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Abstract
Define the admixture additive processes

X
a1,a2,a3,a4
γ ,H,α (t)� a1B(t1) + a2Wγ (t2) + a3BH(t3) + a4Sα (t4) ∈ R,

and the admixture multiplicative processes

Yγ ,H,α (t)� B(t1) ·Wγ (t2) · BH(t3) · Sα (t4) ∈R,

where t = (t1, t2, t3, t4) ∈R
4
+,a1,a2,a3,a4 are finite constants, B(t1) is the standard

Brownian motion,Wγ (t2) is the fractional integrated Brownian motion with index
parameter γ > –1/2, BH(t3) is the fractional Brownian motion with Hurst parameter
H ∈ (0, 1), Sα (t4) is the stable process with index α ∈ (0, 2], and they are independent
of each other. The small deviation for Xa1,a2,a3,a4

γ ,H,α (t) and the lower bound of small
deviation for Yγ ,H,α (t) are obtained. As an application, limit inf type LIL is given for
X

a1,a2,a3,a4
γ ,H,α (t).
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1 Introduction and main results
Let B = {B(t1) ∈R, t1 ∈R+} be a standard Brownian motion, Wγ = {Wγ (t2) ∈R, t2 ∈R+} be
a fractional integrated Brownian motion with index parameter γ > –1/2, BH = {BH (t3) ∈
R, t3 ∈R+} be a fractional Brownian motion with Hurst parameter H ∈ (0, 1), Sα = {Sα(t4) ∈
R, t4 ∈R+} be a stable process with index α ∈ (0, 2], and they are independent of each other.
Define the admixture additive processes

X
a1,a2,a3,a4
γ ,H,α (t) � a1B(t1) + a2Wγ (t2) + a3BH(t3) + a4Sα(t4) ∈R,

and the admixture multiplicative processes

Yγ ,H,α(t) � B(t1) · Wγ (t2) · BH (t3) · Sα(t4) ∈R,

where t = (t1, t2, t3, t4) ∈ R
4
+ and a1, a2, a3, a4 are finite constants.
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Remark 1.1 In particular, W0(t) = B1/2(t) = S2(t) is the standard Brownian motion. Quite
obviously, the process X1,1,1,1

0,1/2,2(t) is the additive Brownian motions. For more details on the
additive Brownian motions, the reader can refer to the monographs [1] and [2].

The object of study in this paper will be the small deviations for X
a1,a2,a3,a4
γ ,H,α (t) and

Yγ ,H,α(t) which are formally defined as follows:

logP
(

sup
t∈[0,1]4

| · | ≤ ε
)

= –φ(ε) as ε → 0.

Our standard reference is the monograph [3]. There are a number of papers concerned
with the small deviations for various stochastic processes. For details, we refer to the
monographs [3, 4]. If properly defined, the small deviation in some literatures is called the
small ball probability (see, e.g., [5, 6]). There are various motivations for the study of some
additive processes, and it has been actively investigated recently from different points of
view, see Khoshnevisan, Xiao, and Zhong [2, 7] for a detailed discussion and the bibliogra-
phy for further works in this area. First of all, additive processes play an important role in
the study of other more interesting multiparameter processes since they locally resemble
multiparameter processes, such as Brownian sheet, fractional Brownian sheet, and sta-
ble sheet, and also because they are more amenable to analysis. For example, locally and
with time suitably rescaled, the Brownian sheet closely resembles an additive Brownian
motion (see, e.g., [8, 9]). They also arise in the theory of intersection and self-intersection
local times of Brownian processes (see, e.g.,[10, 11]).

Now, we briefly give the small deviation estimates for the admixture additive processes
X

a1,a2,a3,a4
γ ,H,α (t) and the admixture multiplicative processes YH,γ ,α(t). The main results are

the following.

