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1 Introduction
The least-squares (LS) method is an important global approximate method based on the
regular or concentrated data sample points. However, there are still some irregular or scat-
tered samples which are obtained in many practical applications such as engineering and
machine learning [1–4]. They also need to be analyzed to achieve their special useful-
ness. The moving least-squares (MLS) method was introduced by McLain in [4] to draw
a set of contours based on a cluster of scattered data sample points. It turns out that the
MLS method is a useful local approximation tool in various fields of mathematics such as
approximation theory, data smoothing [5], statistics [6], and numerical analysis [7]. Re-
cently, research effort has been made to study the regression learning algorithm by the
MLS method, see [8–12]. The main advantage of the MLS regression learning algorithm
is that we can learn the regression function in the simple function space, usually generated
by polynomials.

We recall the regression learning problem by the MLS method briefly. Functions for
learning are defined on a compact metric space X (input space) and take values in Y =
R (output space). The sampling process is controlled by an unknown Borel probability
measure ρ on Z = X × Y . We define the regression function as follows:

fρ(x) =
∫

Y
y dρ(y|x),
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where ρ(·|x) is the conditional probability measure induced by ρ on Y given x ∈ X. The
goal of regression learning is to find a good approximation of the regression function fρ
based on a set of random samples z = {zi}m

i=1 = {(xi, yi)}m
i=1 ∈ Zm drawn according to the

measure ρ .
We define the approximation fz of fρ pointwisely:

fz(x) := fz,σ ,x(x) = arg min
f ∈H

Ez,x(f ), x ∈ X, (1.1)

the local moving empirical error is defined by

Ez,x(f ) =
1
m

m∑
i=1

�

(
x
σ

,
xi

σ

)(
f (xi) – yi

)2, (1.2)

where the hypothesis space H ⊆ C(X) is a d̃-dimensional Lipschitz function space, σ =
σ (m) > 0 is a window width, and � : Rn × R

n → R
+ is called an MLS weight function

which satisfies the conditions as follows, see [9, 10]:

(1)
∫
Rn

�(x, t) dt = 1, ∀x, t ∈ R
n, (1.3)

(2) �(x, t) ≥ cq, ∀|x – t| ≤ 1, (1.4)

(3)
∣∣�(x, t)

∣∣≤ c̃q

(1 + |x – t|)q , ∀x, t ∈R
n, (1.5)

where the constants q > n + 1, cq, c̃q > 0.
The task of the paper is to derive the error bound of ‖fz – fρ‖ρX with the norm ‖f (·)‖ρX :=

(
∫

X |f (·)|2 dρX) 1
2 to evaluate the approximation ability of fz, see [13–22]. The error analysis

of algorithm (1.1) for the independent and identical (i.i.d.) samples has been carried out
in [8–10]. However, the samples are not independent but are not far from being indepen-
dent in some real data analysis such as market prediction, system diagnosis, and speech
recognition. The mixing conditions can quantify how close to independence a sequence of
random samples is. In [14, 16, 23–25], the authors carried out the regression estimation of
the least squares algorithm with the α-mixing samples. Up to now there has been no result
of algorithm (1.1) obtained in the case of dependent samples. Hence we extend the anal-
ysis of algorithm (1.1) to the α-mixing sampling setting which is quite easy to establish,
see [26].

Definition 1.1 Let Mb
a denote the σ -algebras of events generated by the random samples

{zi = (xi, yi)}b
i=a. {zi}i≥1 is said to satisfy a strongly mixing condition (or α-mixing condition)

if

αi = sup
k≥1

sup
A∈Mk

1,B∈M∞
k+i

∣∣P(A ∩ B) – P(A)P(B)
∣∣−→ 0, as i → ∞. (1.6)

Specifically, if there exist some positive constants α > 0, β > 0, and c > 0 such that

αi ≤ α exp
(
–ciβ

)
, ∀i ≥ 1, (1.7)

then it is said to satisfy an exponential strongly mixing condition.
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Our goal is to obtain the convergence rate as m → ∞ of algorithm (1.1) under hypothesis
(1.7). The rest of the paper is organized as follows. In Sect. 2, we review some concepts
and state our main results and the error decomposition. In Sect. 3, we present the estimate
of the sample error. In Sect. 4, we provide the proofs of the main results.

