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Abstract
In the present paper, we study a new type of Bernstein operators depending on the
parameter λ ∈ [–1, 1]. The Kantorovich modification of these sequences of linear
positive operators will be considered. A quantitative Voronovskaja type theorem by
means of Ditzian–Totik modulus of smoothness is proved. Also, a Grüss–Voronovskaja
type theorem for λ-Kantorovich operators is provided. Some numerical examples
which show the relevance of the results are given.
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1 Introduction
In 1912, Bernstein [10] defined the Bernstein polynomials in order to prove Weierstrass’s
fundamental theorem. The Bernstein polynomials have many notable approximation
properties, which made them an area of intensive research. For more details on this topic,
we can refer the readers to excellent monographs [17] and [16]. The Bernstein operators
are given by

Bn : C[0, 1] → C[0, 1], Bn(f ; x) =
n∑

k=0

f
(

k
n

)
bn,k(x), (1)

where

bn,k(x) =
(

n
k

)
xk(1 – x)n–k , x ∈ [0, 1].

Very recently, Cai et al. [11] introduced and considered a new generalization of Bernstein
polynomials depending on the parameter λ as follows:

Bn,λ(f ; x) =
n∑

k=0

b̃n,k(λ; x)f
(

k
n

)
, (2)

where λ ∈ [–1, 1] and b̃n,k , k = 0, 1, . . . , are defined below:

b̃n,0(λ; x) = bn,0(x) –
λ

n + 1
bn+1,1(x),
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b̃n,k(λ; x) = bn,k(x) + λ

(
n – 2k + 1

n2 – 1
bn+1,k(x) –

n – 2k – 1
n2 – 1

bn+1,k+1(x)
)

,

b̃n,n(λ; x) = bn,n(x) –
λ

n + 1
bn+1,n(x).

In the particular case, when λ = 0, λ-Bernstein operators reduce to the well-known
Bernstein operators. The authors of [11] have deeply studied many approximation prop-
erties of λ-Bernstein operators such as uniform convergence, rate of convergence in terms
of modulus of continuity, Voronovskaja type pointwise convergence, and shape preserving
properties.

The classical Kantorovich operators are the integral modification of Bernstein operators
so as to approximate Riemann integrable functions defined on the interval [0, 1]. These
operators were introduced by Kantorovich [18] and attracted the interest of and were
studied by a number of authors. Özarslan and Duman [19] considered modified Kan-
torovich operators and showed that the order of approximation to a function by these
operators is at least as good as that of the ones classically used. Dhamija and Deo [13]
introduced a King type modification of Kantorovich operators and proved that the error
estimation of these operators is better than that of the classical operators. Inequalities for
the Kantorovich type operators in terms of moduli of continuity were studied in [6]. In
the last years, transferring of approximation by linear positive operators to the q-calculus
has been an active area of research. We mention here the papers [3, 5, 7, 9, 12] where q-
analogue of Kantorovich type operators was introduced and convergence theorems and
Voronovskaja type results were proved. Our aim of this paper is to study approximation
properties and asymptotic type results concerning the Kantorovich variant of λ-Bernstein
operators, namely

Kn,λ(f ; x) = (n + 1)
n∑

k=0

b̃n,k(x)
∫ k+1

n+1

k
n+1

f (t) dt. (3)

2 Preliminary results
In this section by direct computation we give the moments of the λ-Kantorovich opera-
tors. Also, the central moments and upper bounds of them are calculated.

