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Abstract
Recently, based on the Hadjidimos preconditioner, a preconditioned GAOR method
was proposed for solving the linear complementarity problem (Liu and Li in East
Asian J. Appl. Math. 2:94–107, 2012). In this paper, we propose a new preconditioned
GAOR method for solving the linear complementarity problem with anM-matrix. The
convergence of the proposed method is analyzed, and the comparison results are
obtained to show it accelerates the convergence of the original GAOR method and
the preconditioned GAOR method in (Liu and Li in East Asian J. Appl. Math. 2:94–107,
2012). Numerical examples verify the theoretical analysis.
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1 Introduction
For a given matrix A ∈ R

n×n and a vector f ∈ R
n, the linear complementarity problem,

abbreviated as LCP, consists of finding a vector x ∈R
n such that

x ≥ 0, r := Ax – f ≥ 0, and xT r = 0. (1)

Here, the notation “≥” denotes the componentwise defined partial ordering between two
vectors and the superscript T denotes the transpose of a vector.

The LCP of the form (1) arises in many scientific computing and engineering applica-
tions, for example, the Nash equilibrium point of a bimatrix game, the contact problem,
and the free boundary problem for journal bearings; see [5, 16] and the references therein.
As is known, LCP (1) possesses a unique solution if and only if A ∈ R

n×n is a P-matrix,
namely a matrix whose all principal submatrices have positive determinants; see [4, 5,
16]. A matrix A is called an M-matrix if its inverse is nonnegative and all its off-diagonal
entries are nonpositive. A positive diagonal M-matrix is a P-matrix, and LCP (1) with an
M-matrix has the unique solution [3].

Because of the wide applications, the research on the numerical methods for solving (1)
has attracted much attention. There are some iterative methods for obtaining the solution
of the LCP, including the projected methods [8, 9, 12], the modulus algorithms [10], and
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the modulus-based matrix splitting iterative methods [2, 6, 18, 19], see [9] for a survey
of the iterative method for LCP (1). We consider the generalized AOR (GAOR) method
[8, 12], which is a special case of the projected method, for solving LCP (1) with an M-
matrix. For accelerating the convergence rate of the GAOR method, the preconditioned
GAOR method is proposed in [13], based on the preconditioner in [7], for LCP (1) with an
M-matrix. In this paper, a new preconditioner is proposed to accelerate the convergence
rate of the GAOR method for solving LCP (1).

The outline of the rest of the paper is as follows. In Sect. 2, some preliminaries about the
projected method are reviewed, and the new preconditioner for preconditioned GAOR
method is introduced. Convergence analysis is given in Sect. 3. The convergence rates of
the proposed preconditioned GAOR method are compared with the convergence rates of
the preconditioned GAOR method in [13] and the convergence rates of the original GAOR
method for LCP with an M-matrix in Sect. 4, which shows that the proposed precondi-
tioned GAOR converges faster than the preconditioned GAOR method in [13] and the
original GAOR method. Numerical examples are given to verify the theoretical results in
Sect. 5. Finally, conclusions are drawn in Sect. 6.

2 Preliminaries
We give some of the notations, definitions, and lemmas which will be used in the sequel.
For A = (ai,j), B = (bi,j) ∈ Rn×n, we write A ≥ B if ai,j ≥ bi,j holds for all i, j = 1, 2, . . . , n. A ≥ O
is called nonnegative if ai,j ≥ 0 for all i, j = 1, 2, . . . , n, where O is an n × n zero matrix. For
the vectors a, b ∈ Rn×1, a ≥ b and a ≥ 0 can be defined in a similar manner. By |A| = (|aij|)
we define the absolute value of a given matrix A ∈ R

n×n. We denote the n × n diagonal
matrix coinciding in its diagonal with matrix C ∈R

n×n by diag(C). For simplicity, we may
assume that aii = 1 (i = 1, 2 . . . n).

Lemma 1 ([17]) Let A = [aij] ∈ Rn×n and aij ≤ 0 for i �= j. A is an M-matrix if and only if
there exists a positive vector y such that Ay > 0.

