = (

⋂M
i=1 Ci) ∩ L–1(

⋂N
j=1 Dj) �= ∅. Let x1 ∈ H1 and the sequence {xn} be generated

by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

yj,n = xn + λnL∗(PDj – I)Lxn, j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

zi,n = PCi yn, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

zn = zin ,n,

Cn+1 = {z ∈ Cn : ‖zn – z‖ ≤ ‖yn – z‖ ≤ ‖xn – z‖},
xn+1 = PCn+1 x1.

If 0 < a ≤ λn ≤ b < 1
2‖L‖2 for each n ∈N, then {xn} converges strongly to q = PF (x1).

5.3 Multiple sets split equilibrium problems
Now, we apply Theorem 3.5 for getting a common solution of multiple sets split equilib-
rium problems. In this respect, let C be a nonempty closed convex subset of a Hilbert
space H1 and F : C × C →R be a bifunction. The equilibrium problem for bifunction F is
the problem of finding a point z ∈ H1 such that

F(z, y) ≥ 0, ∀y ∈ C. (5.2)

The set of solutions of equilibrium problem (5.2) is denoted by EP(F). The bifunction
F : C × C → R is called monotone if F(x, y) + F(y, x) ≤ 0 for all x, y ∈ C. For finding a
solution of equilibrium problem (5.2), we assume that F satisfies the following properties:

(A1) F(x, x) = 0 for all x ∈ C;
(A2) F is monotone;
(A3) for each x, y, z ∈ C, lim supt↓0 F(tz + (1 – t)x, y) ≤ F(x, y);
(A4) for each x ∈ C, y �→ F(x, y) is convex and lower semi-continuous.
Then we have the following lemma which can be found in [40, 41].

Lemma 5.6 Let C be a nonempty closed convex subset of a Hilbert space H1 and F : C ×
C →R be a bifunction satisfying properties (A1)–(A4). Let r be a positive real number and
x ∈ H1. Then there exists z ∈ C such that

F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0, ∀y ∈ C.

Further, define

Trx =
{

z ∈ C : F(z, y) +
1
r
〈y – z, z – x〉 ≥ 0,∀y ∈ C

}
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for all r > 0 and x ∈ H1. Then the following hold:
(a) Tr is single-valued;
(b) Tr is firmly nonexpansive; that is,

‖Trx – Try‖2 ≤ 〈Trx – Try, x – y〉, ∀x, y ∈ H1;

(c) F(Tr) = EP(F);
(d) EP(F) is closed and convex.

Let Ci, i = 1, . . . , M, and Dj, j = 1, . . . , N , be nonempty, closed, and convex subsets of real
Hilbert spaces H1 and H2, respectively, fi : Ci × Ci → R, i = 1, . . . , M, and gj : Dj × Dj →
R, j = 1, . . . , N , be bifunctions which satisfy properties (A1)–(A4), and L : H1 → H2 be a
bounded linear operator. From Lemma 5.6 there exist the sequences {zi,n} of H1 and {uj,n}
of H2 satisfying

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rFj(uj,n, y) + 〈y – uj,n, uj,n – Lxn〉 ≥ 0, ∀y ∈ Dj, j = 1, . . . , N ,

yj,n = xn + λnL∗(uj,n – Lxn), j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

βnFi(zi,n, u) + 〈u – zi,n, zi,n – yn〉 ≥ 0, ∀u ∈ Ci, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

xn+1 = zin ,n.

(5.3)

Therefore, by applying Theorem 3.5, we have the following theorem for multiple sets
split equilibrium problem.

Theorem 5.7 Let Ci, i = 1, . . . , M, and Dj, j = 1, . . . , N , be nonempty, closed, and convex sub-
sets of real Hilbert spaces H1 and H2, respectively, fi : Ci ×Ci →R, i = 1, . . . , M, and gj : Dj ×
Dj → R, j = 1, . . . , N , be bifunctions which satisfy properties (A1)–(A4). Suppose that L :
H1 → H2 is a bounded linear operator such that F = (

⋂M
i=1 EP(fi)) ∩ L–1(

⋂N
j=1 EP(Fj)) �= ∅.

If βn > 0, 0 < a ≤ λn ≤ b < 1
2‖L‖2 for each n ∈ N and r is a positive real number, then the

sequence {xn} generated by (5.3) converges weakly to a solution of multiple sets split equi-
librium problem.

We also have the following strong convergence theorem for finding a solution of multiple
sets split equilibrium problem.