Lemma 2.1 The λ-Kantorovich operators verify
(i) Kn,λ(e0; x) = 1;

(ii) Kn,λ(e1; x) = x + 1
2 · 1–2x

n+1 + 1–2x+xn+1–(1–x)n+1

n2–1 λ;
(iii) Kn,λ(e2; x) = x2 – 1

3 · 9nx2–6nx+3x2–1
(n+1)2 + 2(–2x2n+xn+1n+xn+xn+1–x)λ

(n–1)(n+1)2 ;

(iv) Kn,λ(e3; x) = x3 – 24n2x3–18n2x2+4nx3+18nx2+4x3–14nx–1
4(n+1)3 + λ

2(n+1)3(n–1) · (–12n2x3 + 6n2x2 +
12x3n + 6xn+1n2 – 30x2n + 12xn+1n + 6xn + 7xn+1 – (1 – x)n+1 – 8x + 1);

(v) Kn,λ(e4; x) = 1
5(n+1)4 {5n5x4 – 30n3x4 + 40n3x3 + 55n2x4 – 120n2x3 – 30nx4 + 75n2x2 +

80nx3 – 75nx2 + 30nx + 1} + 2λ

(n–1)(n+1)4 {–4n3x4 + 2n3x3 + 12n2x4 – 24n2x3 – 8x4n +
2xn+1n3 + 6n2x2 + 22x3n + 6xn+1n2 – 24x2n + 7xn+1n + 3xn + 3xn+1 – 3x}.

Lemma 2.2 The central moments of λ-Kantorovich operators are given below:
(i) Kn,λ(t – x; x) = 1–2x

2(n+1) + λ(1–2x+xn+1–(1–x)n+1)
n2–1 ;

(ii) Kn,λ((t – x)2; x) = 3x(1–x)(n–1)+1
3(n+1)2 + 2λx(1–x)

(n–1)(n+1)2 {[(1 – x)n + xn](n + 1) – 2}.
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Lemma 2.3 The central moments of λ-Kantorovich operators verify

∣∣Kn,λ(t – x; x)
∣∣ ≤ μ(n,λ) and

∣∣Kn,λ
(
(t – x)2; x

)∣∣ ≤ ν(n,λ),

where μ(n,λ) = 1
2(n+1) + |λ|

n2–1 and ν(n,λ) = 3n+4
12(n+1)2 + |λ|

2(n2–1) for n > 2.

Lemma 2.4 The λ-Kantorovich operators verify:
(i) limn→∞ nKn,λ(t – x; x) = 1–2x

2 ;
(ii) limn→∞ nKn,λ((t – x)2; x) = x(1 – x);

(iii) limn→∞ n2Kn,λ((t – x)4; x) = 3x2(1 – x)2;
(iv) limn→∞ n3Kn,λ((t – x)6; x) = 15x3(1 – x)3.

3 Convergence properties of Kn,λ

In this section we investigate the approximation properties of these operators, and we
estimate the rate of convergence by using moduli of continuity.

Theorem 3.1 If f ∈ C[0, 1], then

lim
n→∞ Kn,λ(f ; x) = f (x) uniformly on [0, 1].

Proof Using Lemma 2.1 gives that

lim
n→∞ Kn,λ(ek ; x) = ek(x) uniformly on [0, 1] for k ∈ {0, 1, 2}.

Applying the Bohmann–Korovkin theorem, we get the result. �

Theorem 3.2 If g ∈ C[0, 1], then

∣∣Kn,λ(g; x) – g(x)
∣∣ ≤ 2ω

(
g;

√
ν(n;λ)

)
,

where ω is the usual modulus of continuity.

Proof Using the following property of modulus of continuity

∣∣g(t) – g(x)
∣∣ ≤ ω(g; δ)

(
(t – x)2

δ2 + 1
)

,

we obtain

∣∣Kn,λ(g; x) – g(x)
∣∣ ≤ Kn,λ

(∣∣g(t) – g(x)
∣∣; x

) ≤ ω(g; δ)
(

1 +
1
δ2 Kn,λ

(
(t – x)2; x

))
.