There are equivalent conditions of an M-matrix, a nonsingular M-matrix is a monotone
matrix, see [4].

Definition 1 ([4]) For a matrix A ∈R
n×n, the representation A = M –N is called a splitting

of A if M is nonsingular. Then A = M – N is called weak regular if M–1 ≥ 0 and M–1N ≥ 0.

For the weak regular splittings of different monotone matrices, there is a comparison
result as follows.

Lemma 2 ([4]) Suppose that A1 = M1 – N1 and A2 = M2 – N2 are weak regular splittings
of the monotone matrices A1 and A2, respectively, such that M–1

1 ≤ M–1
2 . If M–1

1 N1 has a
positive Perron vector, then

ρ
(
M–1

2 N2
) ≤ ρ

(
M–1

1 N1
)
.

The following lemma is taken from [11].

Lemma 3 ([11]) Let A be an M-matrix and x be a solution of LCP (1). If fi > 0, then xi > 0
and therefore

∑n
j=1 aijxj – fi = 0. Moreover, if f ≤ 0, then x = 0 is the solution of LCP (1).
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For the study of the projected methods, the following definition is needed.

Definition 2 ([15]) Given any vector x ∈R
n, x+ denotes the vector with components

(x+)i = max{xi, 0} ∀i ∈ N := {1, 2, . . . , n}.

From Definition 2, the following properties hold for any x, y ∈R
n:

(i) (x + y)+ ≤ x+ + y+;
(ii) x+ – y+ ≤ (x – y)+;

(iii) |x| = x+ + (–x)+;
(iv) x ≤ y ⇒ x+ ≤ y+.
Using Definition 2, LCP (1) is analogous to [1]

x =
(
x – D–1(Ax – f )

)
+, (2)

where D = diag(A) is a nonsingular matrix. From (2) and the splitting of A as A = D – L – U ,
here D, –L, –U are the diagonal, the strictly lower, and the strictly upper triangular parts
of A, respectively. The GAOR method for solving (1) can be defined as (see [8, 12])

xk+1 =
(
xk – D–1[α�Lxk+1 + (�A – α�L)xk – �f

])
+, k = 0, 1, . . . , (3)

where � = diag(ω1,ω2, . . . ,ωn) is a positive diagonal matrix and α is a positive real number.
Let J = D–1(L + U), G = I – α�D–1|L|, and F = |I – D–1(�A – α�L)|, the following result
concerns the convergence of the GAOR method for solving LCP (1).

Lemma 4 ([12]) Suppose that A is a positive diagonal H-matrix. Then, for any initial vec-
tor x0 ∈ Rn, the iterative sequence {xk} generated by the GAOR method (3) converges to the
unique solution x∗ of LCP (1), and

ρ
(
G–1F

) ≤ max
1≤i≤n

{|1 – ωi| + ωiρ
(|J|)} < 1,

where 0 < ωi < 2/[1 + ρ(|J|)] and 0 ≤ α ≤ 1.

For accelerating the convergence rate of the GAOR method, a preconditioner, based on
the Hadjidimos preconditioner [7], is proposed in [13]

P̃ =

⎡

⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢
⎣

1
–γ2a21 – β2 1

...
. . .

–γiai1 – βi 1
...

. . .
–γnan1 – βn 1

⎤

⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥
⎦

,

where γi ≥ 0 (i = 2, . . . , n) and βi (i = 2, . . . , n) are constants. It has been showed that the
preconditioned matrix Ã = P̃A is also an M-matrix when A is an M-matrix [13], hence the
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equivalent linear complementarity problem of LCP (1)

x ≥ 0, r̃ = Ãx – P̃f ≥ 0, xT r̃ = 0

has the unique solution [3]. The preconditioned GAOR method for solving LCP (1) is
defined [13] as

xk+1 =
(
xk – D̃–1[α�L̃xk+1 + (�Ã – α�L̃)xk – �P̃f

])
+, k = 0, 1, . . . , (4)

based on the splitting Ã = D̃ – L̃ – Ũ , please refer to [13] for more details.
Note that the preconditioning effect of P̃ is not observed on the first row of matrix A. In

order to provide the preconditioning effect on all the rows of A, in this paper, we propose
the following preconditioner:

P̂ =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

1 –γ1a1n – β1

–γ2a21 – β2 1
...

