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Abstract
It is well known that there exists a threshold κc such that the linearized stratified
viscoelastic Rayleigh–Taylor problem is unstable for the elasticity coefficient κ
satisfying κ < κc . In this paper, we further prove that if κ < κc , then there exists an
unstable solution to the linearized stratified viscoelastic Rayleigh–Taylor problem with
a largest growth rate. Moreover, the largest growth rate decreases from a positive
constant to 0 as κ increases from 0 to κc. In addition, we further extend the obtained
results in the linearized stratified viscoelastic Rayleigh–Taylor problem to the
linearized stratified magnetic Rayleigh–Taylor problem.

Keywords: Stratified viscoelastic fluids; Rayleigh–Taylor instability; Stratified
magnetohydrodynamic fluids

1 Introduction
Consider two completely plane-parallel layers of immiscible fluids, the heavier on top of
the lighter one, and both subject to the Earth’s gravity. In this case, the equilibrium state
is unstable to sustain small disturbances, and this unstable disturbance grows and leads
to a release of potential energy, as the heavier fluid moves down under the gravitational
force, and the lighter one is displaced upward. This unstable phenomenon was first studied
by Rayleigh [21] and then by Taylor [22] and is called therefore the Rayleigh–Taylor (RT)
instability. In the last decades, this phenomenon has been extensively investigated from
both physical and numerical aspects; see [1, 4, 7, 9, 23] for examples. It has been also widely
investigated how the RT instability evolves under the effects of other physical factors, such
as elasticity [6, 17, 18], rotation [1, 3], internal surface tension [5, 25], magnetic fields [1,
2, 8, 10, 12, 15, 16], and so on.

Recently, Jiang et al. [17] established the nonlinear stability and linear instability of the
stratified viscoelastic RT (VRT) problem, which models the motion of stratified immisci-
ble viscoelastic fluids, the heavier on top of the lighter one, in the presence of a uniform
gravitational field. Their results show that the elasticity can inhibit the development of
RT instability. In this paper, we further investigate the effect of elasticity on the Rayleigh–
Taylor instability based on the linear instability result of Jiang et al. Before stating our main
result, we briefly introduce the stratified VRT problem and the results of Jiang et al.
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The stratified VRT problem considered by Jiang et al. [17] reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ±∂tv± + ρ±v± · ∇v± + divS(pg
±, v±, U±) = 0 in �±(t),

∂tU± + v± · ∇U± = ∇v±U± in �±(t),

div v± = 0 in �±(t),

dt + v1∂1d + v2∂2d = v3 on T,

�v±� = 0, �S(pg
±, v±, U±)�ν = gd�ρ�ν on �(t),

v± = 0 on �±,

v±|t=0 = v0±, U±|t=0 = U0± in �±(0),

d|t=0 = d0 on T,

(1.1)

where S(pg
±, v±, U±) := pg

±I – μ±S(v±) – κ±ρ±(U±UT± – I), pg
± := p± + gρ±x3, and S(v±) :=

∇v± + ∇vT±. Next, we further explain the model and the notations appearing in (1.1) for
reader’s convenience.

Equations (1.1)1–(1.1)2 describe the motion of the upper heavier and lower lighter vis-
coelastic fluids driven by the gravitational field along the negative x3-direction, which oc-
cupy the two time-dependent disjoint open subsets �+(t) and �–(t) at time t, respectively.
Equation (1.1)3 means that the fluids are incompressible. The two fluids interact with each
other by the interfacial jump conditions (1.1)5 and the motion of a free interface (1.1)4, in
which d := d(x1, x2, t) denotes the displacement function of the point at the interface de-
viating from the plane {x3 = 0}. The nonslip boundary condition of the velocities on both
upper and lower fixed flat boundaries are described by (1.1)6, and (1.1)7–(1.1)8 represent
the initial status of the two fluids.

The notation f+ and f– in (1.1) denote the values of the quantity f in the upper and lower
fluids, respectively. In particular, the unknown functions v± := v±(x, t) ∈ R

3, U±(x, t), and
p±(x, t) represent the velocity, the deformation tensor (a 3 × 3 matrix-valued function),
and the hydrodynamic pressure of the two fluids, and ρ±, μ±, and κ± denote the constant
densities, viscosity coefficients, and elasticity coefficients of the two fluids, respectively.
The positive constant g , the superscript T , and the capital letter I represent the gravita-
tional constant, the transposition, and the 3 × 3 identity matrix. The notations f 0 or f0

denote the initial data of f . In this paper, we consider that the domain � occupied by the
two fluids is horizontal periodic, and thus we denote

�– =
{

(xh, x3) ∈R
3|xh := (x1, x2) ∈ T, –l < x3 < m

}
with l, m > 0, (1.2)

where Ti := 2πLi(R/Z), T := T1 × T2, and L1 and L2 are positive constants. Moreover, we
have the following expressions:

�+(t) =
{

(xh, x3)|xh ∈ T, d(xh, t) < x3 < m
}

,

�–(t) =
{

(xh, x3)|xh ∈ T, –l < x3 < d(xh, t)
}

,

� = �+(t) ∪ �–(t);

�(t) :=
{(

xh, d(xh, t)
)|xh ∈ T

}
, �– := T× {x3 = –l}, and �+ := T× {x3 = m}.
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Finally, we explain the interfacial jump conditions (1.1)5. The notation �·� stands for

�f±� := f+|�(t) – f–|�(t),

where f±|�(t) are the traces of the quantities f± on �(t). For two viscous fluids meeting
at a free boundary, from the physical point of view, the velocity is continuous across the
interface, and the jump in the normal stress is proportional to the mean curvature of the
surface multiplied by the normal to the surface (see [14, 25]). Thus, we impose the jump
conditions �v� = 0 on �(t) and

�
S(p±, v±, U±)

�
ν = ϑCν on �(t),

where

S(p±, v±, U±) := p±I – μ±S(v±) – κ±ρ±
(
U±UT

± – I
)
, (1.3)

and ν is the unit normal vector on �(t), ϑ is the surface tension coefficient, and C is the
twice the mean curvature of the internal surface �(t). Since in this paper we focus on the
elasticity effect upon the RT instability, we omit the surface tension and obtain therefore
the second jump condition in (1.1)5. In addition, since the density of the upper fluid is
heavier than the lower one, we have

�ρ±� > 0.

Problem (1.1) enjoys a stratified equilibrium state solution (i.e., stratified VRT equilib-
rium state): (v, U , d, pg) = (0, I, d̄, p̄g), where d̄ ∈ (–l, m). We should point out that p̄g can be
uniquely computed out by hydrostatics, which depends on the variable x3 and ρ± and is
continuous with respect to x3 ∈ (–l, m). Without loss of generality, we assume that d = 0.
If d̄ is not zero, we can adjust the x3 coordinate to make d̄ = 0. Thus d is regarded as the
displacement away from the plane

� := T× {0}.

To simplify the representation of problem (1.1), we introduce the indicator function χ and
denote

ρ = ρ+χ�+ + ρ–χ�– , μ = μ+χ�+ + μ–χ�– ,

κ = κ+χ�+ + κ–χ�– , v = v+χ�+ + v–χ�– ,

U = U+χ�+ + U–χ�– , p = p+χ�+ + p–χ�– ,

v0 = v0
+χ�+ + v0

–χ�– , U0 = U0
+χ�+ + U0

–χ�– .

Now, we denote the perturbation quantity to the equilibrium state (0, I, 0, p̄g) by

v = v – 0, σ = pg – p̄g , V = U – I, d = d – 0.
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Then we have the stratified VRT problem in a perturbation form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρvt + ρv · ∇v + divS(σ , v, V + I) = 0 in � \ �(t),

Vt + v · ∇V = ∇v(V + I) in � \ �(t),

div v = 0 in � \ �(t),

dt + v1∂1d + v2∂2d = v3 on T,

�v� = 0, �S(σ , v, (V + I)) – gρdI �ν = 0 on �(t),

v = 0 on �+
–,

d|t=0 = d0 on �(0),

v±|t=0 = v0, V±|t=0 = V0 in � \ �(0),

(1.4)

where �+
– := �– ∪ �+, S(σ , v, V + I) is defined by (1.3) with (σ , v, V + I) in place of

(p±, v±, U±), and we omit the subscript ± in the jump notation �·� for simplicity. The
equilibrium-state solution of (1.4) is (v, V , d,σ ) = (0, 0, 0, 0).