So, if we choose δ =
√

ν(n;λ), we have the desired result. �

Theorem 3.3 If g ∈ C1[0, 1], then

∣∣Kn,λ(g; x) – g(x)
∣∣ ≤ μ(n;λ)

∣∣g ′(x)
∣∣ + 2

√
ν(n;λ)ω

(
g ′,

√
ν(n;λ)

)
.
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Proof Let g ∈ C1[0, 1]. For any x, t ∈ [0, 1], we have

g(t) – g(x) = g ′(x)(t – x) +
∫ t

x

(
g ′(y) – g ′(x)

)
dy,

so we get

Kn,λ
(
g(t) – g(x); x

)
= g ′(x)Kn,λ(t – x; x) + Kn,λ

(∫ t

x

(
g ′(y) – g ′(x)

)
dy; x

)
.

Using the following well-known property of modulus of continuity

∣∣g(y) – g(x)
∣∣ ≤ ω(g; δ)

( |y – x|
δ

+ 1
)

, δ > 0,

we have
∣∣∣∣
∫ t

x

∣∣g ′(y) – g ′(x)
∣∣dy

∣∣∣∣ ≤ ω
(
g ′; δ

)[ (t – x)2

δ
+ |t – x|

]
.

Therefore,

∣∣Kn,λ(g; x) – g(x)
∣∣ ≤ ∣∣g ′(x)

∣∣ · ∣∣Kn,λ(t – x; x)
∣∣

+ ω
(
g ′; δ

){1
δ

Kn,λ
(
(t – x)2; x

)
+ Kn,λ

(|t – x|; x
)}

.

Using the Cauchy–Schwarz inequality, we obtain

∣∣Kn,λ(g; x) – g(x)
∣∣ ≤ ∣∣g ′(x)

∣∣∣∣Kn,λ(t – x; x)
∣∣

+ ω
(
g ′, δ

){1
δ

√
Kn,λ

(
(t – x)2; x

)
+ 1

}√
Kn,λ

(
(t – x)2; x

)

≤ ∣∣g ′(x)
∣∣μ(n;λ) + ω

(
g ′, δ

) ·
{

1
δ

√
ν(n;λ) + 1

}√
ν(n;λ).

Choosing δ =
√

ν(n;λ), we find the desired inequality. �

In order to give the next result, we recall the definition of K-functional:

K2(g, δ) := inf
{‖g – h‖ + δ

∥∥h′′∥∥ : h ∈ W 2[0, 1]
}

,

where

W 2[0, 1] =
{

h ∈ C[0, 1] : h′′ ∈ C[0, 1]
}

,

δ ≥ 0 and ‖ · ‖ is the uniform norm on C[0, 1]. The second order modulus of continuity is
defined as follows:

ω2(g,
√

δ) = sup
0<h≤√

δ

sup
x,x+2h∈[0,1]

{∣∣g(x + 2h) – 2g(x + h) + g(x)
∣∣}.
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It is well known that K-functional and the second order modulus of continuity ω2(g,
√

δ)
are equivalent, namely

K2(g, δ) ≤ Cω2(g,
√

δ), (4)

where δ ≥ 0 and C > 0.

Theorem 3.4 If g ∈ C[0, 1], then

∣∣Kn,λ(g; x) – g(x)
∣∣ ≤ Cω2

(
g,

1
2
√

ν(n;λ) + μ2(n,λ)
)

+ ω
(
g,μ(n;λ)

)
,

where C is a positive constant.

Proof Denote εn,λ(x) = x + 1
2 · 1–2x

n+1 + 1–2x+xn+1–(1–x)n+1

n2–1 λ and

K̃n,λ(g; x) = Kn,λ(g; x) + g(x) – g
(
εn,k(x)

)
. (5)

It follows immediately

K̃n,λ(e0; x) = Kn,λ(e0; x) = 1, K̃n,λ(e1; x) = Kn,λ(e1; x) + x – εn,λ(x) = x.

Applying K̃n,λ to Taylor’s formula, we get

K̃n,λ(h; x) = h(x) + K̃n,λ

(∫ t

x
(t – y)h′′(y) dy; x

)
.