Theorem 1.2

lim
ε→0+

εβ logP
(

sup
t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ ε
)

= –ϑ(γ , H ,α, a1, a2, a3, a4) (1.1)

and

lim inf
ε→0+

εβ logP
(

sup
t∈[0,1]4

∣∣Yγ ,H,α(t)
∣∣ ≤ ε

)
≥ –ν(γ , H ,α), (1.2)

where β = max{2, 2
2γ +1 , 1

H }, ϑ(γ , H ,α, a1, a2, a3, a4) = ((sgn(2 – β) + 1)( (a1π )2

8 )
1

1+β + (sgn(2/

(2γ + 1) – β) + 1)(a2/(2γ +1)
2 kγ )

1
1+β + (sgn(1/H – β) + 1)(|a3|1/HCH )

1
1+β + (sgn(α – β) +

1)(|a4|αAα)
1

1+β )1+β ,ν(γ , H ,α) = (sgn(2 –β) + 1) π2

8 + (sgn(2/(2γ + 1) –β) + 1)kγ + (sgn(1/H –
β) + 1)CH + (sgn(α – β) + 1)Aα . In particular, ϑ(0, 1/2, 2, 1, 1, 1, 1) = 8π2,ν(0, 1/2, 2) = – π2

2 .

Remark 1.3 Unfortunately, we just obtain the lower bound of the small deviation for the
admixture multiplicative processes. Certainly, it is easy to get the following upper and
lower bounds of the small deviation in the special case γ = 0, H = 1/2,α = 2,

lim sup
ε→0+

ε1/2 logP
(

sup
t∈[0,1]4

∣∣Y0,1/2,2(t)
∣∣ ≤ ε

)
≤ –

π2

8
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and

lim inf
ε→0+

ε1/2 logP
(

sup
t∈[0,1]4

∣∣Y0,1/2,2(t)
∣∣ ≤ ε

)
≥ –

π2

2
.

We observe that the admixture multiplicative process Y0,1/2,2(t) has the same covariance
function with (4, 1)-Brownian sheet {X(t) ∈ R, t ∈ R

4
+}. Naturally, are there some similar

properties between them? In fact, the small deviation for (4, 1)-Brownian sheet is much
more difficult to discuss. The fact that in [4] Wenbo V. Li and Qi-Man Shao only obtained
the upper and lower bounds of the small ball probability for (4, 1)-Brownian sheet,

–K2ε
–2 log7(1/ε) ≤ logP

(
sup

t∈[0,1]4

∣∣X(t)
∣∣ ≤ ε

)
≤ –K1ε

–2 log6(1/ε),

where 0 < K1, K2 < ∞.

By Lemma 2.1 in [5] and (1.1) in Theorem 1.2, we deduce the following corollary.

Corollary 1.4

lim
λ→∞λβ/(1+β) logE exp

(
–λ sup

t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣) = –(1 + β)β–β/(1+β)ϑ1/(1+β),

where ϑ(γ , H ,α, a1, a2, a3, a4) is denoted as ϑ for convenience.

Remark 1.5 The result of above Corollary 1.4 seems to be a special case of the so-called de
Bruijin’s exponential Tauberian theorem by Bingham et al. For details, it establishes the re-
lationship between the asymptotic behavior of Laplace transform and the small deviation
for the admixture additive processes Xa1,a2,a3,a4

γ ,H,α (t).

As an application of the general results for Theorem 1.2, the below theorem shows the
Chung-type law of the iterated logarithm (LIL) for the admixture additive processes
X

a1,a2,a3,a4
γ ,H,α (t).

Theorem 1.6

lim inf
T→∞

(
T–1 log log T

)1/β
sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ = ϑ1/β (γ , H ,α, a1, a2, a3, a4). (1.3)

Remark 1.7 Since we have the lower bound of small deviation for Yγ ,H,α(t) only, the limit
inf type LIL for Yγ ,H,α(t) cannot be obtained. In fact, using an argument similar to that
given in the proof of (1.3), we can obtain

lim inf
T→∞

(
T–1 log log T

)1/β
sup

t∈[0,1]4

∣∣Yγ ,H,α(t)
∣∣ ≥ ν1/β(γ , H ,α). (1.4)

Furthermore, we also can consider a generalization of the admixture additive processes

X
a1,a2,a3,a4
γ ,H,α (t, N1, N2, N3, N4) �

N1∑
i=1

a1iBi(t1i) +
N2∑
j=1

a2jW j
γj

(t2j)
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+
N3∑
k=1

a3kBk
Hk

(t3k) +
N4∑
l=1

a4lSl
αl

(t4l),

and the admixture multiplicative processes

Yγ ,H,α(t, N1, N2, N3, N4) �
N1∏
i=1

Bi(t1i) ·
N2∏
j=1

W j
γj

(t2j) ·
N3∏
k=1

a3kBk
Hk

(t3k) ·
N4∏
l=1

a4lSl
αl

(t4l).