The movement of the free interface �(t) and the subsequent change of the domains
�±(t) in Eulerian coordinates result in severe mathematical difficulties. To circumvent
such difficulties, we switch our analysis to Lagrangian coordinates, so that the interface
and the domains stay fixed in time. To this end, we define the fixed Lagrangian domains
�+ = T× (0, m) and �– = T× (–l, 0) and assume that there exist invertible mappings

ζ 0
± : �± → �±(0)

such that

�(0) = ζ 0
±(�), �+ = ζ 0

+ (�+), �– = ζ 0
– (�–), (1.5)

and

det(∇ζ0) = 1. (1.6)

The first condition in (1.5) means that the initial interface �(0) is parameterized by the
mapping ζ 0± restricted to �, whereas the latter two conditions in (1.5) mean that ζ 0± map
the fixed upper and lower boundaries into themselves. Define the flow maps ζ± as the
solutions to

⎧
⎨

⎩

∂tζ±(y, t) = v±(ζ±(y, t), t) in �±,

ζ±(y, 0) = ζ 0±(y) in �±.
(1.7)

We denote the Eulerian coordinates by (x, t) with x = ζ (y, t), whereas the fixed (y, t) ∈ � ×
R

+stand for the Lagrangian coordinates. Here we have denoted �+ ∪ �– by �.
To switch back and forth from Lagrangian to Eulerian coordinates, we assume that

ζ±(·, t) are invertible and �±(t) = ζ±(�±, t), and since v± and ζ 0± are all continuous across
�, we have �(t) = ζ±(�, t). In other words, the Eulerian domains of upper and lower fluids
are the images of �± under the mappings ζ±, and the free interface is the image of � under
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the mappings ζ±(·, t) . In view of the nonslip boundary condition v±|�± = 0, we have

y = ζ±(y, t) on �±.

Moreover, by the incompressible condition (1.1)3 we have

det(∇ζ±) = 1 in �± (1.8)

as well as the initial condition (1.6), see [19, Proposition 1.4] for the derivation.
In Lagrangian coordinates the deformation tensor Ũ(y, t) is defined by a Jacobi matrix

of ζ±(y, t):

Ũ(y, t) := ∇ζ±(y, t), i.e., Ũij := ∂j
(
ζ±(y, t)

)

i.

Here and in what follows, ∂j denotes the partial derivative with respect to the jth compo-
nent of the spatial variables. When we study this deformation tensor in Eulerian coordi-
nates, we denote it by U±(x, t) := Ũ(ζ –1± (x, t), t). Applying the chain rule, it is easy to see
that U±(x, t) satisfies the transport equation

∂tU± + v± · ∇U± = ∇v± · ∇U± in �±(t).

Now, setting

ζ = χ+ζ+ + χ–ζ–, η = ζ – y (1.9)

and the Lagrangian unknowns

(u, q)(y, t) = (v,σ )
(
ζ (y, t), t

)
for (y, t) ∈ � ×R

+,

we see that in Lagrangian coordinates the evolution equations for u and q read as

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in �,

ρut + divASA(q, u,∇η + I) = 0 in �,

divAu = 0 in �,

�u� = �η� = 0, �SA(q, u,∇η + I) – gρη3I ��n = 0 on �,

u = 0, η = 0 on �+
–,

u|t=0 = u0, η|t=0 = η0 in �,

(1.10)

where we have denoted

SA(q, u,∇η + I) := qI – μSA(u) – κρ
(
S(η) + ∇η∇ηT)

,

SA(u) := ∇Au + ∇AuT , (1.11)

�n :=
∂1(η + y) × ∂2(η + y)
|∂1(η + y) × ∂2(η + y)| |� =

Ae3

|Ae3| |� (1.12)
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for the unit normal to �(t) = ζ (�, t). Noting that �η� = 0 on �, we have

�∂iη� = 0 on � for i = 1 and 2.

Thus the definition of �n in (1.12) is reasonable. In what follows, we call problem (1.10) the
transformed stratified VRT problem. Next, we further introduce the notations involving
A. The matrix A := (Aij)3×3 via AT = (∇ζ )–1 := (∂jζi)–1

3×3, and the differential operator ∇A

is defined by

∇Aw := (∇Aw1,∇Aw2,∇Aw3)T and ∇Awi := (A1k∂kwi,A2k∂kwi,A3k∂kwi)T

for vector functions w := (w1, w2, w3), and the differential operator divA is defined by

divA(f1, f2, f3) = (divAf1, divAf2, divAf3)T and divAfi := Alk∂kfil (1.13)

for vector functions fi := (fi1, fi2, fi3)T . It should be noted that we have used the Einstein
convention of summation over repeated indices. In addition, we define �AX := divA∇AX.

Finally, we introduce some properties of A. In view of the definition of A and (1.8), we
see that

A =
(
A∗

ij
)

3×3, (1.14)

where A∗
ij is the algebraic complement minor of the (i, j)th entry of the matrix (∂jζi)3×3. In

addition, we have

Aji∂lζj = Aij∂jζl = δil (1.15)

and

∂kA∗
ik = 0 or ∂kAik = 0, (1.16)

where δil = 1 for i = l and δil = 0 for i �= l.
If (u,η) is very small, then the small terms of second order (i.e., the nonlinear terms) in

(1.10) can be neglected, and we thus obtain the following linearized stratified VRT prob-
lem:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in �,

ρut + ∇q = μ�u + κρ div S(η) in �,

div u = 0 in �,

�u� = �η� = 0, �(q – gρη3)I – S(μu + κρη)�e3 = 0 on �,

u = 0, η = 0 on �+
–,

u|t=0 = u0, ηt=0 = η0 in �,

(1.17)

where S(f ) = ∇f + ∇f T for f = η, and μu + κρη. The linearized problem is convenient to
analyze in order to have an insight into the physical and mathematical mechanisms of the
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stratified VRT problem. In fact, using a standard energy method, Jiang et al. [17] found
stability and instability criteria of the above linearized stratified VRT problem.

Before recalling the stability and instability criteria, we introduce some simplified nota-
tions:

∫

:=
∫

�

, Lp := Lp(�) := W 0,p(�) for 1 < p ≤ ∞,

H1
0 := W 1,2

0 (�–), H1
σ :=

{
w ∈ H1

0 |div w = 0
}

,

A :=
{

ũ ∈ H1
σ |J(ũ) :=

∫

ρũ2 dy = 1
}

, Hk := W k,2(�),

H∞ :=
∞⋂

k=1

Hk , ‖ · ‖k := ‖ · ‖Hk ,
∣
∣�w�

∣
∣
s := ‖w+|� – w–|�‖Hs(T),

|w|s :=

⎧
⎨

⎩

‖w+|�‖Hs(T) + ‖w–|�‖Hs(T) for w+|� �= w–|� ,

‖w+|�‖Hs(T), for w+|� = w–|� ,

yh := (y1, y2), f ∈ Hk+1/2 denotes f (yh, 0) ∈ Hk+1/2(T) for f = f (yh, y3),

a � b means that a ≤ cb for some constant c,

where k is a nonnegative integer, s is a real number, and the positive constant c may depend
on the domain occupied by the fluids and other known physical parameters such as ρ , μ,
g , and κ and varies from line to line.

Next, we introduce the stability and instability criteria of (1.17). We consider normal
mode solutions of (1.17) in the form

u(y, t) = ũ(y)e�t , η(y, t) = η̃(y)e�t , q(y, t) = q̃(y)e�t for some constant � > 0.

Substituting this ansatz into (1.17), we obtain the eigenvalue problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�η̃ = ũ in �,

�ρũ + ∇q̃ = μ�ũ + κρ div S(η̃) in �,

div ũ = 0 in �,

�ũ� = 0, �(q̃ – gρη̃3)I – S(μũ + κρη̃)�e3 = 0 on �,

ũ = 0, η̃ = 0 on �+
–.

(1.18)

Eliminating η̃ by using the first equation, we arrive at the boundary value problem

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�2ρũ + �∇q̃ – div S((�μ + κρ)ũ) = 0 in �,

div ũ = 0 in �,

�ũ� = 0, �(�q̃ – gρũ3)I – S((�μ + κρ)ũ)�e3 = 0 on �,

ũ = 0, η̃ = 0 on �+
–.

(1.19)
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Multiplying (1.19)1 by ũ in L2 and using the formula of integral by parts and conditions
(1.19)2–(1.19)4, we have

�2‖√ρũ‖2
0 = Ẽ(ũ) –

∥
∥
√

�μS(ũ)
∥
∥2

0/2

with

Ẽ(ũ) := g�ρ�|ũ3|20 –
∥
∥√

κρS(ũ)
∥
∥2

0/2.

By the classical theory of linear RT instability, if

Ẽ(ũ) > 0 for some ũ ∈ H1
σ (�–),

then the linearized stratified VRT problem is unstable. Obviously, the above condition is
equivalent to

Cκ > 1, (1.20)

where we have defined

Cκ := sup
w∈H1

σ

2g�ρ�|w3|20
‖√κρS(w)‖2

0
.

Jiang et al. [17] used the discrete Fourier transformation to prove that there exist unstable
solutions to the linearized stratified VRT problem under Cκ > 1. Moreover, they further
verified that the transformed stratified VRT problem is stable for Cκ < 1. The nonlinear
stability result shows that the elasticity can inhibit the development of RT instability.

In this paper, we assume that κ is a constant. Then the instability criterion (1.20) reduces
to

κ < κc := sup
ω∈H1

σ

2g�ρ�|w3|20
‖√ρS(w)‖2

0
> 0. (1.21)

Under (1.21), we prove that there exists an unstable solution of the linearized stratified
VRT problem with a largest growth rate, and the largest growth rate decreases from a
positive constant to 0 as κ increases from 0 to κc. Next, we introduce the definition of
largest growth rate.

