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Abstract
In this paper, we consider the q-difference equation

(f (qz) + f (z))(f (z) + f (z/q)) = R(z, f ),

where R(z, f ) is rational in f and meromorphic in z. It shows that if the above equation
assumes an admissible zero-order meromorphic solution f (z), then either f (z) is a
solution of a q-difference Riccati equation or the coefficients satisfy some conditions.

MSC: 39B32; 34M05; 30D35

Keywords: Painlevé equations; q-Difference; Meromorphic solution

1 Introduction
In this paper, we use the basic notions of Nevanlinna theory [1–4] such as the character-
istic function T(r, f ), counting function N(r, f ), and proximity function m(r, f ). We also
use S(r, f ) to denote any quantity satisfying S(r, f ) = o(T(r, f )) as r → ∞, possibly outside
a set with finite logarithmic measure and S(f ) to denote the field of small functions with
respect to f , which is defined as S(f ) = {α meromorphic : T(r,α) = S(r, f )}.

In what follows, we use the short notation f̄ ≡ f (z + 1) and f ≡ f (z – 1). A meromorphic
solution f of a difference equation is called admissible if all the coefficients of the equation
are in S(f ). In particular, if the coefficients are rational, then an admissible solution must
be transcendental, and if an admissible solution is rational, then the coefficients must be
constants.

An ordinary differential equation is said to possess the Painlevé property if all of its so-
lutions are single-valued about all movable singularities, see [5]. In 1895–1910, Painlevé
[6, 7], Fuchs [8], and Gambier [9] completed substantial classification work, which com-
prised sieving through a large class of second-order differential equations by making use of
a criterion proposed by Picard [10], now known as the Painlevé property. Painlevé and his
colleagues discovered six new equations, later named Painlevé equations, which were not
solvable in terms of known functions. Actually, the Painlevé equations are six nonlinear
ordinary differential equations denoted traditionally by PI , PII , . . . , PVI .

Painlevé equations is a fascinating subject in mathematics, they possess many special
features [11]. One of them is that, given a solution of a Painlevé equation (PII , . . . , PVI)
with a choice of some parameter, a special method based on Bäcklund transformations
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can be used for deriving a new solution with a different value of the parameter, either for
the same Painlevé equation or for another. Symmetry is a word used frequently to refer to
a mechanism of constructing new solutions by transformation. Specially, Painlevé equa-
tion appeared in many applications and fields such as hydrodynamics, plasma physics,
nonlinear optics, solid state physics, etc.

As for the difference type Painlevé equation, many scholars have focused on it and given
many useful results [12–22]. In particular, Ablowitz, Halburd, and Herbst [23] studied the
following Painlevé difference equation:

f̄ � f = R(z, f ),

where R is rational in both of its arguments, � stands for either the addition or the multi-
plication. They proved that the existence of a nonrational meromorphic solution of finite
order implies degf R ≤ 2. This class of equations contains many integrable equations called
difference Painlevé I–III equations.

Halburd and Korhonen [24] considered the equation

f̄ + f = R(z, f ), (1)

where R(z, f ) is rational in f and meromorphic in z. And they proved if (1) admits an ad-
missible finite order meromorphic solution, then either f (z) satisfies a difference Riccati
equation or (1) can be transformed into difference Painlevé I, II equations or a list of lin-
ear difference equations. The work on the family f̄ f = R(z, f ), which includes the so-called
difference Painlevé III, was initiated in [25].

Ronkainen [21] researched the family

(f̄ f – 1)(f f – 1) = R(z, f ), (2)

which includes the difference Painlevé V equations.
The family of following equations [26], which includes the difference Painlevé IV

(f̄ + f )(f + f ) = R(z, f ) (3)

with constant coefficients, was studied by Grammaticos et al. [27]. Furthermore, Wen [28]
and Zhang [18] researched (3) with R(z, f ) rational in f and meromorphic in z from a
different aspect.