Obviously, there are some results in common with those given in Theorems 1.2, 1.6, and
we omit the details.

The remainder of the paper is arranged as follows. We present some preliminaries and
the basic lemmas for establishing the small deviations of the admixture additive processes
X

a1,a2,a3,a4
γ ,H,α (t) and the admixture multiplicative processes YH,γ ,α(t) in Sect. 2. The proofs of

the main results are given in Sect. 3.

2 Preliminaries
Firstly, we briefly recall the processes which are the compositions of constructing the
admixture additive processes X

a1,a2,a3,a4
γ ,H,α (t) and the admixture multiplicative processes

Yγ ,H,α(t).
The standard Brownian motion B = {B(t) ∈R, t ∈R+} with B(0) = 0 specifies

B(t) – B(s) ∼ N(0, t – s), ∀0 ≤ s < t.

The fractional integrated Brownian motion Wγ = {Wγ (t) ∈R, t ∈R+} is defined by

Wγ =
1

�(γ + 1)

∫ t

0
(t – s)γ dB(s) (γ > –1/2),

where �(z) =
∫ ∞

0 xz–1e–x dx is the gamma function and B(s) is a real-valued standard Brow-
nian motion.

The fractional Brownian motion BH = {BH (t) ∈ R, t ∈ R+} with BH (0) = 0 is a Gaussian
process which has mean zero and the following covariance function:

E
(
BH (t)BH(s)

)
=

1
2
(|t|2H + |s|2H – |t – s|2H)

(0 < H < 1).

The stable process Sα = {Sα(t) ∈ R, t ∈ R+} with index α ∈ (0, 2] has the characteristic
function E(ei(u,Sα (t))) = e–tψ(u) whose exponent ψ(u) has the following form:

ψ(u) = i(a, u) + λ|u|α
∫

Sd

W̃α(u, θ )μ(dθ ),

where W̃α(u, θ ) satisfies

W̃α(u, θ ) =

⎧
⎨
⎩

[1 – i sgn(u, θ ) tan πα
2 ]|( u

|u| , θ )|α , α �= 1,

|( u
|u| , θ )| + 2i

π
(u, θ ) log |(u, θ )|, α = 1.



Liang and Wu Journal of Inequalities and Applications  (2018) 2018:204 Page 5 of 12

Specifically, if ψ(u) = λ|u|α , the process Sα(t) is called the symmetric stable process. For
more details on the above processes, the reader can refer to the monographs [12, 13].

In order to establish the estimates of the small deviations conveniently, we present some
lemmas at first. In fact, Lemmas 2.1–2.4 show the relation between the small deviation
estimates of sup-norm and the range for the Brownian motion, the fractional integrated
Brownian motion, the fractional Brownian motion, and the stable process, respectively.

Lemma 2.1 Let {B(t) ∈R, t ∈ R+} be a standard Brownian motion, then for any given finite
constant a1 ∈R,

lim
ε→0

ε2 logP
(

sup
t∈[0,1]

∣∣a1B(t)
∣∣ ≤ ε

)
= –

(a1π )2

8
. (2.1)

Then, for the range R1 = sups,t∈[0,1] |B(t) – B(s)|, we have

lim
ε→0

ε2 logP(R1 ≤ ε) = –
(2π )2

8
. (2.2)

Lemma 2.2 Let {Wγ (t) ∈ R, t ∈ R+} be a fractional integrated Brownian motion, then for
any given finite constant a2 ∈R,

lim
ε→0

ε2/(2γ +1) logP
(

sup
t∈[0,1]

∣∣a2Wγ (t)
∣∣ ≤ ε

)
= –a2/(2γ +1)

2 kγ , (2.3)

where kγ ∈ (0,∞) is given by

kγ = – inf
ε>0

ε2/(2γ +1) logP
(

sup
0≤t≤1

∣∣Wγ (t)
∣∣ ≤ ε

)
.