Therefore

K̃n,λ(h; x) = h(x) + Kn,λ

(∫ t

x
(t – y)h′′(y) dy; x

)
–

∫ εn,k (x)

x

(
εn,k(x) – y

)
h′′(y) dy.

This implies that

∣∣K̃n,λ(h; x) – h(x)
∣∣ ≤

∣∣∣∣Kn,λ

(∫ t

x
(t – y)h′′(y) dy; x

)∣∣∣∣ +
∣∣∣∣
∫ εn,λ(x)

x

(
εn,λ(x) – y

)
h′′(y) dy

∣∣∣∣

≤ Kn,λ
(
(t – x)2; x

)∥∥h′′∥∥ +
(
εn,λ(x) – x

)2∥∥h′′∥∥

≤ [
ν(n;λ) + μ2(n;λ)

]∥∥h′′∥∥.

In view of (5) we obtain

∣∣K̃n,λ(g; x)
∣∣ ≤ ∣∣Kn,λ(g; x)

∣∣ +
∣∣g(x)

∣∣ +
∣∣g

(
εn,λ(x)

)∣∣ ≤ 3‖g‖. (6)

Now, for g ∈ C[0, 1] and h ∈ W 2[0, 1], using (5) and (6) we get

∣∣Kn,λ(g; x) – g(x)
∣∣

=
∣∣K̃n,λ(g; x) – g(x) + g

(
εn,λ(x)

)
– g(x)

∣∣
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≤ ∣∣K̃n,λ(g – h; x)
∣∣ +

∣∣K̃n,λ(h; x) – h(x)
∣∣ +

∣∣h(x) – g(x)
∣∣ +

∣∣g
(
εn,λ(x)

)
– g(x)

∣∣

≤ 4‖g – h‖ +
[
ν(n,λ) + μ2(n,λ)

]∥∥h′′∥∥ + ω
(
g,μ(n,λ)

)
.

Taking the infimum on the right-hand side over all h ∈ W 2[0, 1], we have

∣∣Kn,λ(g; x) – g(x)
∣∣ ≤ 4K2

(
g,

1
4
(
ν(n,λ) + μ2(n,λ)

))
+ ω

(
g,μ(n;λ)

)
.

Finally, using the equivalence between K-functional and the second order modulus of con-
tinuity (4), the proof is completed. �

4 Voronovskaja type theorems
In the following we prove a quantitative Voronovskaja type theorem for the operator Kn,λ

by means of the Ditzian–Totik modulus of smoothness defined as follows:

ωφ(g; t) = sup
0<h≤t

{∣∣∣∣g
(

x +
hφ(x)

2

)
– g

(
x –

hφ(x)
2

)∣∣∣∣, x ± hφ(x)
2

∈ [0, 1]
}

, (7)

where φ(x) =
√

x(1 – x) and g ∈ C[0, 1]. The corresponding K-functional of the Ditzian–
Totik first order modulus of smoothness is given by

Kφ(g; t) = inf
h∈Wφ [0,1]

{∣∣|g – h|∣∣ + t
∣∣∣∣φh′∣∣∣∣} (t > 0), (8)

where Wφ[0, 1] = {h : h ∈ ACloc[0, 1],‖φh′‖ < ∞} and ACloc[0, 1] is the class of abso-
lutely continuous functions on every interval [a, b] ⊂ [0, 1]. Between K-functional and
the Ditzian–Totik first order modulus of smoothness, there is the following relation:

Kφ(g; t) ≤ Cωφ(g; t), (9)

where C > 0 is a constant.

Theorem 4.1 For any g ∈ C2[0, 1] and n sufficiently large, the following inequality holds:

∣∣Kn,λ(g; x) – g(x) – An(x;λ)g ′(x) – Bn(x;λ)g ′′(x)
∣∣ ≤ 1

n
Cφ2(x)ωφ

(
g ′′, n–1/2),

where

An(x;λ) =
(1 – 2x)(n – 1 + 2λ)

2(n2 – 1)
+ λ

xn+1 – (1 – x)n+1

n2 – 1
;

Bn(x;λ) =
3x(1 – x)(n – 1) + 1

6(n + 1)2 +
λx(1 – x)

(n – 1)(n + 1)2

{[
(1 – x)n + xn](n + 1) – 2

}

and C is a positive constant.