. . .
–γiai1 – βi 1

...
. . .

–γnan1 – βn 1

⎤

⎥
⎥⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

, (5)

where γi ≥ 0 (i = 1, . . . , n) and βi (i = 1, . . . , n) are constants.
Let the preconditioned matrix Â = P̂A be split as Â = D̂– L̂–Û , where D̂, L̂, and Û are the

diagonal, lower triangular, and upper triangular matrices, then the preconditioner GAOR
method for solving LCP (1) is defined as

xk+1 =
(
xk – D̂–1[α�L̂xk+1 + (�Â – α�L̂)xk – �P̂f

])
+, k = 0, 1, . . . . (6)

3 Convergence analysis
In this section, we will consider the convergence of the preconditioned GAOR method (6)
for solving LCP (1). In what follows, we make the assumptions:

(H0) f1 > 0 and fn > 0;
(H1) 0 ≤ γi ≤ 1 for i = 1, 2, . . . , n;
(H2) –γ1a1n + a1n ≤ β1 ≤ –γ1a1n;
(H3) –γiai1 + ai1 ≤ βi ≤ –γiai1 for i = 2, 3, . . . , n.

Theorem 1 Let Â = P̂A = [âij] and f̂ = P̂f = [f̂i]. If (H0)–(H3) are satisfied, then LCP (1) is
equivalent to the linear complementarity problem

x ≥ 0, r̂ = Âx – f̂ ≥ 0, xT r̂ = 0. (7)

Proof After some calculations, the elements of Â and f̂ can be expressed, respectively, as
follows:

âij =

⎧
⎨

⎩
a1j – (γ1a1n + β1)anj, i = 1, j = 1, 2, . . . , n,

aij – (γiai1 + βi)a1j, i �= 1, j = 1, 2, . . . , n,
(8)
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and

f̂i =

⎧
⎨

⎩
f1 – (γ1a1n + β1)fn, i = 1,

fi – (γiai1 + βi)f1, i �= 1.
(9)

Let x be a solution of LCP (1). Since f1 > 0 and fn > 0, from Lemma 3 we have x1 > 0,
∑n

j=1 a1jxj – f1 = 0, and xn > 0,
∑n

j=1 anjxj – fn = 0. Therefore, on the one hand, if i = 1, then

n∑

j=1

âijxj – f̂i =
n∑

j=1

(
a1j – (γ1a1n + β1)anj

)
xj –

(
f1 – (γ1a1n + β1)fn

)

=
n∑

j=1

a1jxj – f1 – (γ1a1n + β1)

( n∑

j=1

anjxj – fn

)

=
n∑

j=1

a1jxj – f1. (10)

On the other hand, if i �= 1, then

n∑

j=1

âijxj – f̂i =
n∑

j=1

(
aij – (γiai1 + βi)a1j

)
xj –

(
fi – (γiai1 + βi)f1

)

=
n∑

j=1

aijxj – fi – (γiai1 + βi)

( n∑

j=1

a1jxj – f1

)

=
n∑

j=1

aijxj – fi. (11)

Thus, x is a solution of LCP (7).
Conversely, suppose that x is the solution to LCP (7), assumptions (H0), (H3) and (9)

imply that βn + γnan1 ≤ 0, so –(βn + γnan1)f1 ≥ 0, then fn – (βn + γnan1)f1 ≥ 0, we get that
f̂n > 0. Similarly, from assumptions (H0), (H2) and (9), we can obtain f̂1 > 0. It follows from
Lemma 3 that x1 > 0,