Then, for the range R2 = sups,t∈[0,1] |Wγ (t) – Wγ (s)|, we have

lim
ε→0

ε2/(2γ +1) logP(R2 ≤ ε) = –22/(2γ +1)kγ . (2.4)

Lemma 2.3 Let {BH(t) ∈ R, t ∈ R+} be a fractional Brownian motion, then for any given
finite constant a3 ∈R,

lim
ε→0

ε1/H logP
(

sup
t∈[0,1]

∣∣a3BH (t)
∣∣ ≤ ε

)
= –|a3|1/HCH , (2.5)

where CH ∈ (0,∞) is given by

CH = kH–1/2 · (�(H + 1/2)
)1/H ·

(
1

2H
+

∫ 0

–∞

(
(1 – s)H–1/2 – (–s)H–1/2)2 ds

)–1/(2H)

.

Then, for the range R3 = sups,t∈[0,1] |BH (t) – BH (s)|, we have

lim
ε→0

ε1/H logP(R3 ≤ ε) = –21/HCH . (2.6)
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Lemma 2.4 Let {Sα(t) ∈ R, t ∈ R+} be a stable process, then for any given finite constant
a4 ∈R,

lim
ε→0

εα logP
(

sup
t∈[0,1]

∣∣a4Sα(t)
∣∣ ≤ ε

)
= –|a4|αAα , (2.7)

where Aα > 0 is the principle Dirichlet eigenvalue for the fractional Laplacian operator
associated with Sα(t) in the interval [–1, 1]. Then, for the range R4 = sups,t∈[0,1] |Sα(t)–Sα(s)|,
we have

lim
ε→0

εα logP(R4 ≤ ε) = –2αAα . (2.8)

Remark 2.5 It seems to be little known about the explicit value of Aα in Lemma 2.4,
0 < α < 2, although sometimes this constant appears in some other problems. The best
known bounds of Aα for a symmetric stable process whose characteristic function expo-
nent ψ(u) = K |u|α are

�(α + 1) ≤ Aα ≤ �

(
α

2

)
�

(
α +

3
2

)/
�

(
α + 3

2

)
(0 < α < 2),

and it is a challenge to find more explicit expression for Aα than the well-known variation
one.

Remark 2.6 Lemmas 2.1–2.4 are proved easily by the well-known results in [3]. In the case
of the Brownian motions, it is well known that k0 = C1/2 = A2 = π2

8 .

3 Proof of the main results
We give the proof of the main results in this section. An inspection of our arguments
reveals that the special structures of admixture additive and multiplicative processes play
a very important role in the following derivations. A key ingredient of our approach is with
reference to Chen and Li [3].

Proof of (1.1) in Theorem 1.2 We follow similar approaches and steps in the proof of The-
orem 5.2 as those in [3] and Lemma 2 in [5]. For any given finite constants a1, a2, a3, a4 ∈R,
using the triangle inequality, we have

sup
t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣

≤ sup
(t1,t2,t3,t4)∈[0,1]4

(∣∣a1B(t1)
∣∣ +

∣∣a2Wγ (t2)
∣∣ +

∣∣a3BH(t3)
∣∣ +

∣∣a4Sα(t4)
∣∣)

= sup
t1∈[0,1]

∣∣a1B(t1)
∣∣ + sup

t2∈[0,1]

∣∣a2Wγ (t2)
∣∣ + sup

t3∈[0,1]

∣∣a3BH (t3)
∣∣ + sup

t4∈[0,1]

∣∣a4Sα(t4)
∣∣.

Thus

P

(
sup

t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ ε
)

≥ P

(
sup

t1∈[0,1]

∣∣a1B(t1)
∣∣ + sup

t2∈[0,1]

∣∣a2Wγ (t2)
∣∣
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+ sup
t3∈[0,1]

∣∣a3BH (t3)
∣∣ + sup

t4∈[0,1]

∣∣a4Sα(t4)
∣∣ ≤ ε

)
. (3.1)

Without loss of generality, we argue the following condition: γ + 1/2 < H ≤ 1/2 ≤ 1/α,
in this case β = 2/(2γ + 1).