Proof For g ∈ C2[0, 1], t, x ∈ [0, 1], by Taylor’s expansion, we have

g(t) – g(x) = (t – x)g ′(x) +
∫ t

x
(t – y)g ′′(y) dy.
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Hence

g(t) – g(x) – (t – x)g ′(x) –
1
2

(t – x)2g ′′(x) =
∫ t

x
(t – y)g ′′(y) dy –

∫ t

x
(t – y)g ′′(x) dy

=
∫ t

x
(t – y)

[
g ′′(y) – g ′′(x)

]
dy.

Applying Kn,λ(·; x) to both sides of the above relation, we get

∣∣Kn,λ(g; x) – g(x) – An(x;λ)g ′(x) – Bn(x;λ)g ′′(x)
∣∣

≤ Kn,λ

(∣∣∣∣
∫ t

x
|t – y|

∣∣∣∣g
′′(y) – g ′′(x)|dy|; x

)
. (10)

The quantity | ∫ t
x |g ′′(y) – g ′′(x)||t – y|dy| was estimated in [15, p. 337] as follows:

∣∣∣∣
∫ t

x

∣∣g ′′(y) – g ′′(x)
∣∣|t – y|dy

∣∣∣∣ ≤ 2
∥∥g ′′ – h

∥∥(t – x)2 + 2
∥∥φh′∥∥φ–1(x)|t – x|3, (11)

where h ∈ Wφ[0, 1].
Using Lemma 2.4 it follows that there exists a constant C > 0 such that, for n sufficiently

large,

Kn,λ
(
(t – x)2; x

) ≤ C
2n

φ2(x) and Kn,λ
(
(t – x)4; x

) ≤ C
2n2 φ4(x). (12)

From (10)–(12) and applying the Cauchy–Schwarz inequality, we get

∣∣Kn,λ(g; x) – g(x) – An(x;λ)g ′(x) – Bn(x;λ)g ′′(x)
∣∣

≤ 2
∥∥g ′′ – h

∥∥Kn,λ
(
(t – x)2; x

)
+ 2

∥∥φh′∥∥φ–1(x)Kn,λ
(|t – x|3; x

)

≤ C
n

φ2(x)
∥∥g ′′ – h

∥∥ + 2
∥∥φh′∥∥φ–1(x)

{
Kn,λ(t – x)2; x

}1/2{Kn,λ
(
(t – x)4; x

)}1/2

≤ C
n

φ2(x)
∥∥g ′′ – h

∥∥ + φ2(x)
C

n
√

n
∥∥φh′∥∥ ≤ C

n
φ2(x)

{∥∥g ′′ – h
∥∥ + n–1/2∥∥φh′∥∥}

.

Taking the infimum on the right-hand side of the above relations over h ∈ Wφ[0, 1], the
theorem is proved. �

Corollary 4.1 If g ∈ C2[0, 1], then

lim
n→∞ n

{
Kn,λ(g; x) – g(x) – An(x;λ)g ′(x) – Bn(x;λ)g ′′(x)

}
= 0,

where An(x;λ) and Bn(x;λ) are defined in Theorem 4.1.

Using the least concave majorant of the modulus of continuity, a Grüss inequality for
the positive linear operators was obtained in [4]. This result generated a great deal of in-
terest after its publication. Acar et al. [2] gave a Grüss type approximation theorem and
a Grüss–Voronovskaja type theorem for a class of sequences of linear positive operators.
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A significant contribution in this direction has been made by many authors, we refer the
readers to [1, 8, 14, 20].

Next, we will provide a Grüss–Voronovskaja type theorem for λ-Kantorovich operators.