The aim of this paper is to investigate the second order q-difference equation

(
f (qz) + f (z)

)(
f (z) + f (z/q)

)
= R(z, f ), (4)

where |q| /∈ {0, 1} and R(z, f ) is rational in f and meromorphic in z. We first discuss the
possible degrees of R(z, f ), then fix the degree. We prove that if the equation admits an
admissible zero-order meromorphic solution f (z), then either f (z) is a solution of some q-
difference Riccati equations or the coefficients of (4) satisfy some conditions. Our research
is a generalization of the related results [18, 28]. Actually, we extend difference Painlevé
IV equations to a q-difference form, which is a supplement and completeness for studying
Painlevé equations.
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2 Some lemmas
We introduce some lemmas for the proofs of our theorems in this section. The logarithmic
derivative lemma [2] plays an important role in difference equations. As for q-difference
equation, Barnett et al. [19] gave the analogue of the logarithmic derivative lemma, we
recall it as follows.

Lemma 2.1 Let f (z) be a non-constant zero-order meromorphic function, and q ∈ C \ {0}.
Then

m
(

r,
f (qz)
f (z)

)
= o

(
T(r, f )

)

on a set of logarithmic density 1.

Lemma 2.2 ([19]) Let f (z) be a non-constant meromorphic solution with zero-order of the
equation P(z, f ) = 0, where P(z, f ) is a q-difference polynomial in f (z). If P(z, a) �≡ 0 for a
meromorphic function a ∈ S(f ), then

m
(

r,
1

f – a

)
= S(r, f )

on a set of logarithmic measure density 1.

Lemma 2.3 ([14]) Let f (z) be a zero-order meromorphic function, and q ∈ C \ {0}. Then

T
(
r, f (qz)

)
= T

(
r, f (z)

)(
1 + o(1)

)
,

N
(
r, f (qz)

)
= N

(
r, f (z)

)(
1 + o(1)

)

on a set of lower logarithmic density 1.

The next lemma is an essential result about the Nevanlinna characteristic and plays an
important role in the difference equations.

Lemma 2.4 ([27]) Let f , h, and g be three meromorphic functions. Then

T(r, fg + gh + hf ) ≤ T(r, f ) + T(r, g) + T(r, h) + O(1).

The following lemma, i.e., the Valiron–Mohon’ko identity [29, 30], is a useful tool in the
theory of complex difference equations.

Lemma 2.5 Let f be a meromorphic function. Then, for all irreducible rational functions
in f,

R(z, f ) =
P(z, f )
Q(z, f )

=
∑p

i=0 ai(z)f i
∑q

j=0 bj(z)f j

with meromorphic coefficients ai(z), bj(z) ∈ S(f ), then the characteristic function of R(z, f (z))
satisfies

T
(
r, R(z, f )

)
= (degf R)T(r, f ) + S(r, f ) = max(p, q)T(r, f ) + S(r, f ).
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3 Main result
In this paper, we consider the following q-difference equation:

(
f (qz) + f (z)

)(
f (z) + f (z/q)

)
= R(z, f ) =

P(z, f )
Q(z, f )

, (5)

where P(z, f ), Q(z, f ) are irreducible polynomials in f with degrees p and q, respectively.
In the following, we discuss the possible degrees of P(z, f ) and Q(z, f ). Applying

Lemma 2.3 yields

degf (R)T(r, f ) ≤ 2T
(
r, f (z)

)
+ T

(
r, f (qz)

)
+ T

(
r, f (z/q)

)
+ S(r, f )

= 4T(r, f ) + S(r, f ), (6)

which means degf (R) ≤ 4. Then, basing on Lemma 2.5 and equation (5), we have p ≤ 4
and q ≤ 4.

We rewrite (5) as

K(z, f ) =: f (qz)f (z) + f (qz)f (z/q) + f (z)f (z/q) =
P(z, f ) – f 2(z)Q(z, f )

Q(z, f )
. (7)

From Lemma 2.3 and Lemma 2.4, we have

degf (K)T(r, f ) ≤ T
(
r, f (z)

)
+ T

(
r, f (qz)

)
+ T

(
r, f (z/q)

)
+ S(r, f )

= 3T(r, f ) + S(r, f ), (8)

which implies degf (K) ≤ 3. Since P(z, f ) and Q(z, f ) are irreducible polynomials, then
P(z, f ) – f 2(z)Q(z, f ) and Q(z, f ) have no common factors, thus p ≤ 5 and q ≤ 3 follows.