2 Main results and error decomposition
Before giving the main results, we firstly need to provide some concepts that will be re-
ferred to throughout this paper, see [8–10].

Definition 2.1 The probability measure ρX on X is said to satisfy the condition Lτ with
exponent τ > 0 if

ρX
(
B(x, r)

)≥ cτ rτ , ∀0 < r ≤ r0, x ∈ X, (2.1)

where the constants r0 > 0, cτ > 0, and B(x, r) = {u ∈ X : |u – x| ≤ r, for r > 0}.

Definition 2.2 We say that the hypothesis space H satisfies the norming condition with
exponent ζ > 0 and d ∈ N if we can find points {ui}d

i=1 ⊂ B(x,σ ) for every x ∈ X and 0 <
σ ≤ σ0 satisfying |ui – uj| ≥ 2cHσ for i �= j and

( d∑
i=1

∣∣f (ui)
∣∣2
) 1

2

≥ cHσ ζ‖f ‖C(X), ∀f ∈H, (2.2)

where the constants σ0 > 0, cH > 0 and d is chosen as at least the dimension d̃ of H.

Here we assume |y| ≤ M almost surely, and all the constants such as C̃, CH,ζ , Aτ ,ζ , CH,ρX ,
C′
H,ρX

, and so on are independent of the key parameters δ, m, or σ in this paper. Now we
give our main results of algorithm (1.1).

Theorem 2.1 Assume that (1.7), (2.1), and (2.2) hold. Suppose 0 < p < 2, σ = (m(α))–γ with
m(α) = �m�{ 8m

c }1/(1+β)�–1�, γ > 0, and 0 < σ ≤ min{σ0, 1, (r0/CH,ζ )1/ max{ζ ,1}}. If m satisfies

(
m(α))1–γ τ max{ζ ,1} ≥ (256c

– 1
p

p /3 + Aτ ,ζ
)(

log
(
2 + 8e–2α

)
/δ
)1+ 1

p

+ Aτ ,ζ γ log m(α), (2.3)

then for any 0 < δ < 1, with confidence 1 – δ, we have

‖fz – fρ‖2
ρX

≤ C̃
(
m(α))4γ (ζ+ τ

2 max{ζ ,1})–nγ – 1
p+1 . (2.4)

Then we can obtain the explicit learning rate of algorithm (1.1) with selecting the suit-
able parameter σ = σ (m).

Theorem 2.2 Under the assumptions of Theorem 2.1, if we choose σ = (m(α))
ε

–(4ς+2 max{τ ,τς}) ,
0 < ε < 1/4, and

m(α) ≥ C1
((

log
(
2 + 8e–2α

)
/δ
)1+ 1

p + log m(α))2 + σ
–(4ς+2 max{τ ,τς})/ε
0 , (2.5)
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then with confidence 1 – δ, we have

‖fz – fρ‖ρX ≤ C2
(
m(α))ε– 1

2 , (2.6)

where

C1 =
(

Aτ ,ζ +
256

3
c

– 1
p

p

)2(
1 +

1
4ς + 2 max{τ , τζ }

)2

. (2.7)

Remark 2.1 The result of the above theorem shows that the learning rate tends to m– 1
2

when σ → 1. For the i.i.d. case, the same rate has been obtained in [9, 10].

To estimate the quantity of the total error ‖fz – fρ‖ρX , we use the proposition from [8]
below.

Proposition 2.1 Assume (2.1) and (2.2) hold. Then we have

‖fz – fH‖2
ρX

≤ C̃Hσ –2ζ–τ max{ζ ,1}
∫

X

(
Ex(fz,σ ,x) – Ex(fH,σ ,x)

)
dρX(x), (2.8)

where

Ex(f ) =
∫

Z
�

(
x
σ

,
u
σ

)(
f (u) – y

)2 dρ(u, y), ∀f : X →R (2.9)

is called the local moving expected risk and

fH(x) := fH,σ ,x = arg min
f ∈H

Ex(f ), x ∈ X, (2.10)

is called the target function.