∑n
j=1 â1jxj – f̂1 = 0, and xn > 0,

∑n
j=1 ânjxj – f̂n = 0. This together with

(10) and (11) gives
∑n

j=1 aijxj – fi = 0. Thus, for i = 1, we have

n∑

j=1

(aijxj – fi) =
n∑

j=1

(aijxj – fi) – (γ1a1n + β1)

( n∑

j=1

anjxj – fn

)

=
n∑

j=1

(
a1j – (γ1a1n + β1)anj

)
xj –

(
f1 – (γ1a1n + β1)fn

)

=
n∑

j=1

âijxj – f̂i.
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While for i �= 1, we can deduce that

n∑

j=1

(aijxj – fi) =
n∑

j=1

(aijxj – fi) – (γiain + βi)

( n∑

j=1

a1jxj – f1

)

=
n∑

j=1

(
aij – (γiai1 + βi)a1j

)
xj –

(
fi – (γiai1 + βi)f1

)

=
n∑

j=1

âijxj – f̂i.

Hence, x is the solution of LCP (1). �

Lemma 5 If A is an M-matrix, (H1)–(H3) hold, then Â = P̂A is an M-matrix.

Proof If A is an M-matrix, then aij < 0 for i �= j and a1iai1 < 1, which leads to a1i > 1/ai1.
Otherwise, from (8) and assumption (H2), –γ1a1n + a1n ≤ β1 ≤ –γ1a1n, we have that β1 +
γ1a1n ≤ 0 and β1 +γ1a1n ≥ a1n > 1/an1. Then â11 = a11 –(β1 +γ1a1n)an1 > 1–1/an1 ∗an1 = 0.

Similarly, we can obtain

â11 = a11 – (γ1a1n + β1)an1 > 0,

âii = aii – (γiai1 + βi)a1i > 0, i �= 1,

â1j = a1j – (γ1a1n + β1)anj < 0,

âij = aij – (γiai1 + βi)a1j < 0, i �= 1, j.

From Lemma 1 there exists a positive vector y > 0 such that Ay > 0. Note that P̂ > 0, thus
Ây = P̂Ay > 0, and from Lemma 1, Â is an M-matrix. �

Theorem 2 Let A be a diagonally dominant M-matrix. If (H0)–(H3) hold, then for 0 ≤
ωi ≤ 2/[1 + ρ(|Ĵ|)] (i = 1, . . . , n) and 0 ≤ α ≤ 1, the iterative sequence of the preconditioned
GAOR method (6) converges to the unique solution x∗ of LCP (1), here Ĵ = D̂–1(̂L + Û).

Proof From Lemma 5, we know that Â is a diagonally dominant H-matrix. Thus from
Theorem 1 and Lemma 4, the preconditioned GAOR method (6) converges to the unique
solution of LCP (1). �

4 Comparison results
In this section, we will compare the convergence rate of the preconditioned GAOR method
(6) with that of the GAOR method (3) and that of the preconditioned GAOR method (4)
[13]. For simplicity, we may assume that aii = 1, i = 1, . . . , n. For this case, G = I – α�|L|,
F = |I – (�A – α�L)|, and D̃, L̃, and Ũ can be expressed as D̃ = I – SD, L̃ = L – S + SL,
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Ũ = U + SU with

S =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎢⎢
⎣

0
–γ2a21 – β2 0

...
. . .

–γiai1 – βi 0
...

. . .
–γnan1 – βn 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎥⎥
⎦

,

SD =

⎡

⎢⎢
⎢⎢⎢
⎢⎢
⎣

0
(γ2a21 + β2)a12

(γ3a31 + β3)a13
. . .

(γnan1 + βn)a1n

⎤

⎥⎥
⎥⎥⎥
⎥⎥
⎦

,

SL =

⎡

⎢⎢
⎢⎢
⎢⎢
⎢
⎣

0 0 · · · 0 0
0 0 · · · 0 0
0 (γ3a31 + β3)a12 · · · 0 0
...

...
. . .

...
...