Combining the above discussion, it may happen p ≤ 4 and q ≤ 3. If q = 3, the degree of
P(z, f ) – f 2(z)Q(z, f ) will be 5, which contradicts degf (K) ≤ 3. Hence, it must have p ≤ 4
and q ≤ 2.

If q = 2, it follows that the degree of P(z, f ) – f 2(z)Q(z, f ) cannot be more than 3, that
q = 4, and the coefficients of the highest degree of P(z, f ) and Q(z, f ) are identical.

Therefore, we conclude the following result.

Theorem 3.1 If f (z) is an admissible zero-order meromorphic solution of (5), where P(z, f ),
Q(z, f ) are irreducible polynomials in f with degrees p and q, respectively, then we have
p ≤ 2 and q ≤ 4. Particularly, one of the following holds:

(i) If q = 0, then p ≤ 2;
(ii) If q = 1, then p ≤ 3;

(iii) If q = 2, then p = 4 and the coefficients of the highest degree of P(z, f ) and Q(z, f ) are
identical.

Proof From the above discussion, we know that (ii) and (iii) hold. Next we give the proof
of (i). Otherwise, if q = 0 and p = 3, then equation (5) can be rewritten as

(
f (qz) + f (z)

)(
f (z) + f (z/q)

)
= a1(z)f 3(z) + a2(z)f 2(z) + a3(z)f (z) + a0(z), (9)

where a0(z), a1(z), a2(z), and a3(z) are small functions to f (z).
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From equation (9), we have

3T(r, f ) + S(r, f ) = T
(
r, a1(z)f 3(z) +

(
a2(z) – 1

)
f 2(z) + a3(z)f (z) + a0(z)

)

= T
(
r, f (qz)f (z) + f (z/q)f (z) + f (qz)f (z/q)

)

= m
(
r, f (qz)f (z) + f (z/q)f (z) + f (qz)f (z/q)

)

+ N
(
r, f (qz)f (z) + f (z/q)f (z) + f (qz)f (z/q)

)

≤ m
(

r,
f (qz)f (z) + f (z/q)f (z) + f (qz)f (z/q)

f 2(z)

)

+ m
(
r, f 2(z)

)
+ N

(
r, f (qz)f (z) + f (z/q)f (z) + f (qz)f (z/q)

)

= 2m
(
r, f (z)

)
+ 3N

(
r, f (z)

)
+ S(r, f ), (10)

which implies N(r, f ) = T(r, f ) + S(r, f ), so f (z) has infinitely many poles. Let z0 be a pole
of f (z) with multiplicity k0, and denote it by f (z0) = ∞k0 . Then either there is a cancela-
tion with a zero or pole of some of the coefficients in (9) or at least one of f (qz0) = ∞k1

and f (z0/q) = ∞k2 holds. Since the coefficients are small functions to f (z), we can always
choose a pole of f (z) in such a way that there is no cancelation with the coefficients. Thus
we just consider the condition that at least one of f (qz0) = ∞k1 and f (z0/q) = ∞k2 holds.
Comparing the orders of poles on both sides of equation (9), we can get

max{k1, k2} ≥ 3
2

k0.

Without loss of generality, we assume k1 ≥ 3
2 k0. Putting q-shift to (9), we obtain

(
f
(
q2z

)
+ f (qz)

)(
f (qz) + f (z)

)
= a1(qz)f 3(qz) + a2(qz)f 2(qz) + a3(qz)f (qz) + a0(qz), (11)

then f (q2z) = ∞2k1 follows. Continuing the iteration to equation (9), we will get a sequence
of poles f (qnz) = ∞2(n–1)k1 . Thus, N(r, f ) is at least exponential growth, which contradicts
that f (z) is of zero-order. Therefore, p ≤ 2. This completes the proof of (i). �

In the following, we discuss the cases p = 4 and q = 2. Actually, we obtain the result as
follows.