On the one hand, using (3.1) for fixed δ > 0 small enough, we have

P

(
sup

t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ ε
)

≥ P

({
sup

t2∈[0,1]

∣∣a2Wγ (t2)
∣∣ ≤ a2/(2γ +3)

2 k(2γ +1)/(2γ +3)
γ ε/C(a2, kγ , δ)

}

∩
{

sup
t1∈[0,1]

∣∣a1B(t1)
∣∣ ≤ δε/C(a2, kγ , δ)

}

∩
{

sup
t3∈[0,1]

∣∣a3BH (t3)
∣∣ ≤ δε/C(a2, kγ , δ)

}

∩
{

sup
t4∈[0,1]

∣∣a4Sα(t4)
∣∣ ≤ δε/C(a2, kγ , δ)

})

= P

(
sup

t2∈[0,1]

∣∣a2Wγ (t2)
∣∣ ≤ a2/(2γ +3)

2 k(2γ +1)/(2γ +3)
γ ε/C(a2, kγ , δ)

)

× P

(
sup

t1∈[0,1]

∣∣a1B(t1)
∣∣ ≤ δε/C(a2, kγ , δ)

)

× P

(
sup

t3∈[0,1]

∣∣a3BH (t3)
∣∣ ≤ δε/C(a2, kγ , δ)

)

× P

(
sup

t4∈[0,1]

∣∣a4Sα(t4)
∣∣ ≤ δε/C(a2, kγ , δ)

)
, (3.2)

where C(a2, kγ , δ) = a2/(2γ +3)
2 k(2γ +1)/(2γ +3)

γ + 4δ.
Then, combining (2.1), (2.3), (2.5), and (2.7) with (3.2), we get

lim inf
ε→0+

εβ logP
(

sup
t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ ε
)

≥ –a2/(2γ +3)
2 k(2γ +1)/(2γ +3)

γ

(
a2/(2γ +3)

2 k(2γ +1)/(2γ +3)
γ + 4δ

)2/(2γ +1). (3.3)

Taking δ → 0 in (3.3), we obtain that

lim inf
ε→0+

εβ logP
(

sup
t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ ε
)

≥ –a2/(2γ +1)
2 kγ .

On the other hand, we observe that

4∑
i=1

|ai|Ri = sup
s,t∈[0,1]

∣∣a1B(t) – a1B(s)
∣∣ + sup

s,t∈[0,1]

∣∣a2Wγ (t) – a2Wγ (s)
∣∣

+ sup
s,t∈[0,1]

∣∣a3BH (t) – a3BH (s)
∣∣ + sup

s,t∈[0,1]

∣∣a4Sα(t) – a4Sα(s)
∣∣

=
(

sup
t∈[0,1]

a1B(t) – inf
t∈[0,1]

a1B(t)
)

+
(

sup
t∈[0,1]

a2Wγ (t) – inf
t∈[0,1]

a2Wγ (t)
)

+
(

sup
t∈[0,1]

a3BH(t) – inf
t∈[0,1]

a3BH (t)
)

+
(

sup
t∈[0,1]

a4Sα(t) – inf
t∈[0,1]

a4Sα(t)
)
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= sup
t∈[0,1]4

(
a1B(t1) + a2Wγ (t2) + a3BH (t3) + a4Sα(t4)

)

+ sup
t∈[0,1]4

((
–a1B(t1)

)
+

(
–a2Wγ (t2)

)
+

(
–a3BH(t3)

)
+

(
–a4Sα(t4)

))

≤ sup
t∈[0,1]4

∣∣a1B(t1) + a2Wγ (t2) + a3BH (t3) + a4Sα(t4)
∣∣

+ sup
t∈[0,1]4

∣∣a1B(t1) + a2Wγ (t2) + a3BH (t3) + a4Sα(t4)
∣∣

= 2 sup
t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣.

Hence

P

(
sup

t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ ε
)

≤ P

( 4∑
i=1

|ai|Ri ≤ 2ε

)
(3.4)

≤ P
(|a2|R2 ≤ 2ε

)
.

Combining (2.4) with (3.4), we obtain

lim sup
ε→0+

εβ logP
(

sup
t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ ε
)

≤ –a2/(2γ +1)
2 kγ .