Remark 2.2 Here we assume fρ ∈H. It follows from

Ex(f ) =
∫

X
�

(
x
σ

,
u
σ

)(
f (u) – fρ(u)

)2 dρX(u) + Ex(fρ), ∀f : X →R, (2.11)

that fH = fρ . Thus ‖fz – fρ‖ρX = ‖fz – fH‖ρX .

Next we only need to provide the upper bound of the integral in (2.8). So to do this, we
give its decomposition as follows:

∫
X

(
Ex(fz,σ ,x) – Ex(fH,σ ,x)

)
dρX(x) ≤

∫
X

[(
Ex(fz,σ ,x) – Ex(fH,σ ,x)

)

–
(
Ez,x(fz,σ ,x) – Ez,x(fH,σ ,x)

)]
dρX(x)

:= S(z,σ ). (2.12)

What is left is to estimate the sample error S(z,σ ).
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3 Estimates for the sample error
In order to obtain the probability estimate of S(z,σ ), we shall use the upper bound for
fz,σ ,x and fH,σ ,x. We firstly derive the confidence-based estimate of fz,σ ,x as follows.

Proposition 3.1 Under the assumptions of Theorem 2.1, if

m(α) ≥ –Aτ ,ζ log(δσ )σ –τ max{ζ ,1}, (3.1)

then with confidence at least 1 – δ, we have

‖fz,σ ,x‖C(X) ≤ 23+τ+ζ M√cτ cqCτ /2
H,ζ cH

σ –ζ–max{ τ
2 , τζ

2 } := CH,ρX σ –ζ–max{ τ
2 , τζ

2 }, ∀x ∈ X, (3.2)

where

CH,ζ = min

{
cH

2ζ+1
√

dCH,0
,

cH
2

,
1
2

}
,

Aτ ,ζ = 2τ+1(cτ Cτ
H,ζ – 2τ+1)–1

[
7
6

+
7
6

log
(
1 + 4e–2α

)
+

7n
6

log

(
1 +

4BX

CH,ζ

)]
.

The proof is analogous to that of Theorem 3 in [8] except that we need to use the fol-
lowing Lemma 3.1 for the dependent sampling setting to replace Lemma 2 in [8].

Lemma 3.1 Let 0 < r ≤ r0 and 0 < δ < 1. If (1.7) and (2.1) hold, then with confidence 1 – δ,
we have


(x ∩ B(x, r))
m

≥ cτ

(
r
2

)τ

+
7 log δ – 7 log(1 + 4e–2α) – 7n log( 4BX

r + 1)
6m(α)

– 1, ∀x ∈ X. (3.3)

Specifically, if

m(α) >
[7 log( 1

δ
) + 7 log(1 + 4e–2α) + 7n log( 4BX

r + 1)]
6( cτ rτ

2τ+1 – 1)
, (3.4)

then with confidence at least 1 – δ, we have


(x ∩ B(x, r))
m

≥ cτ

2τ+1 rτ , ∀x ∈ X, (3.5)

where 
(x∩B(x,r))
m is the proportion of those sampling points lying in B(x, r).

Proof It is shown in Theorem 5.3 of [27] that one can find {vj}Nj=1 ⊆ X satisfying X ⊆
BR(Rn) ⊆⋃N

j=1 B(vj, r
2 ) and N ≤ ( 4R

r + 1)n. Let ξ (j) : X → R be the characteristic function
of the set B(vj, r

2 ). Its mean μ(j) =
∫

X ξ (j)(x) dρX = ρX(B(vj, r
2 )) satisfies |ξ (j) – μ(j)| ≤ 1 and

σ 2(ξ (j)) ≤ 1. Now we use the Bernstein inequality for the dependent samples in [28].