Definition 1.1 We call � > 0 the largest growth rate of RT instability in the linearized
stratified VRT problem if it satisfies the following two conditions:

(1) For any classical solution (u,η) of the linearized stratified VRT problem with an
associated pressure q, we have, for any t ≥ 0,

∥
∥u(t)

∥
∥2

1 + ‖ut‖2
0 +

∫ t

0

∥
∥u(s)

∥
∥2

1 ds � e2�t(‖u0‖2
1 + I0

)
, (1.22)

∥
∥η(t)

∥
∥

1 � e�t(∥∥(u0,η0)
∥
∥

1 +
√

I0
)
, (1.23)

where I0 := ‖√ρut(0)‖2
0 – Ẽ(u0).
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(2) There exists a solution (u,η, q) of the linearized stratified VRT problem in the form

(u,η, q) := e�t(ũ, η̃, q̃),

where (ũ, η̃, q̃) ∈ H2 × H2 × H1.

Now we state our result on the linearized stratified VRT problem.

Theorem 1.1 Assume that μ > 0, ρ > 0, g > 0, and �ρ� > 0. If the constant κ ∈ [0,κc), then
there exists a largest growth rate (see Definition 1.1) � > 0 such that there is an unstable
solution to the linearized stratified VRT problem (1.17) of the form

(u,η, q) := e�t(ũ, ũ/�, q̃),

where (ũ, q̃) ∈ (H1
σ ∩ H∞) × H∞ solves the boundary value problem (1.19). Moreover,

‖ũ3‖0‖(ũ1, ũ2)‖0|ũ3|0 > 0.
In addition, for given g , ρ , and μ, we can regard �κ := � as a function of κ ∈ [0,κc). It

enjoys the following properties:

�κ strictly decreases and is continuous with respect to κ , (1.24)

and

�κ ≤ m := max

{
ρ+(κc – κ)

μ+
,
ρ–(κc – κ)

μ–

}

. (1.25)

In particular, we have �κ → 0 as κ → κc.

The proof of Theorem 1.1 is based on the modified variational method [5, 9, 13, 14].
Next, we briefly introduce the proof of Theorem 1.1. Obviously, the linearized stratified
VRT problem (1.17) is unstable if there exists a solution (ũ, q̃,�) to the boundary-value
problem (1.19) with � > 0. In view of the basic idea of the modified variational method, to
look for the solution (ũ, q̃,�), we will use a modified variational approach and thus modify
(1.19) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

α(s)ρũ + s∇q̃ – div S((sμ + κρ)ũ) = 0 in �,

div ũ = 0 in �,

�ũ� = 0, �(sq̃ – gρũ3)I – S((sμ + κρ)ũ)�e3 = 0 on �,

ũ = 0, η̃ = 0 on �+
–,

(1.26)

where s > 0 is a given parameter, and α(s) depends on s.
Multiplying (1.26)1 by ũ and integrating the resulting identity, we get

α(s)‖√ρũ‖2
0 = Ẽ(ũ) – s�(ũ),

where

Ẽ(ũ) := g�ρ�|ũ3|20 –
∥
∥√

κρS(ũ)
∥
∥2

0/2, �(ũ) =
∥
∥√

μS(ũ)
∥
∥2

0/2.
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Let E(ũ, s) := Ẽ(ũ) – s�(ũ). Then E(ũ, s) is the energy functional of (1.26) (sometimes, we
denote E(ũ, s) by E(ũ) for simplicity). Thus, for any given s > 0, by a standard variational
approach there exists a maximizer ũ ∈ A of the energy functional E(ũ, s). Moreover, ũ is
just the weak solution to (1.26), and α(s) in (1.26) is defined by the relation

α(s) = sup
ũ∈A

E(ũ, s) ∈R. (1.27)

Exploiting the classical regularity theory on the stratified steady Stokes problem, ũ indeed
is a classical solution of the boundary-value problem (1.26) with an associated function q̃
and an associated constant α(s) > 0 defined by (1.27); see Lemma 2.1 for detailed results.

In view of the definition of α(s), we can infer that the function α(s) enjoys the three
properties: α(s) ∈ C0,1

loc(0,∞), α(s) is strictly decreasing, and lims→0 α(s) > 0. Obviously,√
α(s) also possesses these properties and thus has a fixed point on some internal (0,G),

that is, there exists � satisfying the fixed-point relation

� =
√

α(�) ∈ (0,G), (1.28)

which immediately implies that there exists a nontrivial solution ũ ∈ H2 to (1.19) with
a positive constant � defined by (1.28), and therefore the linear instability follows; see
Proposition 2.1 for details. Moreover, � is the largest growth rate of RT instability in the
linearized stratified VRT problem; see Proposition 2.2. To emphasize the dependence of
α(s), �, and G upon κ , we denote them by α(s,κ), �κ , and Gκ , respectively.

In addition, we can further prove that, for fixed s, α(s,κ) strictly decreases and is con-
tinuous with respect to κ ; moreover, there exists an estimate Gκ ≤ m; see Lemma 2.4.
Consequently, using the fixed-point relation (1.28), Lemma 2.4, and the definition of con-
tinuity, we can show that �κ also inherits the properties of α(s,κ) with respect to κ and
thus get properties (1.24)–(1.25) of �κ . In the next section, we provide a detailed proof of
Theorem 1.1.

2 Proof of Theorem 1.1
To begin with, we prove that a maximizer of (1.27) exists and that the corresponding
Euler–Lagrange equations are equivalent to (1.26).

Lemma 2.1 Under the assumptions of Theorem 1.1, for any but fixed s > 0, the following
assertions are valid.

(1) In the variational problem (1.27), E(ũ) achieves its supremum on A.
(2) Let ũ0 be a maximizer, and let α :=

√
supũ∈A E(ũ). Then there exists a pressure q̃0

associated with ũ0 such that the triple (ũ0, q̃0,α) satisfies the boundary problem
(1.26). Moreover, (ũ0, q̃0) ∈ (H1

σ ∩ H∞) ∩ H∞.

Proof (1) Noting the estimate

|w|20 ≤ 2‖w‖0‖w‖1 for any w ∈ H1
0 , (2.1)

we can use the Cauchy–Schwarz and Korn inequalities

‖w‖1 �
∥
∥S(w)

∥
∥

0 for w ∈ H1
0
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to see that α(s) has an upper bound for any ũ ∈A. Hence α(s) has a maximizing sequence.
Let ũn ∈ A be a maximizing sequence. Then {E(ũn)}∞n=1 has a lower bound. Thus there
exists a constant c such that

c +
∥
∥√

κρS(ũn)
∥
∥2

0/2 + s�(ũn) ≤ g�ρ�|ũn3|20.

Using (2.1) and the Cauchy–Schwarz and Korn inequalities, we can deduce from this esti-
mate that ũn is bounded in H1. So, there exist ũ0 ∈ H1 ∩A and a subsequence (still denoted
by ũn for simplicity) such that ũn → ũ0 weakly in H1 and strongly in L2. Further, we have
ũn → ũ0 strongly in L2(�). Indeed, in view of (2.1),

|ũn – ũ0|20 ≤ 2‖ũn – ũ0‖0‖ũn – ũ0‖1 � ‖ũn – ũ0‖0 → 0 as n → ∞.

Therefore, by the lower semicontinuity we have

sup
ũ∈A

E(ũ) = lim sup
n→∞

E(ũn)

= lim
n→∞ g�ρ�|ũn3|20 +

1
2

lim sup
n→∞

(
–
∥
∥√

κρ + sμS(ũn)
∥
∥2

0

)

= lim
n→∞ g�ρ�|ũn3|20 –

1
2

lim inf
n→∞

∥
∥√

κρ + sμS(ũn)
∥
∥2

0

≤ g�ρ�|ũ0|20 –
1
2
∥
∥√

κρ + sμS(ũ0)
∥
∥2

0

= E(ũ0) ≤ sup
ũ∈A

E(ũ),

which shows that E(ũ) achieves its supremum on A.
(2) To show the second assertion, we notice that since E(ũ) and J(ũ) are homogeneous

of degree 2, (1.27) is equivalent to

α = sup
w∈H1

σ

E(w)
J(w)

. (2.2)

For any given τ ∈R and w ∈ H1
σ , we take w̃ := ũ0 + τw. Then (2.2) implies

E(w̃) – αJ(w̃) ≤ 0.

If we set I(τ ) = E(w̃) – αJ(w̃), then we see that I(τ ) ∈ C1(R), I(τ ) ≤ 0 for all τ ∈ R, and
I(0) = 0 . This implies I ′(0) = 0. Hence a direct computation leads to

α

∫

ρũ0 · w dy +
1
2

∫

(κρ + sμ)S(ũ0) : S(w) dy = g�ρ�

∫

�

ũ03w3 dyh,

or

α

∫

ρũ0 · w dy +
∫

(κρ + sμ)S(ũ0) : ∇w dy = g�ρ�

∫

�

ũ03w3 dyh,

which implies that ũ0 ∈ H1 is a weak solution to the boundary problem (1.26). Here ũ03

denotes the third component of ũ0.
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Now we consider the following stratified steady Stokes problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–(sμ + κρ)�ũ + s∇q̃ = H in �,

div ũ = 0 in �,

�ũ� = 0, �sq̃I – (sμ + κρ)S(ũ)�e3 = F on �,

ũ = 0, η̃ = 0 on �+
–.