Theorem 3.2 If f (z) is an admissible zero-order meromorphic solution of the equation

(
f (qz) + f (z)

)(
f (z) + f (z/q)

)
=

c(z)
∏4

i=1(f (z) – ai(z))
(f (z) – b1(z))(f (z) – b2(z))

, (12)

where the coefficients ai(z) (i = 1, . . . , 4), bj(z) (j = 1, 2) are distinct meromorphic functions,
c(z) �≡ 0 and ai(z), bj(z), c(z) ∈ S(f ), then c(z) ≡ 1. Furthermore, if |q| /∈ {0, 1}, then either
f (z) satisfies a q-difference Riccati equation

w(qz) =
α(z)f (z) + β(z)

f (z) + γ (z)

where α(z),β(z),γ (z) ∈ S(f ), or one of the following holds:
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(a) b1(q2z) = b1(z) and b2(q2z) = b2(z);
(b) b1(q2z) = b2(z) and b2(q2z) = b1(z).

Proof If c(z) �≡ 1, then equation (12) can be rewritten as

f (qz)f (z) + f (z)f (z/q) + f (qz)f (z/q) =
c
∏4

i=1(f – ai) – f 2 ∏2
j=1(f – bi)

(f – b1)(f – b2)
. (13)

Applying the Valiron–Mohon’ko theorem and Lemma 2.4 to equation (13) yields

4T(r, f ) ≤ 3T(r, f ) + S(r, f ), (14)

which is impossible. Thus c(z) ≡ 1, then equation (12) is changed into

(
f (qz) + f (z)

)(
f (z) + f (z/q)

)
=

∏4
i=1(f (z) – ai(z))

(f (z) – b1(z))(f (z) – b2(z))
. (15)

Suppose f (z) is a zero-order transcendental meromorphic solution of equation (15) and
denote

P(z, f ) =
(
f (qz) + f (z)

)(
f (z) + f (z/q)

)(
f (z) – b1(z)

)(
f (z) – b2(z)

)
–

4∏

i=1

(f (z) – ai(z).

It follows from bj �≡ ai that P(z, bj) �≡ 0, then combining Lemma 2.2 yields

m
(

r,
1

f – b1

)
= S(r, f ) and m

(
r,

1
f – b2

)
= S(r, f ), (16)

i.e.,

N
(

r,
1

f – b1

)
= T(r, f ) + S(r, f ) and N

(
r,

1
f – b2

)
= T(r, f ) + S(r, f ), (17)

which implies f (z) – bj(z) (j = 1, 2) has infinitely many zeros. Suppose z0 satisfies f (z0) –
bj(z0) = 0, that is to say, f (z0) = b1(z0) or f (z0) = b2(z0). From equation (15), we have two
possibilities:

(I) f (z0) = ai(z0) (i = 1, 2, 3, 4);
(II) f (qz0) = ∞ or f (z0/q) = ∞.
Let A = {zi ∈ C : i ∈ N} be the multi-set of zeros of

f (z) – b1(z) = 0 and f (z) – b2(z) = 0

satisfying (II).
In what follows, we adopt the notation a� and b∗ to represent ai (i = 1, . . . , 4) and bj

(j = 1, 2), respectively.
Let nA(r, 1

f –bj
) (j = 1, 2) be the counting function of the multi-set A ∩ {z ∈ C : |z| ≤ r} and

NA(r, 1
f –bj

) (j = 1, 2) represents the integrated counting function. Similarly, we use NI to
represent the corresponding integrated counting function which satisfies condition (I).
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Next, we will prove that the zeros of f (z0) = b1(z0) and f (z0) = b2(z0) are “almost all”
satisfying (II), i.e.,

NA

(
r,

1
f – b∗

)
= N

(
r,

1
f – b∗

)
+ S(r, f ) = 2T(r, f ) + S(r, f ). (18)