The proof of results in other conditions for Theorem 1.2 (1.1) follows from a similar
approach given in the above argument, and we omit the details here. �

Proof of (1.2) in Theorem 1.2 Fix 0 < ε < 1, we note that

P

(
sup

t∈[0,1]4

∣∣YH,γ ,α(t)
∣∣ ≤ ε

)

≥ P

(
sup

t1∈[0,1]

∣∣B(t1)
∣∣ · sup

t2∈[0,1]

∣∣Wγ (t2)
∣∣ · sup

t3∈[0,1]

∣∣BH (t3)
∣∣ · sup

t4∈[0,1]

∣∣Sα(t4)
∣∣ ≤ ε4

)

≥ P

({
sup

t1∈[0,1]

∣∣B(t1)
∣∣ ≤ ε

}
∩

{
sup

t2∈[0,1]

∣∣Wγ (t2)
∣∣ ≤ ε

}

∩
{

sup
t3∈[0,1]

∣∣BH(t3)
∣∣ ≤ ε

}
∩

{
sup

t4∈[0,1]

∣∣Sα(t4)
∣∣ ≤ ε

})

= P

(
sup

t1∈[0,1]

∣∣B(t1)
∣∣ ≤ ε

)
· P

(
sup

t2∈[0,1]

∣∣Wγ (t2)
∣∣ ≤ ε

)

× P

(
sup

t3∈[0,1]

∣∣BH (t3)
∣∣ ≤ ε

)
· P

(
sup

t4∈[0,1]

∣∣Sα(t4)
∣∣ ≤ ε

)
. (3.5)

Thus, combining (2.1), (2.3), (2.5), and (2.7)with (3.5), we obtain

lim inf
ε→0+

εβ logP
(

sup
t∈[0,1]4

∣∣Yγ ,H,α(t)
∣∣ ≤ ε

)
≥ –ν(γ , H ,α),

where ν(γ , H ,α) = (sgn(2 – β) + 1) π2

8 + (sgn(2/(2γ + 1) – β) + 1)kγ + (sgn(1/H – β) + 1)CH +
(sgn(α – β) + 1)Aα . �
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Proof of (1.3) in Theorem 1.6 As a matter of convenience, we take ϑ(γ , H ,α, a1, a2, a3, a4)
by abbreviated notation ϑ . Let Tn = θn2 , θ > 1, n = 1, . . . . For any λ < ϑ1/β , using the scaling
property and (1.1), we have

∞∑
n=1

P

(
sup

t∈[0,Tn]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ λ
(
Tn(log log Tn)–1)1/β

)

=
∞∑

n=1

P

(
sup

t∈[0,Tn]4

∣∣∣∣
a1B(t1/Tn)

T–1/2
n

+
a2Wγ (t2/Tn)

T–(2γ +1)/2
n

+
a3BH (t3/Tn)

T–H
n

+
a4Sα(t4/Tn)

T–1/α
n

∣∣∣∣ ≤ λ
(
Tn(log log Tn)–1)1/β

)

≤
∞∑

n=1

P

(
sup

t∈[0,1]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ λ(log log Tn)–1/β
)

≤
∞∑

n=1

C(λ, θ )
1
n2

< ∞.

Then by the Borel–Cantelli lemma, we have

lim inf
n→∞

(
T–1

n log log Tn
)1/β

sup
t∈[0,Tn]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≥ λ a.s.

For any Tn ≤ T ≤ Tn+1,

(
T–1 log log T

)1/β
sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣

≥ (
θ–1/β + o(1)

)(
T–1

n log log Tn
)1/β

sup
t∈[0,Tn]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣.

Therefore

lim inf
T→∞

(
T–1 log log T

)1/β
sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≥ θ1/βλ a.s. (3.6)

Thus the lower bound is proved by λ → ϑ1/β and θ → 1 in (3.6).
Inspiration for the approach of the proof for the upper bound comes from Kuelbs [14]

and Talagrand [15]. Taking Tk = 2k , k = 1, . . . . Let λ > ϑ1/β and fix δ > 0. Then choose j ≥ 1
independent of k such that Tk+j ≥ δ–1Tk , and for every k = 1, . . . ,

(
T–1

k+j log log Tk+j
)1/β < δ

(
T–1

k log log Tk
)1/β . (3.7)

Define the events

Dk =
{
φ(T) sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ > λ for all T ≥ Tk+j,φ(Tk) sup
t∈[0,Tk ]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ λ
}
,

where φ(T) = (T–1 log log T)1/β .
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According to the definition of Dk and (3.7), we have

{
φ(T) sup

t∈[Tk ,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t) – X

a1,a2,a3,a4
γ ,H,α (Tk)