(2.3)

It follows from the classical regularity of stratified steady Stokes problem in [24, Lemma
A.8] that if H ∈ Hm and F ∈ Hm+1/2 for m ≥ 0, then there exists a unique solution (ũ, q̃) ∈
Hm+2 × Hm+1 to (2.3) such that

‖ũ‖m+2 + ‖∇q̃‖m +
∣
∣�q̃�

∣
∣
m+1/2 � ‖H‖m + |F |m+1/2.

We suppose that H = –α(s)ρũ0 ∈ H1 and F = g�ρ�ũ03e3 ∈ H1/2. Then by the above reg-
ularity result there exists a solution (ũ, q̃) ∈ H2 × H1 to (2.3). Since ũ0 is a weak solution
to (2.3), we can easily check that ũ0 = ũ. Thus by a standard bootstrap method of improv-
ing the regularity we can easily see that (ũ0, q̃0) ∈ (H1

σ ∩ H∞) × H∞. This completes the
proof. �

To prove that there is a fixed point � such that � =
√

α(�) > 0, we further give some
properties of α(s) with respect to s > 0.

Lemma 2.2 Under the assumptions of Theorem 1.1, the function α(s) defined on (0,∞)
enjoys the following properties:

(1) α(s) ∈ C0,1
loc(0,∞) is strictly decreasing in the variable s.

(2) There are constants c1, c2 > 0, which depend on g , ρ , κ , and μ, such that

α(s) ≥ c1 – c2s. (2.4)

Proof (1) Let s2 > s1. By Proposition 2.1 there exists a function ũsi ∈ A ∩ H∞ such that
ũsi �= 0 and

α(si) = Ẽ
(
ũsi

)
– si�

(
ũsi

)
, i = 1, 2.

Using Korn’s inequality, we have

0 <
∥
∥ũsi

∥
∥2

1 �
∥
∥�

(
ũsi

)∥
∥2

0,

and thus

α(s2) ≤ α(s1) + (s1 – s2)�
(
ũs2

)
< α(s1).

Hence α(s) is strictly decreasing on (0,∞).
Now we turn to show α(s) ∈ C0,1

loc(0,∞). Let [b1, b2] ⊂ (0,∞) be a bounded interval. Then,
for any s ∈ [b1, b2], there exists a function ũs satisfying α(s) = E(ũs) – s�(ũs). Thus, in view
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of the monotonicity of α(s), we have that

α(b2) + b1�
(
ũs)/2 ≤ E

(
ũs) – (s/2)�

(
ũs) ≤ α(s/2) ≤ α(b1/2),

which yields

�
(
ũs) ≤ 2

(
α(b1/2) – α(b2)

)
/b1 := K for any s ∈ [b1, b2].

Thus, for any s1, s2 ∈ [b1, b2],

α(s1) – α(s2) ≤ E
(
ũs1

)
– s1�

(
ũs1

)
–

(
E
(
ũs1

)
– s2�

(
ũs1

)) ≤ K |s2 – s1|.

Reversing the role of indices 1 and 2 in the derivation of this inequality, we obtain the same
boundedness with the indices switched. Therefore, we deduce that

∣
∣α(s1) – α(s2)

∣
∣ ≤ K |s1 – s2|,

which yields α(s) ∈ C0,1
loc(0,∞).

(2) By the instability condition κ < κc of the linearized stratified VRT problem there
exists a function ũ ∈ H1

σ such that

g�ρ�|ũ3|20 –
∥
∥√

κρS(ũ)
∥
∥2

0/2 > 0.

Thus we have

α(s) = sup
w∈A

E(w, s) = sup
w∈H1

σ

E(w, s)
J(w)

≥ g�ρ�|ũ3|20 – ‖√κρS(ũ)‖2
0/2

∫
ρ|ũ|2 dy

–
s‖√μS(ũ)‖2

0/2
∫

ρ|ũ|2 dy
:= c1 – sc2

for two positive constants c1 := c1(g,ρ,κ) and c2 := c2(μ,ρ). This completes the proof of
Lemma 2.2. �

Next, we prove that there exists a pair of functions (ũ, q̃) satisfying (1.19) with a growth
rate � by a fixed-point argument.

Let

G := sup
{

s|α(τ ) > 0 for any τ ∈ (0, s)
}

. (2.5)

By Lemma 2.2, G > 0; moreover, α(s) > 0 for any s < G . Since α(s) = supũ∈A E(ũ, s) < ∞,
using the monotonicity of α(s), we see that

lim
s→0

α(s) exists, and the limit is a positive constant. (2.6)

By (2.1) and Korn’s inequalit there are two constants c3 and c4, depending on the domain
� and other known physical parameters, such that

g�ρ�|ũ3|20 ≤ c3‖ũ‖2
1 for any ũ ∈A
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and

‖ũ‖2
1 ≤ c4

∥
∥S(ũ)

∥
∥2

0/2 for any ũ ∈ H1
0 .

Thus, if s > (c3c4 – κ min{ρ–,ρ+})/ min{μ–,μ+}, then

g�ρ�|ũ3|20 –
1
2
∥
∥√

κρ + sμS(ũ)
∥
∥2

0

≤
(

c3 –
κ min{ρ–,ρ+} + s min{μ–,μ+}

c4

)

‖ũ‖2
1 < 0 for any ũ ∈A,

which implies that

α(s) ≤ 0 for any s >
(
c3c4 – κ min{ρ–,ρ+})/ min{μ–,μ+}.

Hence G < ∞. Moreover,

lim
s→G

α(s) = 0. (2.7)

In view of (2.5)–(2.7) and the continuity of α(s) on (0,G), we can use a fixed-point argu-
ment to deduce the following conclusion.

Lemma 2.3 Under the assumptions of Theorem 1.1, there exists a unique � ∈ (0,G) such
that

� =
√

α(�) =
√

sup
w̃∈A

E(w̃,�) > 0. (2.8)

Proof We define the function ϕ : S = (0,G) → (0,∞) by

ϕ(s) = s/
√

α(s). (2.9)

Then ϕ(s) is continuous and strictly increasing with respect to s. Moreover, by (2.6) and
(2.7) we have lims→0 ϕ(s) = 0 and lims→G ϕ(s) = +∞. Hence there is a unique constant � ∈
(0,G) such that ϕ(�) = 1, which gives (2.8). �

By Lemma 2.1 there is a solution (ũ, q̃) ∈ (H1
σ ∩ H∞) × H∞ to problem (1.19) with �

constructed in (2.8). Moreover, �2 = E(ũ,�), ũ3 �= 0 in �, and ũ3 �= 0 on � by (2.8). Since
div ũ = 0 and ũ|�+– = 0, we immediately get ũ2

1 + ũ2
2 �= 0. Thus we have the following con-

clusion.

Proposition 2.1 Under the assumptions of Theorem 1.1, there exists a pair of functions
(ũ, q̃) ∈ (H1

σ ∩ H∞) × H∞ satisfying the boundary problem (1.19) with growth rate � > 0
constructed by (2.8). Moreover, ‖ũ3‖0‖(ũ1, ũ2)‖0|ũ3|0 > 0.

Obviously, the above conclusion yields the existence of an unstable solution to the lin-
earized stratified VRT problem in Theorem 1.1 in the form

(u,η, q) := e�t(ũ, ũ/�, q̃), (2.10)

where ũ is provided by Proposition 2.1. Moreover, � enjoys the following property.
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Proposition 2.2 Under the assumptions of Theorem 1.1, for any classical solution (u,η) of
the linearized stratified VRT problem with an associated pressure q, for any t ≥ 0, we have
(1.22) and (1.23), where � > 0 is constructed by (2.8).

Proof We use (2.8) and the energy method as in [5] to deduce (1.22)–(1.23) from (1.17).
Differentiating (1.17)2–(1.17)5 with respect to time, we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρutt + ∇qt = μ�ut + κρ div S(ηt) in �,

div ut = 0 in �,

�ut � = 0, �(qt – gρ∂tη3)I – S(μut + κρηt)�e3 = 0 on �,

ut = 0 on �+
–.

(2.11)

Multiplying (2.11)1 with ut , integrating the resulting equation (by parts), and recalling that
divut = 0, we obtain

1
2

d
dt

‖√ρut‖2
0 +

1
2
∥
∥√

μS(ut)
∥
∥2

0 +
∫

κρS(ηt) : ∇ut dy

– g�ρ�

∫

�

∂tη3∂tu3 dyh = 0. (2.12)

On the other hand, by (1.17)1 we have

∫

�

∂tη3∂tu3 dyh =
∫

�

u3∂tu3 dyh =
1
2

d
dt

∫

�

u2
3 dyh

and

∫

κρS(ηt) : ∇ut dy =
∫

κρ
(∇u + ∇uT)

: ∇ut dy =
1
4

d
dt

∥
∥√

κρS(u)
∥
∥2

0.