Otherwise if there are more than S(r, f ) points z′ such that (I) holds, then these points
satisfy a�(z′) = f (z′) = b∗(z′), which gives that

S(r, f ) < NI

(
r,

1
a� – b∗

)
. (19)

Combining (19) and ai, bj ∈ S(f ) yields

S(r, f ) < NI

(
r,

1
a� – b∗

)
= S(r, f ),

which is a contradiction. Thus, equation (18) is established.
Let B be the subset of A, in which all the points are such that

f
(
q2z0

)
= b1

(
q2z0

)
or f

(
q2z0

)
= b2

(
q2z0

)
,

and the corresponding integrated counting function is denoted by NB(r, 1
f –b∗ ).

Furthermore, we denote

q̄ = max

{
|q|, 1

|q|
}

and use

NA\B

(
r,

1
f – b∗

)
= NA

(
r,

1
f – b∗

)
– NB

(
r,

1
f – b∗

)

to represent the integrated counting function for z ∈ {A \ B}.
Therefore, for each two points in B ∩{z ∈ C : |z| < r}, there is exactly one pole in the disc

{z ∈ C : |z| ≤ q̄r}, which can be uniquely associated with them. Then we have

NB(r, f ) ≤ NB

(
q̄r,

1
f – b1

)
≤ NB

(
q̄2r, f

)
(20)

and

NB(r, f ) ≤ NB

(
q̄r,

1
f – b2

)
≤ NB

(
q̄2r, f

)
. (21)

In combination with (20), (21), and Lemma 2.3, we obtain

2NB(r, f ) = NB

(
r,

1
f – b∗

)
+ S(r, f ). (22)
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Similarly, if there is one point in A \ B ∩ {z ∈ C : |z| ≤ r}, then there exists at least one
pole in the disc {z ∈ C : |z| ≤ q̄r}. Therefore, we have

NA\B

(
r,

1
f – b∗

)
≤ NA\B(q̄r, f ). (23)

We proceed to proving that the points in A are “almost all” in B, that is,

NB

(
r,

1
f – b∗

)
= NA

(
r,

1
f – b∗

)
+ S(r, f ). (24)

Otherwise, if there exists some 0 ≤ α < 1 such that

NB

(
r,

1
f – b∗

)
≤ αNA

(
r,

1
f – b∗

)
+ S(r, f ), (25)

then it follows from (18) and (22) that

NB(r, f ) ≤ α

2
NA

(
r,

1
f – b∗

)
+ S(r, f ) = αT(r, f ) + S(r, f ). (26)

Combining (18), (22), (23), (26), and Lemma 2.3 yields

2T(r, f ) = NA

(
r,

1
f – b∗

)
+ S(r, f )

= NA\B

(
r,

1
f – b∗

)
+ NB

(
r,

1
f – b∗

)
+ S(r, f )

≤ 2NB(q̄r, f ) + NA\B(q̄r, f ) + S(r, f )

≤ NB(q̄r, f ) + NA(q̄r, f ) + S(r, f )

≤ (1 + α)T(r, f ) + S(r, f ), (27)

which is impossible for 0 ≤ α < 1. So assumption (25) cannot hold. Thus,

NB

(
r,

1
f – b∗

)
= NA

(
r,

1
f – b∗

)
+ S(r, f ) = 2T(r, f ) + S(r, f ), (28)

which can be divided into the following four cases:
(a) f (z0) = b1(z0) and f (q2z0) = b2(q2z0);
(b) f (z0) = b2(z0) and f (q2z0) = b1(q2z0);
(c) f (z0) = b2(z0) and f (q2z0) = b2(q2z0);
(d) f (z0) = b1(z0) and f (q2z0) = b1(q2z0).
We denote the subset of B satisfying (a) by Ba; similarly, Bb, Bc, and Bd represent the

corresponding subsets of B. (28) can lead to the following statements:
(i) NBa (r, 1

f –b∗ ) > S(r, f ) and NBb (r, 1
f –b∗ ) > S(r, f );

(ii) NBc (r, 1
f –b∗ ) > S(r, f ) and NBd (r, 1

f –b∗ ) > S(r, f );
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(iii) NBa (r, 1
f –b∗ ) > S(r, f ) and NB\Ba (r, 1

f –b∗ ) = S(r, f );
(iv) NBb (r, 1

f –b∗ ) > S(r, f ) and NB\Bb (r, 1
f –b∗ ) = S(r, f ).