Proposition 3.2 Suppose that (1.7) holds. Let the random variable m(α) be the effective
number of observations and ξi = ξ (zi) be a real-valued function on the probability space Z
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with mean μ =
∫

Z ξ (z) dρ and variance σ 2. Assume that |ξi – μ| ≤ D almost surely. Then,
for every ε > 0,

P

{
1
m

m∑
i=1

[ξi – μ] > ε

}
≤ (1 + 4e–2α

)
exp

{
–

m(α)ε2

2(σ 2 + 1
3 Dε)

}
. (3.6)

Then it follows from the above proposition that

P

{
1
m

m∑
i=1

[
ξ

(j)
i – μ(j)]≤ –ε

}
≤ (1 + 4e–2α

)
exp

{
–

m(α)ε2

2 + 2
3ε

}
, ∀ε > 0, (3.7)

hence,

P

{
min

1≤j≤N

{
1
m

m∑
i=1

[
ξ

(j)
i – μ(j)]

}
≤ –ε

}
≤N

(
1 + 4e–2α

)
exp

{
–

m(α)ε2

2 + 2
3ε

}
. (3.8)

For 0 < δ < 1, let

N
(
1 + 4e–2α

)
exp

{
–

m(α)ε2

2 + 2
3ε

}
= δ. (3.9)

Then we get

ε =
2
3 log N (1+4e–2α)

δ
+
√

( 2
3 log N (1+4e–2α)

δ
)2 + 8m(α) log N (1+4e–2α)

δ

2m(α)

≤ 2 log N (1+4e–2α)
δ

3m(α) +

√
2 log N (1+4e–2α)

δ

m(α)

≤ 7 log N (1+4e–2α)
δ

6m(α) + 1. (3.10)

It follows that, with confidence at least 1 – δ,

min
1≤j≤N

{
1
m

m∑
i=1

[
ξ

(j)
i – μ(j)]

}
> –

7 log N (1+4e–2α)
δ

6m(α) – 1. (3.11)

Hence, we have

1
m

m∑
i=1

[
ξ (j) – μ(j)] > –

7 log N (1+4e–2α)
δ

6m(α) – 1, ∀j = 1, . . . ,N . (3.12)

Condition (2.1) yields μ(j) ≥ cτ ( r
2 )τ . Also ξ (j)(xi) = 1 if xi ∈ B(vj, r

2 ) and 0 otherwise. So that
1
m
∑m

i=1 ξ (j)(xi) = 
(x ∩ B(vj, r
2 ))/m. Hence,




(
x ∩ B

(
vj,

r
2

))/
m > cτ

(
r
2

)τ

–
7 log N (1+4e–2α)

δ

6m(α) – 1, ∀j = 1, . . . ,N . (3.13)
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Observe from X ⊆⋃N
j=1 B(vj, r

2 ) that for each x ∈ X, there exists some j ∈ 1, . . . ,N such
that x ∈ B(vj, r

2 ), i.e., |vj – x| ≤ r
2 . Since xi ∈ B(vj, r

2 ) implies |xi – x| ≤ |xi – vj| + |vj – x| ≤ r,
we see that



(
x ∩ B(x, r)

)
/m ≥ 


(
x ∩ B

(
vj,

r
2

))/
m

≥ cτ

(
r
2

)τ

–
7 log N (1+4e–2α)

δ

6m(α) – 1. (3.14)

This proves Lemma 3.1. �

Now we are in a position to prove Proposition 3.1.

Proof of Proposition 3.1 By (3.1) and setting r = CH,ζ σ
max{ζ ,1} ≤ r0, it is easy to see that

(3.4) holds. Then (3.5) is valid.
It follows from (3.5) and Definition 2.2 with σ replaced by σ

2 that

mi/m = 

(
x ∩ B(ui, r)

)
/m > cτ rτ /2τ+1, (3.15)

and

|xi,l – ui| ≤ r, (3.16)

where {xi,l}mi
l=1 are the points of the set 
(x ∩ B(ui, r)), which implies

|xi,l – x| ≤ |xi,l – ui| + |ui – x| ≤ r +
σ

2
≤ σ , (3.17)

where x ∈ X, l = 1, . . . , m̃, and m̃ = min1≤i≤d{mi}.
Then, by (1.4), we have
∣∣∣∣�
(

x
σ

,
xi,l

σ

)∣∣∣∣≥ cq. (3.18)

Hence

1
m

m∑
i=1

�

(
x
σ

,
xj

σ

)(
fz,σ ,x(xj)

)2 ≥ 1
m

d∑
i=1

m̃∑
l=1

�

(
x
σ

,
xi,l

σ

)(
fz,σ ,x(xi,l)

)2

≥ 1
m

d∑
i=1

m̃∑
l=1

cq
(
fz,σ ,x(xi,l)