Inserting these equalities into (2.12), we infer that

d
dt

(‖√ρut‖2
0 – Ẽ(u)

)
+

∥
∥√

μS(ut)
∥
∥2

0 = 0. (2.13)

Using the Newton–Leibniz formula and Cauchy–Schwarz inequality, we find that

�
∥
∥√

μS
(
u(t)

)∥
∥2

0 = �
∥
∥√

μS(u0)
∥
∥2

0 + 2�

∫ t

0

∫

μS
(
u(s)

)
: S(us) dy ds

≤ �
∥
∥√

μS(u0)
∥
∥2

0 +
∫ t

0

∥
∥√

μS(us)
∥
∥2

0 dτ

+ �2
∫ t

0

∥
∥√

μS
(
u(s)

)∥
∥2

0 ds. (2.14)

In addition, by (2.8) we have

g�ρ�|u3|20 ≤ �2‖√ρu‖2
0 +

1
2
∥
∥
√

�μ + κρS(u)
∥
∥2

0. (2.15)
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Thus, we infer by (2.13)–(2.15) that

1
�

‖√ρut‖2
0 +

1
2
∥
∥√

μS
(
u(t)

)∥
∥2

0

≤ �
∥
∥√

ρu(t)
∥
∥2

0 + �

∫ t

0

∥
∥√

μS
(
u(s)

)∥
∥2

0 ds +
I0 + �‖√μS(u0)‖2

0

�
. (2.16)

Recalling that

�
d
dt

‖√ρu‖2
0 = 2�

∫

ρu(t) · ut dy ≤ ‖√ρut‖2
0 + �2∥∥√

ρu(t)
∥
∥2

0,

we deduce from (2.16) the differential inequality

d
dt

‖√ρu‖2
0 +

1
2
∥
∥√

μS
(
u(t)

)∥
∥2

0

≤ 2�

(
∥
∥√

ρu(t)
∥
∥2

0 +
1
2

∫ t

0

∥
∥√

μS
(
u(s)

)∥
∥2

0 ds
)

+
I0 + �‖√μS(u0)‖2

0

�
.

Applying Gronwall’s inequality [20, Lemma 1.2] to this inequality, we conclude

∥
∥√

ρu(t)
∥
∥2

0 +
1
2

∫ t

0

∥
∥√

μS
(
u(s)

)∥
∥2

0 ds ≤
(

‖√ρu0‖2
0 +

I0 + �‖√μS(u0)‖2
0

2�2

)

e2�t ,

which, together with (2.16), yields

1
�

∥
∥√

ρut(t)
∥
∥2

0 +
1
2
∥
∥√

μS
(
u(t)

)∥
∥2

0 ≤ 2
(

�‖√ρu0‖2
0 +

I0 + �‖√μS(u0)‖2
0

2�

)

e2�t

+
I0 + �‖√μS(u0)‖2

0

�
.

Hence (1.22) follows from the above two estimates and Korn’s inequality. Finally, from
(2.8)1 we get

∥
∥η(t)

∥
∥

1 � ‖η0‖1 +
∫ t

0
‖ηs‖1 ds � ‖η0‖1 +

∫ t

0

∥
∥u(s)

∥
∥

1 ds

� e�t(∥∥(u0,η0)
∥
∥

1 +
√

I0
)

(i.e., (1.23)), which completes the proof. �

Recalling Definition 1.1, we see that � is the largest growth rate of RT instability in
the linearized stratified VRT problem from (2.10) and Proposition 2.2. To emphasize the
dependence of α(s), �, and G upon κ , we denote them by α(s,κ), �κ , and Gκ , respectively.

To complete the proof of Theorem 1.1, we further derive relations (1.24) and (1.25) of
elasticity coefficient and the largest growth rate. To this end, we need the following auxil-
iary conclusions.

Lemma 2.4 Assume that μ > 0, ρ > 0, g > 0, and �ρ� > 0, and that the following assertions
hold.
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(1) Strict monotonicity: if κ1 and κ2 are constants satisfying 0 ≤ κ1 < κ2, then

α(s,κ2) < α(s,κ1) (2.17)

for any given s > 0. Moreover,

Gκ1 > Gκ2 , (2.18)

where

Gκi := sup
{

s ∈R|α(τ ,κi) > 0 for any τ ∈ (0, s)
}

and α(Gκi ,κi) = 0. (2.19)

(2) Continuity: for given s > 0, α(s,κ) ∈ C0,1
loc[0,κc) with respect to the variable κ . (3)

Estimate for Gκ : Gκ ≤ m, where κ is a constant.

Proof (1) Let s > 0 be fixed, and let 0 ≤ κ1 < κ2. Then by Lemma 2.1 there exists functions
ũκi ∈ H∞ ∩A, i = 1, 2, such that

α(s,κi) = g�ρ�
∣
∣ũκi

3
∣
∣2
0 –

s
2
∥
∥√

μS
(
ũκi

)∥
∥2

0 –
1
2
κ
∥
∥√

ρS
(
ũκi

)∥
∥2

0

:= Ê
(
ũκi

)
– κ�

(
ũκi

)
,

where Ê(ũκi ) := g�ρ�|ũκi
3 |20 – s‖√μS(ũκi )‖2

0/2, �(ũκi ) := ‖√ρS(ũκi )‖2
0/2, and ũκi

3 denotes the
third component of ũκi . Since ũκi ∈A, by Korn’s inequality we have

0 <
∥
∥ũκi

∥
∥2

1 �
∥
∥S

(
ũκi

)∥
∥2

0, i = 1, 2,

and thus

α(s,κ2) ≤ α(s,κ1) +
(κ1 – κ2)

2
∥
∥√

ρS
(
ũκ2

)∥
∥2

0 < α(s,κ1).

This yields the desired conclusion (2.17).
Next, we prove (2.18) by contradiction. If Gκ1 < Gκ2 , then we get from (2.17) and the strict

monotonicity of α(s,κ) with respect to s that

0 = α(Gκ2 ,κ2) < α(Gκ2 ,κ1) < α(Gκ1 ,κ1) = 0,

which is a paradox. If Gκ1 = Gκ2 , then exploiting (2.17), we have

0 = α(Gκ2 ,κ2) < α(Gκ2 ,κ1) = α(Gκ1 ,κ1) = 0,

which is also a paradox. Thus we immediately get the desired conclusion.
(2) Let s > 0 be fixed. We choose bounded intervals [b3, b4] ⊂ (0,∞) and [b5, b6] ⊂ [0,κc)

such that s ∈ [b3, b4]. Then, for the given constant s > 0 and any κ ∈ [b5, b6], there is a
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function w̃κ ∈A satisfying α(s,κ) = Ê(w̃κ ) – κ�(w̃κ ). Thus, in view of the monotonicity of
α(s,κ), we know that

α(b4, b6) + b3�
(
w̃κ

)
/2 ≤ α(b4,κ) + b3�

(
w̃κ

)
/2 ≤ Ẽ

(
w̃κ

)
– (s/2)�

(
w̃κ

)

≤ α(s/2,κ) ≤ α(b3/2,κ) ≤ α(b3/2, b5),

which yields

�
(
w̃κ

) ≤ max{ρ–,ρ+}
min{μ–,μ+}�

(
w̃κ

)

≤ 2
(
α(b3/2, b5) – α(b4, b6)

) max{ρ–,ρ+}
b3 min{μ–,μ+} := K ′ for any κ ∈ [b5, b6].

Thus, for any κ1, κ2 ∈ [b5, b6],

α(s,κ1) – α(s,κ2) ≤ Ê
(
w̃κ1

)
– κ1�

(
w̃κ1

)
–

(
Ê
(
w̃κ1

)
– κ2�

(
w̃κ1

)) ≤ K ′|κ2 – κ1|.

Reversing the role of indices 1 and 2 in the derivation of this inequality, we obtain the same
boundedness with the indices switched. Therefore, we deduce that

∣
∣α(s,κ1) – α(s,κ2)

∣
∣ ≤ K ′|κ1 – κ2|,

which yields α(s,κ) ∈ C0,1
loc[0,κc).

(3) Recalling the definition of κc, we see that

g�ρ�|w̃3|20 ≤ κc

2
∥
∥√

ρS(w̃)
∥
∥2

0 for any w̃ ∈A.

Hence, by the first assertion of Lemma 2.1, for any given κ , there exists w̃κ ∈A such that

α(s,κ) = g�ρ�
∣
∣w̃κ

3
∣
∣2
0 –

1
2
∥
∥√

κρS
(
w̃κ

)∥
∥2

0 –
s
2
∥
∥√

μS
(
w̃κ

)∥
∥2

0

≤ 1
2
(∥
∥√

ρκcS
(
w̃κ

)∥
∥2

0 –
∥
∥√

ρκ + sμS
(
w̃κ

)∥
∥2

0

)
.

Thus, if α(s,κ) ≥ 0, then

s ≤ m

(refer to (1.25) for the definition of m). This means that Gκ ≤ m by the definition of Gκ in
(2.19). This completes the proof. �

Now we are in position to prove the properties of �κ stated in (1.24) and (1.25) by three
steps.

First, we verify the monotonicity of �κ in the variable κ . For given two constants κ1 and
κ2 satisfying 0 ≤ κ1 < κ2, there exist two associated curve functions α(s,κ1) and α(s,κ2)
defined in (0,κc). By the first assertion in Lemma 2.4,

α(s,κ1) > α(s,κ2).
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On the one hand, the fixed point �κi satisfying �κi =
√

α(�κi ) can be obtained as the
intersection point of the two curves y = s and y = α(s,κi) for i = 1 and 2. Thus we can
immediately observe the monotonicity:

�κ1 > �κ2 for 0 ≤ κ1 < κ2. (2.20)

Second, we show the continuity. To this end, we choose a constant κ0 > 0 and an associ-
ated function α(s,κ0). Noting that α(�κ0 ,κ0) = �2

κ0 > 0 and α(s,κ0) ∈ C0,1
loc[0,κc) are strictly

decreasing with respect to κ , we have that, for any given ε > 0, there exists a constant δ > 0
such that

α(�κ0 ,κ0 + δ) > 0, 0 <
√

α(�κ0 ,κ0) –
√

α(�κ0 ,κ0 + δ) < ε

and

0 <
√

α(�κ0 ,κ0 – δ) –
√

α(�κ0 ,κ0) < ε.