We rewrite (15) as follows:

f (qz)f (z) + f (z)f (z/q) + f (qz)f (z/q) =
α4f 3 + α3f 2 + α2f + α1 – (β2f 3 + β1f 2)

f 2 + β2f + β1
, (29)

where

α4 = –
(
a1(z) + a2(z) + a3(z) + a4(z)

)
,

α3 = a1(z)a2(z) + a1(z)a3(z) + a1(z)a4(z) + a2(z)a3(z) + a2(z)a4(z) + a3(z)a4(z),

α2 = –
(
a1(z)a2(z)a3(z) + a1(z)a2(z)a4(z) + a2(z)a3(z)a4(z)

)
,

α1 = a1(z)a2(z)a3(z)a4(z),

β2 = –
(
b1(z) + b2(z)

)
, β1 = b1(z)b2(z).

Obviously, αi(i = 1, . . . , 4),βj(j = 1, 2) ∈ S(f ).
We first consider (i) is valid. For every point z0 ∈ Ba, substituting z = qz0 into (29) yields

f
(
q2z0

)
f (qz0) + f (qz0)f (z0) + f

(
q2z0

)
f (z0)

=
(α4(qz0) – β2(qz0))f 3(qz0) + (α3(qz0) – β1(qz0))f 2(qz0) + α2(qz0)f (qz0) + α1(qz0)

f 2(qz0) + β2(qz0)f (qz0) + β1(qz0)
.

(30)

Note that f (z0) = b1(z0), f (qz0) = ∞, and f (q2z0) = b2(q2z0), thus comparing the degrees
of equation (30), we have

b2
(
q2z0

)
+ b1(z0) = α4(qz0) – β2(qz0)

and

b2
(
q2z0

)
b1(z0) = α3(qz0) – β1(qz0) – β2(qz0)

(
b2

(
q2z0

)
+ b1(z0)

)
.

We claim that

b2
(
q2z

)
+ b1(z) = α4(qz) – β2(qz) (31)

and

b2
(
q2z

)
b1(z) = α3(qz) – β1(qz) – β2(qz)

(
b2

(
q2z

)
+ b1(z)

)
(32)

for all z ∈ C.
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Otherwise, it is easy to see that the point z0 ∈ Ba must solve equations (31) and (32). By
the assumption of (i), we have

S(r, f ) < N
(

q̄2r,
1

b2(q2z)b1(z) – (α3(qz) – β1(qz) – β2(qz)(b2(q2z) + b1(z)))

)

+ N
(

q̄2r,
1

(b2(q2z) + b1(z)) – (α4(qz) – β2(qz))

)

= S(r, f ),

which is a contradiction, thus (31) and (32) are established.
Similarly, it follows from NBb (r, 1

f –b∗ ) > S(r, f ) that

b1
(
q2z

)
+ b2(z) = α4(qz) – β2(qz) (33)

and

b1
(
q2z

)
b2(z) = α3(qz) – β1(qz) – β2(qz)

(
b1

(
q2z

)
+ b2(z)

)
. (34)

From (31)–(33), we obtain

b1
(
q2z

)
+ b2(z) = b2

(
q2z

)
+ b1(z) (35)

and

b1
(
q2z

)
b2(z) = b2

(
q2z

)
b1(z). (36)

Due to b1(z) and b2(z) being distinct functions, we have b1(q2z) = b1(z) and b2(q2z) = b2(z).
Suppose that (ii) is valid. Using the same method as in the case of (31) and (32), we have

b1
(
q2z

)
+ b1(z) = α4(qz) – β2(qz), (37)

b1
(
q2z

)
b1(z) = α3(qz) – β1(qz) – β2(qz)