∣∣ > (1 + δ)λ for all T ≥ Tk+j,

φ(Tk) sup
t∈[0,Tk ]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ λ
}

⊂ Dk , (3.8)

where Tk = (Tk , Tk , Tk , Tk).
Observe that

{
φ(T) sup

t∈[Tk ,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ > (1 + 2δ)λ for all T ≥ Tk+j,

–φ(T)
∣∣Xa1,a2,a3,a4

γ ,H,α (Tk)
∣∣ > –δλ for all T ≥ Tk+j

}

⊂
{
φ(T) sup

t∈[Tk ,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t) – X

a1,a2,a3,a4
γ ,H,α (Tk)

∣∣ > (1 + δ)λ for all T ≥ Tk+j

}
(3.9)

and

{
φ(Tk) sup

t∈[0,Tk ]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ λ
}

⊂ {
–φ(T)

∣∣Xa1,a2,a3,a4
γ ,H,α (Tk)

∣∣ > –δλ for all T ≥ Tk+j
}

. (3.10)

Therefore, using (3.8)–(3.10) and the scaling property, by the Gaussian correlation in-
equality [16] with any 0 < η < 1, we obtain

P(Dk) ≥ Pk
((

1 – η2)1/2
λ
)

× P

(
φ(T) sup

t∈[0,T–Tk ]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ > η(1 + 2δ)λ for all T ≥ Tk+j

)

≥ Pk
((

1 – η2)1/2
λ
)

× P

(
φ(T) sup

t∈[0,(1–δ)T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ > η(1 + 2δ)λ for all T ≥ Tk+j

)

≥ Pk
((

1 – η2)1/2
λ
)

× P

(
φ(T) sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ > (1 – δ)–1/βη(1 + 2δ)λ for all T ≥ Tk+j

)
,

where Pk((1 – η2)1/2λ) = P(φ(Tk) supt∈[0,Tk ]4 |Xa1,a2,a3,a4
γ ,H,α (t)| ≤ (1 – η2)1/2λ).

Hence, for every N = 1, . . . , if only Tk ≥ N , i.e., k ≥ log N ,

P(Dk) ≥ Pk
((

1 – η2)1/2
λ
)

× P

(
φ(T) sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ > (1 – δ)–1/βη(1 + 2δ)λ for all T ≥ N
)

.
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On the other hand, it is easy to see that the occurrence number of {Dk ; k ≥ 1} is no more
than j by (3.7) and the definition of Dk , so there is

∞∑
k=1

P(Dk) = E

∞∑
k=1

IDk ≤ j.

Therefore

j ≥
∑

k≥log N

Pk
((

1 – η2)1/2
λ
)

× P

(
φ(T) sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ > (1 – δ)–1/βη(1 + 2δ)λ for all T ≥ N
)

.

Then, for any (1 – η2)1/2λ > ϑ1/β , by scaling

∑
k≥log N

Pk
((

1 – η2)1/2
λ
)

=
∑

k≥log N

P

(
sup

t∈[0,Tk ]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ (
1 – η2)1/2

λφ–1(Tk)
)

= ∞.

Accordingly, for every N = 1, . . . , we have

P

(
φ(T) sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ > (1 – δ)–1/βη(1 + 2δ)λ for all T ≥ N
)

= 0.

Hence

lim inf
T→∞

(
T–1 log log T

)1/β
sup

t∈[0,T]4

∣∣Xa1,a2,a3,a4
γ ,H,α (t)

∣∣ ≤ (1 – δ)–1/βη(1 + 2δ)λ a.s. (3.11)

The upper bound follows from (3.11) by δ → 0, η → 1 and λ → ϑ1/β . �

4 Concluding remarks
We end this paper with the following comment: it has been found that the small devia-
tion estimate has close connection with various approximation quantities of compact sets
and operators and has a variety of applications in studies of Hausdorff dimensions, rate of
convergence in Strassen’s law of the iterated logarithm, and empirical processes (see, e.g.,
[17, 18]). Intuitively, we expect the results which were obtained in this paper can enrich
the above relative fields. Moreover, there are scant papers related to the admixture addi-
tive processes and the admixture multiplicative processes. The behaviors of the admixture
additive processes and the admixture multiplicative processes deserve to be investigated
extensively.
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