)2

≥ cτ

2τ+1 rτ cq

(
cHσ ζ

2ζ+1

)2

‖fz,σ ,x‖2
C(X). (3.19)

The last inequality has been proved in Theorem 3 in [8].
Finally, combining (3.19) with the following inequality

1
m

m∑
i=1

�

(
x
σ

,
xi

σ

)(
fz,σ ,x(xi)

)2 ≤ 2
m

m∑
i=1

�

(
x
σ

,
xi

σ

){
(0 – yi)2 + y2

i
}≤ 4M2, (3.20)

we derive the desired result. �
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We also need to invoke Lemma 4 in [8] which provides the result about the upper bound
of fH,σ ,x.

Proposition 3.3 Assume that (2.1) and (2.2) hold. Then, for some constant C′
H,ρX

inde-
pendent of σ , we have

‖fH,σ ,x‖C(X) ≤ C′
H,ρX

σ –ζ–max{ τ
2 , τζ

2 }, ∀x ∈ X, 0 < σ ≤ min{σ0, 1}. (3.21)

Next we will bound the sample error. The estimation for S(z,σ ) relies on the ratio prob-
ability inequality below that can be found in [27].

Proposition 3.4 Suppose that (1.7) holds. Let G be a set of functions on Z and c > 0 such
that, for each g ∈ G , μ(g) =

∫
Z g(z) dρ ≥ 0, μ(g2) ≤ cμ(g), and |g(z) – μ(g)| ≤ D almost

surely. Then, for every ε > 0 and 0 < α ≤ 1, we have

P
{

sup
g∈G

μ(g) – 1
m
∑m

i=1 g(zi)√
ε + μ(g)

≥ 4α
√

ε

}
≤ (1 + 4e–2α

)
N (G,αε)

× exp

{
–

α2m(α)ε

2c + 2
3 D

}
. (3.22)

We obtain the upper bound estimate for S(z,σ ) by using Proposition 3.4.

Proposition 3.5 If the assumptions of Proposition 3.1 hold,

R = max
{

CH,ρX , C′
H,ρX

, M
}
σ –ζ– τ

2 max{1,ζ }), (3.23)

and

m(α) ≥ 256
3

c
– 1

p
p

(
log

2 + 8e–2α

δ

)1+ 1
p

, (3.24)

then with confidence 1 – δ, there holds

∫
X

[(
Ex(fz,σ ,x) – Ex(fH,σ ,x)

)
–
(
Ez,x(fz,σ ,x) – Ez,x(fH,σ ,x)

)]
dρX(x)

≤ 16R2Dσ n
(

256cp

3m(α)

)1/(1+p)

+
1
2

∫
X

(
Ex(fz,σ ,x) – Ex(fH,σ ,x)

)
dρX(x). (3.25)

Proof Let the function g(u, y) be defined on the function set

GR =
{∫

X
�

(
x
σ

,
u
σ

)[(
f (u) – y

)2 –
(
fH,σ ,x(u) – y

)2]dρX(x) :

f ∈ BR := {f ∈H : ‖f ‖C(X) ≤ R}
}

. (3.26)

With condition (1.5) and the bound cρ of the density function of ρX , we have

∫
X

�

(
x
σ

,
u
σ

)
dρX(x) ≤ cρ c̃q

∫
Rn

σ n

(1 + |u|)q du ≤ 2πn/2cρ c̃q

(q – n)�( n
2 )

σ n := Dσ n, (3.27)
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which implies

∣∣g(u, y)
∣∣≤ 2(R + M)2Dσ n ≤ 8R2Dσ n := cR. (3.28)

Hence |g(u, y) – μ(g)| ≤ 2cR.
It follows from the Schwarz inequality that

∣∣g(u, y)
∣∣2 =

∣∣∣∣
∫

X
�

(
x
σ

,
u
σ

)(
f (u) – fH,σ ,x(u)

)(
f (u) + fH,σ ,x(u) – 2y

)
dρX(x)

∣∣∣∣
2

≤
∫

X
�

(
x
σ

,
u
σ

)(
f (u) – fH,σ ,x(u)

)2(2R + 2M)2 dρX(x)