(
b1

(
q2z

)
+ b1(z)

)
; (38)

b2
(
q2z

)
+ b2(z) = α4(qz) – β2(qz), (39)

b2
(
q2z

)
b2(z) = α3(qz) – β1(qz) – β2(qz)

(
b2

(
q2z

)
+ b2(z)

)
. (40)

Combining (37)–(40) yields b1(q2z) + b1(z) = b2(q2z) + b2(z) and b1(q2z)b1(z) =
b2(q2z)b2(z). From b1(z) and b2(z) are distinct, it follows that b1(q2z) = b2(z) and b2(q2z) =
b1(z)

Suppose that case (iii) holds. By NBa (r, 1
f –b∗ ) > S(r, f ), we can also get (31) and (32). Let

us define a meromorphic function

g(z) :=
(
f (z) – b1(z)

)(
f (qz) – b2(qz)

)
. (41)

It is easy to see that the poles of f (z) are exactly the zeros of f (qz) – b2(qz) = 0 and the
poles of f (qz) are exactly the zeros of f (z) – b1(z) = 0 in the set of Ba. Thus, the poles of
f (z) and f (qz) in Ba are not the poles of g(z). Therefore, the poles of g(z) in B may occur in
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the complement set of Ba or from the poles of b1(z) and b2(qz). By the assumption of (iii),
it follows

NB(r, g) = S(r, f ). (42)

From (41), we get

f (qz) =
g(z)

f (z) – b1(z)
+ b2(qz), f (z/q) =

g(z/q)
f (z) – b2(z)

+ b1(z/q). (43)

Substituting (43) into (30) yields

a(z)f 2(z) + b(z)f (z) + c(z) = 0, (44)

where

a(z) = g(z) + g(z/q),

b(z) = β2(z)
(
α3(z) – 2β1(z) – β2(z)α4(z) + β2

2 (z)
)

+ β1(z)α4(z)

+ g(z)
(
b1(z/q) – b2(z)

)
+ g(z/q)

(
b2(qz) – b1(z)

)
– α2(z),

c(z) = g(z)g(z/q) + β1(z)
(
α3(z) – β1(z) – β2(z)α4(z) + β2

2 (z)
)

– g(z)b2(z)b1(z/q) – g(z/q)b1(z)b2(qz) – α1(z).

If a(z) �≡ 0, b(z) �≡ 0, c(z) �≡ 0, then from the definition of αi, βj (i = 1, . . . , 4; j = 1, 2) and
equation (42), we obtain

NB
(
r, a(z)

)
= S(r, f ), NB

(
r, b(z)

)
= S(r, f ), NB

(
r, c(z)

)
= S(r, f ). (45)

Let us rewrite equation (44) as

a(z)f 2(z) = –
(
b(z)f (z) + c(z)

)
, (46)

then it follows

NB
(
r, a(z)f 2(z)

)
= 2NB(r, f ) + S(r, f )

and

NB
(
r, –

(
b(z)f (z) + c(z)

))
= NB(r, f ) + S(r, f ),

which implies

NB(r, f ) = S(r, f ), (47)

a contradiction again. Therefore a(z) = b(z) = c(z) ≡ 0, which leads to

g(z) =
β2(z)(α3(z) – 2β1(z) – β2(z)α4(z) + β2

2 (z)) + β1(z)α4(z) – α2(z)
(b2(qz) – b1(z)) – (b1(z/q) – b2(z))

.
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It is obvious that g(z) ∈ S(f ), thus f (z) satisfies the following q-difference Riccati equa-
tion:

f (qz) =
b2(qz)f (z) + g(z) – b1(z)b2(qz)

f (z) – b1(z)
. (48)

Suppose that case (iv) holds. In the same way as case (iii), we can also get f (z) satisfies
the q-difference Riccati equation

f (qz) =
b1(qz)f (z) + g(z) – b2(z)b1(qz)

f (z) – b2(z)
, (49)

where g(z) is a small function related to f (z). The proof of Theorem 3.2 is completed. �
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