Theorem 4.2 Let f , g ∈ C2[0, 1]. Then, for each x ∈ [0, 1],

lim
n→∞ n

{
Kn,λ

(
(fg); x

)
– Kn,λ(f ; x)Kn,λ(g; x)

}
= f ′(x)g ′(x)x(1 – x).

Proof The following relation holds:

Kn,λ
(
(fg); x

)
– Kn,λ(f ; x)Kn,λ(g; x)

= Kn,λ
(
(fg); x

)
– f (x)g(x) – (fg)′(x)An(x;λ) – (fg)′′(x)Bn(x;λ)

– g(x)
{

Kn,λ(f ; x) – f (x) – f ′(x)An(x;λ) – f ′′(x)Bn(x;λ)
}

– Kn,λ(f ; x)
{

Kn,λ(g; x) – g(x) – g ′(x)An(x;λ) – g ′′(x)Bn(x;λ)
}

+ Bn(x;λ)
{

f (x)g ′′(x) + 2f ′(x)g ′(x) – g ′′(x)Kn,λ(f ; x)
}

+ An(x;λ)
{

f (x)g ′(x) – g ′(x)Kn,λ(f ; x)
}

.

Now, by using Theorem 3.1 and Corollary 4.1, we get

lim
n→∞ n

{
Kn,λ

(
(fg); x

)
– Kn,λ(f ; x)Kn,λ(g; x)

}

= lim
n→∞ 2nf ′(x)g ′(x)Bn(x;λ) + lim

n→∞ ng ′′(x)
{

f (x) – Kn,λ(f ; x)
}

Bn(x;λ)

+ lim
n→∞ ng ′(x)

{
f (x) – Kn,λ(f ; x)

}
An(x;λ) = f ′(x)g ′(x)x(1 – x). �

5 Numerical results
In this section we will analyze the theoretical results presented in the previous sections by
numerical examples.

Example 1 Let λ = 0.3, f (x) = cos(2πx) + 2 sin(πx) and En,λ(f ; x) = |f (x) – Kn,λ(f ; x)| be the
error function of λ-Kantorovich operators. In Fig. 1 the graphs of function f and opera-
tor Kn,λ for n = 20, n = 50, and n = 100 are given, respectively. This example explains the
convergence of the operators Kn,λ that are going to the function f if the values of n are
increasing. Also, the error of approximation is illustrated in Fig. 2.

Example 2 For λ = 1, the convergence of λ-Kantorovich operators to f (x) = sin(2πx) is
illustrated in Fig. 3. Also, for n = 20, 50, 100, the error functions En,λ are given in Fig. 4.

Example 3 For λ = –1, the convergence of λ-Kantorovich operators to f (x) = (x –
1
4 ) sin(2πx) is illustrated in Fig. 5. Also, for n = 20, 50, 100, the error functions En,λ are
given in Fig. 6.

Example 4 Let f (x) = (x – 1
4 )(x – 1

2 )(x – 3
8 ) and n = 10. In Fig. 7, we give the graphs of error

functions for λ = –1, 0, 1. We can see that in this special case the error for λ-Kantorovich
operators K10,λ,λ = –1, 1, is smaller than for K10,0, that is the classical Kantorovich opera-
tor.
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Figure 1 Approximation process

Figure 2 Error of approximation

Figure 3 Approximation process
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Figure 4 Error of approximation

Figure 5 Approximation process

Figure 6 Error of approximation

6 Conclusion
The classical Kantorovich operators are the integral modification of Bernstein operators
so as to approximate Riemann integrable functions defined on the interval [0, 1]. Using
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Figure 7 Error of approximation

the Bernstein operators depending on the parameter λ introduced by Cai et al. [11], in
this paper we considered a new generalization of Kantorovich operators that improves in
certain cases the rate of convergence of the classical ones. A lot of numerical examples
were considered in this paper in order to show the relevance of the results.
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