×
∫

X
�

(
x
σ

,
u
σ

)
dρX(x). (3.29)

By (3.27),

μ
(
g2)≤ 16R2Dσ n

∫
X

(∫
X

�

(
x
σ

,
u
σ

)(
f (u) – fH,σ ,x(u)

)2 dρX(u)
)

dρX(x). (3.30)

It has been proved in [9] that

∫
X

�

(
x
σ

,
u
σ

)(
f (u) – fH,σ ,x(u)

)2 dρX(u)

=
∫

Z
�

(
x
σ

,
u
σ

)[(
f (u) – y

)2 –
(
fH,σ ,x(u) – y

)2]dρ(u, y). (3.31)

Substituting (3.31) into (3.30),

μ
(
g2)≤ 16R2Dσ n

∫
X

(∫
Z
�

(
x
σ

,
u
σ

)[(
f (u) – y

)2

–
(
fH,σ ,x(u) – y

)2]dρ(u, y)
)

dρX(x)

= 16R2Dσ n
∫

Z

(∫
X

�

(
x
σ

,
u
σ

)[(
f (u) – y

)2

–
(
fH,σ ,x(u) – y

)2]dρX(x)
)

dρ(u, y)

= 16R2Dσ nμ(g). (3.32)

Using Proposition 3.4 with α = 1
4 and G = GR, we know that

P
{

sup
f ∈BR

∫
X[(Ex(f ) – Ex(fH,σ ,x)) – (Ez,x(f ) – Ez,x(fH,σ ,x))] dρX(x)√

ε +
∫

X(Ex(f ) – Ex(fH,σ ,x)) dρX(x)
≥ √

ε

}

≤ (1 + 4e–2α
)
N
(
GR,

ε

4

)
exp

{
–

3m(α)ε

2048R2Dσ n

}
. (3.33)



Guo and Ye Journal of Inequalities and Applications  (2018) 2018:200 Page 10 of 13

Since for any g1, g1 ∈ GR,

∣∣g1(u, y) – g2(u, y)
∣∣ =
∣∣∣∣
∫

X
�

(
x
σ

,
u
σ

)((
f1(u) – y

)2 –
(
f2(u) – y

)2)dρX(x)
∣∣∣∣

≤
∣∣∣∣
∫

X
�

(
x
σ

,
u
σ

)(
f1(u) – f2(u)

)

× (f1(u) + f2(u) – 2y
)

dρX(x)
∣∣∣∣

≤ 4RDσ n∣∣f1(u) – f2(u)
∣∣, (3.34)

then we have

N
(
GR,

ε

4

)
≤N

(
BR,

ε

16RDσ n

)

= N
(

B1,
ε

16R2Dσ n

)
. (3.35)

It follows from (3.33) that

P
{

sup
f ∈BR

∫
X[(Ex(f ) – Ex(fH,σ ,x)) – (Ez,x(f ) – Ez,x(fH,σ ,x))] dρX(x)√

ε +
∫

X(Ex(f ) – Ex(fH,σ ,x) dρX(x)
≤ √

ε

}

≥ 1 –
(
1 + 4e–2α

)
N
(

B1,
ε

16R2Dσ n

)
exp

{
–

3m(α)ε

2048R2Dσ n

}
. (3.36)

We set the term (1 + 4e–2α)N (B1, ε

16R2Dσn ) exp{– 3m(α)ε
2048R2Dσn } of the above inequality to δ/2.

We need to invoke the lemma proved by the same method of Proposition 4.3 in [21].

Lemma 3.2 Let η∗(m(α), δ) be the smallest positive solution of the following inequality
in η:

(
1 + 4e–2α

)
N (B1,η)) exp

{
–

3m(α)η

128

}
≤ δ.