In particular, we have

�κ0 – ε <
√

α(�κ0 ,κ0 + δ) and
√

α(�κ0 ,κ0 – δ) < �κ0 + ε.

By the monotonicity of �κ with regard to κ we get

�κ0–δ > �κ0 > �κ0+δ .

Thus, using the monotonicity of α(s,κ) with regard to s, we obtain

√

α(�κ0 ,κ0 + δ) <
√

α(�κ0+δ ,κ0 + δ) = �κ0+δ

and

√

α(�κ0 ,κ0 – δ) >
√

α(�κ0–δ ,κ0 – δ) = �κ0–δ .

Chaining the five inequalities above, we immediately get

�κ0 – ε < �κ0+δ < �κ0–δ < �κ0 + ε.

Then, for any κ ∈ (κ0 – δ,κ0 + δ), we arrive at

�κ0 – ε < �κ < �κ0 + ε.

Similarly, for κ0 = 0, we also can prove that, for any ε > 0, there exists δ > 0 such that, for
any κ ∈ [κ0,κ0 + δ) ⊂ [0,κc),

�κ0 < �κ < �κ0 + ε.
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Consequently, we get the conclusion

�κ is a continuous function of κ ∈ [0,κc). (2.21)

Third, noting that �κ ∈ (0,Gκ ), we immediately get

�κ ≤ m (2.22)

by the third conclusion in Lemma 2.4. Consequently, we complete the proof of Theo-
rem 1.1 from (2.20)–(2.22) and Propositions 2.1–2.2.

3 Extension to MHD fluids
Recently, Wang [24] established the nonlinear stability and linear instability of the strati-
fied magnetic Rayleigh–Taylor (MRT) problem. His result shows that magnetic fields can
also inhibit the development of RT instability. In this section, we extend the obtained re-
sult in linearized stratified VRT problem to the linearized stratified MRT problem. More
precisely, we establish qualitative relations between magnetic fields and the largest growth
rates in the linear RT instability of stratified MRT problem. Next, we introduce the strati-
fied MRT problem investigated by Wang. In what follows, we continue to use the mathe-
matical notations of Sect. 1, unless specified otherwise.

The three-dimensional motion equations of incompressible MHD fluids without resis-
tivity under a uniform gravitational field (along the negative x3-direction) can be described
as follows [10, 12, 15]:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρt + div(ρv) = 0,

ρvt + ρv · ∇v + divS(pg , v, M) = –ρge3,

Mt = M · ∇v – v · ∇M,

div v = div M = 0,

(3.1)

where M denotes the magnetic field, and stress tension S(pg , v, M) is defined as follows:

S
(
pg , v, M

)
:= –μS(v) + pgI + λ

(|M|2I/2 – M ⊗ M
)
.

Here λ is the permeability of vacuum divided by 4π .
Referring to (1.1), we can easily use these motion equations to establish the mathemat-

ical model of the motion of the stratified incompressible MHD fluids without resistivity
under a uniform gravitational field [16]:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ±(∂tv± + v± · ∇v±) + divS±(pg
±, v±, M±) = 0 in �±(t),

∂tM± + v± · ∇M± = M± · ∇v± in �±(t),

div v± = div M± = 0 in �±(t),

dt + v1∂1d + v2∂2d = v3 on T,

�v±� = 0, �S(pg
±, v±, M±)�ν = gd�ρ�ν on �(t),

v±|t=0 = v0±, M±|t=0 = M0± in �±(0),

d|t=0 = d0 on T.

(3.2)
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To investigate the RT instability in (3.2), we assume that �ρ� > 0. Then we call this model
the stratified MRT problem. Since the upper fluid is heavier than the lower fluid, the strati-
fied MRT problem may be unstable due to the RT instability. The initial-boundary problem
(3.2) admits an equilibrium-state solution with v = 0, p = const, M = M̄, and d = d̄, where
M̄ is a uniform magnetic field. Without loss of generality, we assume that d̄ = 0.

Let ζ and η be defined by (1.9) and η := ζ – y. Similarly to (1.10), using the additional
definition

B :=
(
M+(x, t)χ+ + M–(x, t)χ–

)|x=ζ (y,t),

the stratified MRT problem (3.2) in Lagrangian coordinates reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in �,

ρut + divASA(q, u) = λB · ∇AB in �,

Bt = B · ∇Au in �,

divAu = divAB = 0 in �,

�u� = 0, �SA(q, u)��n = λ�B · �nB� + g�ρ�η3�n on �,

u = 0 on �+
–,

(η, u, B)|t=0 = (η0, u0, B0) in �,

(3.3)

where we have defined

SA(q, u) := qI – μSA(u). (3.4)

The initial-boundary problem (3.3) admits an equilibrium-state solution with ζ = y, u = 0,
q = const, and B = M̄. To investigate the stability and instability of the initial-boundary
problem (3.3) around the equilibrium-state solution, as in Wang [24], we further assume
that

ζ0 = y, i.e., η0 = 0; (3.5)

then we have det(∇ζ±) = 1.
Next, we recall some conservation relations involving the magnetic field. Applying AT

to the magnetic induction equation (3.3)3 and using (1.15), we obtain

Aji∂tBj = AjiBkAkl∂luj = AjiBkAkl∂t(∂lζj) = –∂tAjiBkAkl∂lζj = –Bj∂tAji. (3.6)

This implies that

∂t
(
ATB

)
= 0. (3.7)

It then follows from (1.16), divA B = 0, and (3.7) that

∂t(divAB) = ∂tdiv
(
ATB

)
= 0 (3.8)
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and

∂t
(
B± · (A±e3)

)
= ∂t

(
eT

3 AT
±B±e3

)
= 0 on �. (3.9)

Hence by (3.5) we can derive from (3.7)–(3.9) that

ATB = M̄, divAB = 0 in � and B± · (A±e3) = M̄3 on �. (3.10)

The conservation analysis above reveals that the magnetic field B should have certain
relations with the flow map ζ . In turn, this motivates us to eliminate the magnetic field B
in the initial-boundary values problem (3.3). Indeed, since B = M̄ · ∇ζ by the first identity
in (3.10), we may rewrite the generalized Lorentz force term:

B · ∇AB = BjAjk∂kB = M̄k∂k(M̄i∂iζ ) = (M̄ · ∇)2ζ . (3.11)

Consequently, the initial-boundary values problem (3.3) can be reformulated as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in �,

ρut + divASA(q, u) = λ(M̄ · ∇)2η in �,

divAu = 0 in �,

�u� = 0, �SA(q, u)��n = λ�M̄3(M̄ · ∇)η� + g�ρ�η3�n on �,

u = 0 on �+
–,

(η, u)|t=0 = (η0, u0) in �.

(3.12)

We call this problem the transformed stratified MRT problem. The corresponding lin-
earized problem of the transformed stratified MRT problem reads as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ηt = u in �,

ρut – μ�u + ∇q – λ(M̄ · ∇)2η = 0 in �,

div u = 0 in �,

�u� = 0, �qI – μS(u)�e3 – λ�M̄3(M̄ · ∇)η� = g�ρ�η3e3 on �,

u = 0 on �+
–.

(3.13)

Let �1 := R
2 × (–l, m) and

Mc :=

√
�ρ�g

λ( 1
l + 1

m )
.

Wang [24] has proved that the linearized stratified MRT problem defined on �1 is stable
for M̄3 > Mc and unstable for M̄3 < Mc. Moreover, he also verified that the nonlinear
stratified MRT problem defined on �1 is also stable for M̄3 > Mc. The nonlinear stability
result shows that the magnetic fields can inhibit the development of RT instability. Of
course, Wang’s results also hold for the domain �.
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3.1 Main result
Before introducing our result, let us recall the derivation of the instability criterion. We
consider the following growing mode solutions to (3.13):

η(t, x) = η̃(x)e�t , u(t, x) = ũ(x)e�t , q(t, x) = q̃(x)e�t (3.14)

for some � > 0. Substituting the above ansatz into (3.13), we get an eigenvalue problem

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

�η̃ = ũ in �,

ρ�ũ – μ�ũ + ∇q̃ – λ(M̄ · ∇)2η̃ = 0 in �,

div ũ = 0 in �,

�ũ� = 0, �q̃I – μS(ũ)�e3 – λ�M̄3(M̄ · ∇)η̃� = g�ρ�η̃3e3 on �,

ũ = 0 on �+
–.

(3.15)

By using (3.15)1 we can eliminate η̃ and arrive at the following boundary-value problem
for blue(ũ, q̃):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�2ρũ – �μ�ũ + �∇q̃ – λ(M̄ · ∇)2ũ = 0 in �,

div ũ = 0 in �,

�ũ� = 0, �q̃I – �μS(ũ)�e3 – λ�M̄3(M̄ · ∇)ũ� = �ρ�gũ3e3 on �,

ũ = 0 on �+
–.