Theorem 5.8 Let Ci, i = 1, . . . , M, and Dj, j = 1, . . . , N , be nonempty, closed, and convex sub-
sets of real Hilbert spaces H1 and H2, respectively, fi : Ci ×Ci →R, i = 1, . . . , M, and gj : Dj ×
Dj → R, j = 1, . . . , N , be bifunctions which satisfy properties (A1)–(A4). Suppose that L :
H1 → H2 is a bounded linear operator such that F = (

⋂M
i=1 EP(fi)) ∩ L–1(

⋂N
j=1 EP(Fj)) �= ∅.
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Suppose that x1 ∈ C1 = H1 and the sequence {xn} is generated by the following algorithm:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rFj(uj,n, y) + 〈y – uj,n, uj,n – Lxn〉 ≥ 0, ∀y ∈ Dj, j = 1, . . . , N ,

yj,n = xn + λnL∗(uj,n – Lxn), j = 1, . . . , N ,

choose jn : ‖yjn ,n – xn‖ = maxj=1,...,N ‖yj,n – xn‖,

yn = yjn ,n,

βnFi(zi,n, u) + 〈u – zi,n, zi,n – yn〉 ≥ 0, ∀u ∈ Ci, i = 1, . . . , M,

choose in : ‖zin ,n – xn‖ = maxi=1,...,M ‖zi,n – xn‖,

zn = zin ,n,

Cn+1 = {z ∈ Cn : ‖zn – z‖ ≤ ‖yn – z‖ ≤ ‖xn – z‖},
xn+1 = PCn+1 x1.

(5.4)

If βn > 0, 0 < a ≤ λn ≤ b < 1
2‖L‖2 for each n ∈ N and r is a positive real number, then the

sequence {xn} converges strongly to q = PF (x1).

6 Numerical experiments
In this section, we show some numerical examples and discuss the possible good choices
of step size parameters βn and λn, which satisfy the control conditions in Theorem 3.5.

Let H1 = R
2 and H2 = R

3 be equipped with the Euclidean norm. Let a1 :=
( – 2√

5
– 1√

5

)
, a2 :=

( – 1√
2

– 1√
2

)
, and u :=

(
–1
–1

)
be fixed in H1, and γ1 := cos 7π

18 and γ2 := cos π
3 be scalars. Set C̃1 :=

C1 + u and C̃2 := C2 + u, where C1 and C2 are the following closed convex ice-cream cones
in H1:

C1 :=
{

x ∈ H1 : 〈a1, x〉 ≥ γ1‖x‖},

C2 :=
{

x ∈ H1 : 〈a2, x〉 ≥ γ2‖x‖}.

We will consider 1-ism operators PC̃1
and PC̃2

, where C̃1 and C̃2 are defined by the above
settings.

Next, for each x :=
(

x1
x2

)
∈ H1, we are also concerned with the following two norms:

‖x‖1 = |x1| + |x2| and ‖x‖∞ = max
{|x1|, |x2|

}
.

Consider a function f : H1 →R, which is defined by

f (x) = ‖x‖1 for all x ∈ H1.

We know that f is a convex function and subdifferential of f is

∂f (x) =
{

z ∈ H1 : 〈x, z〉 = ‖x‖1,‖z‖∞ ≤ 1
}

for all x ∈ H1.
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Moreover, since f is a convex function, we know that ∂f (·) must be a maximal monotone
operator, and for each λ > 0, we have

J∂f
λ (x) =

{(
u1

u2

)
∈ H1 : ui = xi –

(
min

{|xi|,λ
})

sgn(xi), for i = 1, 2

}
,

where sgn(·) is denoted for the signum function.

On the other hand, let x̃1 :=
( 1

2
–1

)
, x̃2 :=

( –1
1

–1

)
, and x̃3 :=

( 0
–1
0

)
be three fixed vectors in

H2. We consider a nonempty convex subset Q1 ∩ Q2 ∩ Q3 of H2, where Q1 := {x ∈ H2 :
‖x̃1 – x‖ ≤ 5}, Q2 := {x ∈ H2 : 〈x̃2, x〉 ≤ 1}, and Q3 := {x ∈ H2 : 〈x̃3, x〉 ≤ – 1

2 }. We notice that
F(PQ1 ) ∩ F(PQ2 ) ∩ F(PQ3 ) = Q1 ∩ Q2 ∩ Q3.

Now, let us consider a 3×2 matrix L :=
[ 1 0

2 –2
0 2

]
. We see that L is a bounded linear operator

on H1 into H2 with ‖L‖ = 3.282073.
Based on the above settings, we will present some numerical experiments to show the

efficiency of the constructed algorithm (3.1). That is, we are going to show that algorithm
(3.1) converges to a point p ∈ H1 such that

p ∈ (
(PC̃1

+ ∂f )–1(0) ∩ (PC̃2
+ ∂f )–1(0)

) ∩ L–1(Q1 ∩ Q2 ∩ Q3), (6.1)

and in this experiment, we consider the stopping criterion by ‖xn+1–xn‖
max{1,‖xn‖} ≤ 1.0e–06.

We will consider the following cases of the step size parameters βn and λn with the initial
vectors

(
0
0

)
,
(

1
1

)
,
(

1
–1

)
,
(

–1
1

)
, and

(
–1
–1

)
in H1:

Case 1. βn = 1.0e–03 + 1
100n , λn = 1.0e–03 + 1

100n .
Case 2. βn = 1.0e–03 + 1

100n , λn = 1
4‖L‖2 .