If logN (B1,η) ≤ cp(η)–p, for some p ∈ (0, 2), cp > 0 and all η > 0, then with confidence at
least 1 – δ, we have

η∗(m(α), δ
)≤ max

{
256

3m(α) log
1 + 4e–2α

δ
,
(

256cp

3m(α)

)1/(1+p)}
. (3.37)

Then we return to the proof of Proposition 3.5.
It follows from Theorem 5.3 in [27] that

N
(

B1,
ε

16R2Dσ n

)⎧⎨
⎩

≤ ( 32R2Dσn

ε
+ 1)d̃, for 0 < ε < 16R2Dσ n;

= 1, for ε ≥ 16R2Dσ n.
(3.38)
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When 0 < ε < 16R2Dσ n,

logN
(

B1,
ε

16R2Dσ n

)
≤ d̃ log

(
32R2Dσ n

ε
+ 1
)

≤ d̃
p

(
32R2Dσ n

ε

)p

=
d̃
p
(
32R2Dσ n)p

ε–p, p > 0. (3.39)

When ε ≥ 16R2Dσ n, we have

logN
(
GR,

ε

4

)
≤ 0. (3.40)

Hence we conclude that

logN
(

B1,
ε

16R2Dσ n

)
≤ 2pd̃

p

(
ε

16R2Dσ n

)–p

:= cpη
–p. (3.41)

This, together with (3.37), implies that, for

m(α) ≥ 256
3

c
– 1

p
p

(
log

2 + 8e–2α

δ

)1+ 1
p

, (3.42)

we obtain

ε ≤ 16R2Dσ n
(

256cp

3m(α)

)1/(1+p)

. (3.43)

Combining (3.43) with (3.36), with confidence 1 – δ/2, we have

∫
X

[(
Ex(f ) – Ex(fH,σ ,x)

)
–
(
Ez,x(f ) – Ez,x(fH,σ ,x)

)]
dρX(x)

≤ √
ε

√
ε +
∫

X

(
Ex(f ) – Ex(fH,σ ,x)

)
dρX(x)

≤ ε +
1
2

∫
X

(
Ex(f ) – Ex(fH,σ ,x)

)
dρX(x)

≤ 16R2Dσ n
(

256cp

3m(α)

)1/(1+p)

+
1
2

∫
X

(
Ex(f ) – Ex(fH,σ ,x)

)
dρX(x). (3.44)

Finally, setting f = fz,σ ,x in the above inequality, we derive the desired result. �

4 Proofs of the main results
In this subsection, we provide the proofs of Theorem 2.1 and Theorem 2.2. We firstly
prove Theorem 2.1.

Proof If we take σ = (m(α))–γ , γ > 0, then we have

R = max
{

CH,ρX , C′
H,ρX

, M
}

mγ (ζ+ τ
2 max{1,ζ }). (4.1)
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It is readily seen that (2.3) implies (3.1). Then Proposition 3.5 holds true. We thus obtain,
with confidence 1 – δ,

∫
X

(
Ex(fz,σ ,x) – Ex(fH,σ ,x)

)
dρX(x) ≤ 32R2Dσ n

(
256cp

3m(α)

)1/(1+p)

. (4.2)

Therefore from (2.8) we obtain

‖fz – fH‖2
ρX

≤ C̃Hσ –2ζ–τ max{ζ ,1} × 32R2Dσ n
(

256cp

3m(α)

)1/(1+p)

≤ C̃
(
m(α))4γ (ζ+ τ

2 max{ζ ,1})–nγ – 1
p+1 . (4.3)

This proves Theorem 2.1. �

Next, we prove Theorem 2.2.

Proof Let γ = ε/[4ς + 2 max{τ , τς}] > 0 and p = ε
1–ε

. Therefore we have

γ τ max{1,ς} < ε < 1/4 (4.4)

and

(
m(α))1–γ τ max{1,ς} ≥ (m(α))1–ε ≥ m

1
2 . (4.5)

It follows from (2.5) that

(
m(α)) 1

2 ≥
(

Aτ ,ζ +
256

3
c

– 1
p

p

)(
1 +

1
4ς + 2 max{τ , τζ }

)

×
((

log
(
2 + 8e–2α

)
/δ
)1+ 1

p + log m(α)
)

≥
(

Aτ ,ζ +
256

3
c

– 1
p

p

)((
log
(
2 + 8e–2α

)
/δ
)1+ 1

p + γ log m(α)
)

, (4.6)

which implies that condition (2.3) of Theorem 2.1 holds true, we thus obtain, with confi-
dence 1 – δ,

‖fz – fH‖ρX ≤ C1
(
m(α))ε– 1

2 . (4.7)

This proves Theorem 2.2. �
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