(3.16)

This boundary-value problem enjoys the following energy structure:

�2J(ũ) = E(ũ, s) := E0(ũ) – s�(ũ), (3.17)

where

E0(ũ) := g�ρ�|ũ3|20 – λ‖M̄ · ∇ũ‖2
0. (3.18)

Thus, similarly to the instability criterion of the linearized stratified VRT problem, we
easily get that if

0 < |M̄3| < Mc :=

√
√
√
√ sup

ũ∈H1
σ

g�ρ�|ũ3|20
λ‖M̄∗ · ∇ũ‖2

0
, (3.19)

then the linearized stratified MRT problem (3.13) is unstable, where M̄∗ := M̄/M̄3. In fact,
recently Jiang et al. have proved that under condition (3.19) or M̄3 = 0, the linearized strat-
ified MRT problem (3.13) is unstable from the well-known minimum potential energy
principle. Moreover, they also prove that

Mc = Mc; (3.20)

refer to [11, Lemma 4.5].
Finally, we introduce the largest growth rate of RT instability in the linearized stratified

MRT problem.
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Definition 3.1 We call � > 0 the largest growth rate of RT instability in the linearized
stratified MRT problem if it satisfies the following two conditions:

(1) For any classical solution (u,η) of the linearized stratified MRT problem with an
associated pressure q, we have, for any t ≥ 0,

∥
∥u(t)

∥
∥2

1 + ‖ut‖2
0 +

∫ t

0

∥
∥u(s)

∥
∥2

1 ds � e2�t(‖u0‖2
1 + I0

)
, (3.21)

∥
∥η(t)

∥
∥

1 � e�t(∥∥(u0,η0)
∥
∥

1 +
√

I0
)
, (3.22)

where I0 := ‖√ρut(0)‖2
0 – E0(u0).

(2) There exists a solution (u,η, q) of the linearized stratified MRT problem in the form

(u,η, q) := e�t(ũ, η̃, q̃),

where (ũ, η̃, q̃) ∈ H2 × H2 × H1.

In this paper, for M̄ := (0, 0,M), we further prove that the largest growth rate � in the lin-
earized stratified MRT problem decreases from a positive constant to 0 as |M̄3| increases
from 0 to Mc. More precisely, we have the following conclusion.

Theorem 3.1 Let g , μ, ρ , and M̄ := (0, 0,M) be given. We further assume that �ρ� > 0 and
|M| < Mc. Then there exists a largest growth rate � > 0 (see Definition 3.1) such that there
exists an unstable solution to the linearized stratified MRT problem (3.12) of the form

(u,η, q) := e�t(ũ, ũ/�, q̃),

where (ũ, q̃) ∈ (H1
σ ∩ H∞) × H∞ solves the boundary value problem (3.16). Moreover, for

given g , μ, and ρ , we can regard �M := � as a function of M ∈ (–Mc,Mc), which enjoys
the following properties:

�M = �–M, (3.23)

�M strictly decreases on [0,Mc), �M ∈ C0(–Mc,Mc), (3.24)

�M ≤ λ
(
M2

c – M2)/ min{μ–,μ+}. (3.25)

We can follow the argument of Theorem 1.1 to derive Theorem 3.1. The detailed proof
of Theorem 3.1 is provided in the next subsection.

3.2 Proof of Theorem 3.1
Next, we follow the argument of Theorem 1.1 to prove Theorem 3.1. To begin with, we
modify (3.16) as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

ρβ(s)w̃ – sμ�w̃ + s∇q̃ – λM2∂2
3 w̃ = 0 in �,

div w̃ = 0 in �,

�w̃� = 0, �q̃I – sμS(w̃)�e3 – λM2 �∂3w̃� = �ρ�gw̃3e3 on �,

w̃ = 0 on �+
–.

(3.26)
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Then we can look for (β(s), w̃) from the variational problem

β(s) = sup
ũ∈A

E(ũ, s) ∈R. (3.27)

More precisely, we have the following conclusions.

Lemma 3.1 Under the assumptions of Theorem 3.1, for any but fixed s > 0, the following
assertions are valid.

(1) In the variational problem (3.27), E(ũ) achieves its supremum on A.
(2) Let ũ0 be a maximizer, and let β :=

√
supũ∈A E(ũ). Then there exists a pressure

function q̃0 associated with ũ0 such that the triple (ũ0, q̃0,β) satisfies the boundary
problem (3.26). Moreover, (ũ0, q̃0) ∈ (H1

σ ∩ H∞) ∩ H∞.

Proof (1) Following the argument of the first assertion of Lemma 2.1, we can easily get the
first conclusion.

(2) To prove the second assertion, we notice that since E(ũ) and J(ũ) are homogeneous
of degree 2, (3.27) is equivalent to

β = sup
w∈H1

σ

E(w)
J(w)

. (3.28)

For any given τ ∈R and w ∈ H1
σ , we take w̃ := ũ0 + τw. Then (3.28) implies

E(w̃) – βJ(w̃) ≤ 0.

If we set I(τ ) = E(w̃) – βJ(w̃), then we see that I(τ ) ∈ C1(R), I(τ ) ≤ 0 for all τ ∈ R, and
I(0) = 0. This implies I ′(0) = 0. Hence a direct computation leads to

β

∫

ρũ0 · w dy + λM2
∫

∂3ũ0 · ∂3w dy +
s
2

∫

μS(ũ0) : S(w) dy

= g�ρ�

∫

�

ũ03w3 dyh. (3.29)

Noting that

∫

∇ũT
0 : ∇ũ0 dy = 0

due to div ũ0 = 0, (3.29) can be rewritten as follows:

β

∫

ρũ0 · w dy +
∫

(
sμ + λM2)S(ũ0) : ∇w dy

= λM2
∫

(∂1ũ0 · ∂1w + ∂2ũ0 · ∂2w) dy + g�ρ�

∫

�

ũ03w3 dyh,

which implies that ũ0 ∈ H1 is a weak solution to the boundary problem (3.26). Next, we
further improve the regularity of ũ.
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Noting that

‖v‖2
1 � λ‖M∂3v‖2

0 + s�(v) for any v ∈ H1
0 ,

we deduce from the weak form of (3.26) that ∂hũ0 ∈ H1
0 by the standard difference quotient

method (refer to the derivation of (3.32) in [25]), and thus we further get that ũ0 ∈ H3/2(�)
by the trace theorem.

Now we consider the following stratified steady Stokes problem:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–(sμ + λM2)�ũ + s∇q̃ = H in �,

div ũ = 0 in �,

�ũ� = 0, �sq̃I – (sμ + λM2)S(ũ)�e3 = F on �,

ũ = 0, η̃ = 0 on �+
–.

(3.30)

It follows from the classical regularity of stratified steady Stokes problem in [24, Lemma
A.8] that, if H ∈ Hm and F ∈ Hm+1/2 for m ≥ 0, then there exists a unique solution (ũ, q) ∈
Hm+2 × Hm+1 to (3.30) such that

‖ũ‖m+2 + ‖∇q̃‖m +
∣
∣�q̃�

∣
∣
m+1/2 � ‖H‖m + |F |m+1/2.

Let H = –β(s)ρũ0 – λM2(∂2
1 + ∂2

2 )ũ0 and F = g�ρ�ũ03e3 ∈ H1/2. Since ũ0 ∈ H3/2(�) and
∂hũ0 ∈ H1

0 , we have H ∈ L2 and F ∈ H1/2. Then, by the above regularity result, there exists
a solution (ũ, q) ∈ H2 × H1 to (3.30). Since ũ0 is a weak solution to (3.30), we can easily
check that ũ0 = ũ ∈ H2.

Consequently, following the above argument and a standard bootstrap method of im-
proving the regularity, we can easily see that (ũ0, q̃0) ∈ (H1

σ ∩ H∞) × H∞. This completes
the proof. �

To prove that there is a fixed point � such that � =
√

β(�) > 0, we further give some
properties of β(s) with respect to s > 0.

Lemma 3.2 Under the assumptions of Theorem 3.1, the function β(s) defined on (0,∞)
enjoys the following properties:

(1) β(s) ∈ C0,1
loc(0,∞) is strictly decreasing in the variable s.

(2) There are constants c1, c2 > 0, which depend on g , ρ , M, and μ, such that

β(s) ≥ c1 – c2s. (3.31)

Proof (1) Following the argument of the first assertion of Lemma 2.2, we can easily get the
first conclusion.

(2) If M �= 0, by (3.20) we can deduce from the instability condition |M| < Mc that

|M| <

√
√
√
√ sup

ũ∈H1
σ

g�ρ�|ũ3|20
λ‖∂3ũ‖2

0
.
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Then we have that

there there exists ũ ∈ H1
σ such that g�ρ�|ũ3|20 – λ‖M∂3ũ‖2

0 > 0. (3.32)

If M = 0, then obviously (3.32) also holds. Consequently, we have

β(s) = sup
w∈A

E(w, s) = sup
w∈H1

σ

E(w, s)
J(w)

≥ E0(ũ)
∫

ρ|ũ|2 dy
–

s‖√μS(ũ)‖2
0/2

∫
ρ|ũ|2 dy

:= c1 – sc2

for two positive constants c1 := c1(g,ρ, M̄) and c2 := c2(μ,ρ). This completes the proof of
Lemma 3.2. �

Next, we prove that there exists a pair of functions (ũ, q̃) satisfying (3.16) with growth
rate � by a fixed-point argument.