Case 3. βn = 1.0e–03 + 1
100n , λn = 0.046 – 1

100n .
Case 4. βn = 1, λn = 1.0e–03 + 1

100n .
Case 5. βn = 1, λn = 1

4‖L‖2 .
Case 6. βn = 1, λn = 0.046 – 1

100n .
Case 7. βn = 1.999 – 1

100n , λn = 1.0e–03 + 1
100n .

Case 8. βn = 1.999 – 1
100n , λn = 1

4‖L‖2 .
Case 9. βn = 1.999 – 1

100n , λn = 0.046 – 1
100n .

From Tables 1, 2, and 3, we may suggest that, for each initial point, the step size of the
parameters λn = 0.046 – 1

100n provides a faster convergence rate than other cases. While

Table 1 Influence of the step size parameters βn and λn (cases 1–3) of algorithm (3.1) for different
initial points

Case → Case 1 Case 2 Case 3

#Initial point ↓ Iters Time (s) Sol Iters Time (s) Sol Iters Time (s) Sol

(0, 0)� 1647 0.644764
(
0.249753

0

)
145 0.210611

(
0.249990

0

)
110 0.172755

(
0.249996

0

)

(1, 1)� 790 0.393530
(
1.124877
0.875123

)
51 0.117471

(
1.124996
0.875004

)
27 0.098625

(
1.124997
0.875001

)

(1, –1)� 195 0.231496
(
0.875676

0

)
49 0.123486

(
0.795371

0

)
36 0.127907

(
0.787096

0

)

(–1, 1)� 1069 0.486436
(
0.267956
0.018131

)
150 0.207209

(
0.249990

0

)
113 0.181702

(
0.249996

0

)

(–1, –1)� 2121 0.847208
(
0.249752

0

)
449 0.313106

(
0.249991

0

)
361 0.284821

(
0.249996

0

)
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Table 2 Influence of the step size parameters βn and λn (cases 4–6) of algorithm (3.1) for different
initial points

Case → Case 4 Case 5 Case 6

#Initial point ↓ Iters Time (s) Sol Iters Time (s) Sol Iters Time (s) Sol

(0, 0)� 1647 0.650587
(
0.249753

0

)
106 0.176374

(
0.249991

0

)
56 0.124235

(
0.249996

0

)

(1, 1)� 790 0.398679
(
1.124877
0.875123

)
51 0.122999

(
1.124996
0.875004

)
27 0.098005

(
1.124999
0.875001

)

(1, –1)� 3 0.078350
(
0.985333

0

)
3 0.079696

(
0.969096

0

)
3 0.083422

(
0.952000

0

)

(–1, 1)� 1032 0.500529
(
0.575413
0.325587

)
61 0.133658

(
0.520560
0.270565

)
31 0.108214

(
0.462999
0.213001

)

(–1, –1)� 1658 0.689241
(
0.249753

0

)
107 0.180100

(
0.249991

0

)
57 0.129912

(
0.249996

0

)

Table 3 Influence of the step size parameters βn and λn (cases 7–9) of algorithm (3.1) for different
initial points

Case → Case 7 Case 8 Case 9

#Initial point ↓ Iters Time (s) Sol Iters Time (s) Sol Iters Time (s) Sol

(0, 0)� 1647 0.644395
(
0.249753

0

)
106 0.167910

(
0.249991

0

)
56 0.122966

(
0.249996

0

)

(1, 1)� 790 0.403824
(
1.124877
0.875123

)
51 0.118171

(
1.124996
0.875004

)
27 0.095997

(
1.124999
0.875001

)

(1, –1)� 3 0.080739
(
0.985333

0

)
3 0.080157

(
0.969096

0

)
3 0.080880

(
0.952000

0

)

(–1, 1)� 1032 0.463895
(
0.575413
0.325587

)
61 0.133494

(
0.520560
0.270565

)
31 0.104363

(
0.462999
0.213001

)

(–1, –1)� 1658 0.646397
(
0.249753

0

)
107 0.173753

(
0.249991

0

)
57 0.127317

(
0.249996

0

)

the step size parameters βn seem to have less impact on the speed of algorithm (3.1) to a
solution set (6.1).

7 Conclusions
In this paper, we present two iterative algorithms, (3.1) and (4.1), for approximating a so-
lution of the split feasibility problem on zeros of a finite sum of monotone operators and
fixed points of a finite family of nonexpansive mappings. Under some mild conditions, we
show the convergence theorems of the mentioned algorithms. Subsequently, some corol-
laries and applications of those main results are provided. We point out that the construc-
tion of algorithm (3.1) seems to be less complicated than that of (4.1). However, algorithm
(3.1) requires some additional assumptions in order to guarantee the strong convergence
theorem, while algorithm (4.1) does not need them (see Theorem 3.6 and Theorem 4.2).
This observation may lead to the future works that are to analyze and discuss the rate of
convergence of these suggested algorithms.
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