Let

G := sup
{

s|β(τ ) > 0 for any τ ∈ (0, s)
}

. (3.33)

By Lemma 3.2, G > 0; moreover, β(s) > 0 for any s < G . Since β(s) = supũ∈A E(ũ, s) < ∞,
using the monotonicity of β(s), we see that

lim
s→0

β(s) exists, and the limit is a positive constant. (3.34)

By (2.1) and Korn’s inequality there are two constants c3 and c4, depending on the do-
main � and other known physical parameters, such that

g�ρ�|ũ3|20 ≤ c3‖ũ‖2
1 for any ũ ∈A

and

‖ũ‖2
1 ≤ c4

∥
∥S(ũ)

∥
∥2

0/2 for any ũ ∈ H1
0 .

Thus, if s > c3c4/ min{μ–,μ+}, then

g�ρ�|ũ3|20 –
(

λ‖M̄ · ∇ũ‖2
0 +

1
2
∥
∥√

sμS(ũ)
∥
∥2

0

)

≤ g�ρ�|ũ3|20 –
1
2
∥
∥√

sμS(ũ)
∥
∥2

0

≤
(

c3 –
s min{μ–,μ+}

c4

)

‖ũ‖2
1 < 0 for any ũ ∈A,

which implies that

β(s) ≤ 0 for any s > c3c4/ min{μ–,μ+}.
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Hence G < ∞. Moreover,

lim
s→G

β(s) = 0. (3.35)

Similarly to Lemma 2.3, using (3.33)–(3.35) and the continuity of β(s) on (0,G), we can
deduce that there exists a unique � ∈ (0,G) such that

� =
√

β(�) =
√

sup
w̃∈A

E(w̃,�) > 0. (3.36)

By Lemma 3.1 there is a solution (ũ, q̃) ∈ (H1
σ ∩ H∞) × H∞ to problem (3.16) with �

constructed in (3.36). Moreover, �2 = E(ũ,�), ũ3 �= 0 in �, and ũ3 �= 0 on � by (3.36). Since
div ũ = 0 and ũ|�+– = 0, we immediately get ũ2

1 + ũ2
2 �= 0. In addition, similarly to Proposition

2.1, we can also verify that � > 0 is the largest growth rate of RT instability in the linearized
stratified MRT problem. Thus we have the following conclusion.

Proposition 3.1 Under the assumptions of Theorem 3.1, there exists a pair of functions
(ũ, q̃) ∈ (H1

σ ∩ H∞) × H∞ satisfying the boundary problem (3.16) with a largest growth rate
� > 0 constructed by (3.36). Moreover, ‖ũ3‖0‖(ũ1, ũ2)‖0|ũ3|0 > 0.

To emphasize the dependence of β(s), �, and G upon M, we will denote them by
β(s,M), �M, and GM, respectively. Obviously, we have �M = �–M. To complete the
proof of Theorem 3.1, we further derive (3.24)–(3.25). To this end, we need the following
auxiliary conclusions.

Lemma 3.3 Let g , μ, and ρ be given. We further assume that �ρ� > 0. The following asser-
tions hold:

(1) Strict monotonicity: if 0 ≤M1 < M2, then

β(s,M2) < β(s,M1). (3.37)

for any given s > 0. Moreover,

GM1 > GM2 , (3.38)

where

GMi := sup
{

s ∈ R|β(τ ,Mi) > 0 for any τ ∈ (0, s)
}

and β(GMi ,Mi) = 0.

(3.39)

(2) Continuity: for given s > 0, β(s,M) ∈ C0,1
loc[0,Mc) with respect to the variable M.

(3) Estimate for GM: GM ≤ λ(M2
c – M2)/min{μ–,μ+}, where M is a constant.

Proof (1) Let s > 0 fixed, and let 0 ≤M1 < M2. Then by Lemma 3.1 there exist functions
ũMi ∈ H∞ ∩A, i = 1, 2, such that |ũMi |0 �= 0 and

β(s,κi) = �
(
ũMi)

– λ
∥
∥Mi∂3ũMi∥∥2

0,
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where �(ũMi ) := g�ρ�|ũMi
3 |20 – s‖√μS(ũMi )‖2

0/2, and ũMi
3 denotes the third component

of ũMi . By (3.19) and (3.20) we have

0 <
∣
∣ũMi ∣∣2

0 �
∥
∥Mi∂3ũMi∥∥2

0, i = 1, 2,

and thus

β(s,M2) ≤ β(s,M1) + λ
(
M2

1 – M2
2
)
∫

∣
∣∂3ũM2

∣
∣2 dy < β(s,M1).

This yields the desired conclusion (3.37). Following the argument of (2.18), we easily get
(3.38).

(2) Let s > 0 be fixed. We choose bounded intervals [b3, b4] ⊂ (0,∞) and [b5, b6] ⊂
[0,Mc) such that s ∈ [b3, b4]. Then, for a given constant s > 0 and any M ∈ [b5, b6], there
is a function w̃κ ∈ A satisfying β(s, M) = �(w̃M) – λ‖M∂3w̃M‖2

0. Thus, in view of the
monotonicity of β(s,M), we know that

β(b4, b6) + b3�
(
w̃M)

/2 ≤ β(b4,M) + b3�
(
w̃M)

/2 ≤ E0
(
w̃M)

– (s/2)�
(
w̃M)

≤ β(s/2,M) ≤ β(b3/2,M) ≤ β(b3/2, b5),

which, together with Korn’s inequality, yields

∥
∥∂3w̃M∥

∥2
0 ≤ c

2
∥
∥S

(
w̃M)∥

∥2
0 ≤ c

min{μ–,μ+}�
(
w̃M)

≤ 2
(
β(b3/2, b5) – β(b4, b6)

) c
b3 min{μ–,μ+} := K ′ for any M ∈ [b5, b6].

Thus, for any M1, M2 ∈ [b5, b6],

β(s,M1) – β(s,M2) ≤ �
(
w̃M1

)
– λ

∥
∥M1∂3w̃M1

∥
∥2

0 –
(
�

(
w̃M1

)
– λ

∥
∥M2∂3w̃M1

∥
∥2

0

)

≤ λK ′|M2 + M1||M2 – M1|.

Reversing the role of the indices 1 and 2 in the derivation of the above inequality, we obtain
the same boundedness with the indices switched. Therefore, we deduce that

∣
∣β(s,M1) – β(s,M2)

∣
∣ ≤ λK ′|M2 + M1||M1 – M2|,

which yields β(s,M) ∈ C0,1
loc[0,Mc).

(3) Recalling the definition of Mc, we see that

g�ρ�|w̃3|20 ≤ λ‖Mc∂3w̃‖2
0 for any w̃ ∈A.

By Lemma 3.1, for any given M, there exists a nonzero function w̃M ∈A∩ H∞ such that

β(s,M) = g�ρ�
∣
∣w̃M

3
∣
∣2
0 – λ

∥
∥M∂3w̃M∥

∥2
0 –

s
2
∥
∥√

μS
(
w̃M)∥

∥2
0.

Moreover,

∥
∥S

(
w̃M)∥

∥2
0 = 2

∥
∥w̃M∥

∥2
0.
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Thus

β(s,M) ≤ (
λ
(
M2

c – M2) – s min{μ–,μ+})∥∥∂3w̃M∥
∥2

0.

Thus, if β(s,M) ≥ 0, then

s ≤ λ
(
M2

c – M2)/ min{μ–,μ+}.

This means that GM ≤ λ(M2
c – M2)/ min{μ–,μ+} by the definition of GM in (3.39). This

completes the proof. �

Now we are in position to show the properties (3.24) and (3.25) of �M by three steps.
First, by the first assertion in Lemma 3.3 we can follow the argument of (2.20) to get the

conclusion that, for given two constants M1 and M2 satisfying 0 ≤ M1 < M2 < Mc, it
holds that

�M1 > �M2 for 0 ≤M1 < M2. (3.40)

Second, by the monotonicity of �M with regard to M and the monotonicity of α(s,M)
we can follow the argument of (2.21) to get that �M ∈ C0[0,Mc). Since �M = �–M, we
also have �M ∈ C0(–Mc, 0]. Thus we have

�M ∈ C0(–Mc,Mc). (3.41)

Third, noting that �M ∈ (0,GM), we immediately get

�M ≤ λ
(
M2

c – M2)/ min{μ–,μ+} (3.42)

by the third conclusion in Lemma 3.3. Consequently, we complete the proof of Theo-
rem 3.1 from (3.40)–(3.42) and Proposition 3.1.

4 Conclusion
In this paper, we prove that, if κ < κc, then there exists an unstable solution to the lin-
earized stratified VRT problem with a largest growth rate. Moreover, the largest growth
rate decreases from a positive constant to 0 as κ increases from 0 to κc. Moreover, we fur-
ther extend the obtained results in the linearized stratified VRT problem to the linearized
stratified MRT problem.
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