0 (γnan1 + βn)a12 · · · (γnan1 + βn)a1,n–1 0

⎤

⎥⎥
⎥⎥
⎥⎥
⎥
⎦

,

SU =

⎡

⎢
⎢⎢⎢
⎢⎢
⎢
⎣

0 0 · · · 0 0
0 0 (γ2a21 + β2)a13 · · · (γ2a21 + β2)a1n
...

...
. . .

...
...

0 0 0 · · · (γn–1an–1,1 + βn–1)a1n

0 0 0 · · · 0

⎤

⎥
⎥⎥⎥
⎥⎥
⎥
⎦

.

Moreover, the D̂, L̂, and Û can be expressed as D̂ = I – SD – RD, L̂ = L – S + SL, Û = U +
SU – R + RU with

R =

⎡

⎢⎢
⎢⎢
⎣

0 · · · 0 –γ1a1n – β1

0 · · · 0 0
...

. . .
...

...
0 · · · 0 0

⎤

⎥⎥
⎥⎥
⎦

,

RD =

⎡

⎢⎢
⎢⎢
⎣

(γ1a1n + β1)an1

0
. . .

0

⎤

⎥⎥
⎥⎥
⎦

,

RU =

⎡

⎢⎢
⎢⎢
⎣

0 (γ1a1n + β1)an2 · · · (γ1a1n + β1)ann

0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

⎤

⎥⎥
⎥⎥
⎦

.

Lemma 6 If A is an M-matrix with diagonal elements 1, (H1)–(H3) hold, then 0 ≤ D̂ ≤ D̃.
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Proof Note that

D̃ = diag
(
1, 1 – (γ2a21 + β2)a12, . . . , 1 – (γnan1 + βn)a1n

)

and

D̂ = diag
(
1 – (γ1a1n + β1)an1, 1 – (γ2a21 + β2)a12, . . . , 1 – (γnan1 + βn)a1n

)
.

Since A is an M-matrix with diagonal elements 1, we have 0 < aijaji < 1 (i �= j) [7]. Then
assumptions (H1)–(H3) imply that

0 < 1 – (γ1a1n + β1)an1 < 1

and

0 < 1 – (γiai1 + βi)a1i < 1, i = 2, . . . , n.

Hence, 0 ≤ D̂ ≤ D̃. �

From Lemma 6 and the fact that L̂ = L̃, we have

D̃–1 |̃L| ≤ D̂–1 |̂L|. (12)

Moreover, it is easy to check that the inequality

|L| ≤ D̃–1 |̃L| (13)

holds [14]. Let G̃ = I – α�D̃–1 |̃L|, F̃ = |I – D̃–1(�Ã – α�L̃)|, Ĝ = I – α�D̂–1 |̂L|, and F̂ =
|I – D̂–1(�Â – α�L̂)|. If (H1) and (H3) hold, then [14]

ρ
(
G̃–1F̃

) ≤ ρ
(
G–1F

)
< 1. (14)

The following theorem gives a comparison result between ρ(G̃–1F̃) with ρ(Ĝ–1F̂).

Theorem 3 If A is an irreducible nonsingular M-matrix, and (H0)–(H3) hold, then

ρ
(
Ĝ–1F̂

) ≤ ρ
(
G̃–1F̃

)
< 1.

Proof It follows from Theorem 2 and (14) that ρ(Ĝ–1F̂) < 1 and ρ(G̃–1F̃) < 1, so we only
need to show

ρ
(
Ĝ–1F̂

) ≤ ρ
(
G̃–1F̃

)
.

In terms of (12), we have

I – α�D̂–1 |̂L| ≤ I – α�D̃–1 |̃L|,
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that is, Ĝ ≤ G̃. Note that Ĝ and G̃ are M-matrices, hence

0 ≤ G̃–1 ≤ Ĝ–1. (15)

As F̃ = |I – D̃–1(�Ã – α�L̃)| and F̂ = |I – D̂–1(�Â – α�L̂)| are nonnegative matrices, thus,
this together with (15) yields G̃– F̃ and Ĝ– F̂ are the regular splitting of different monotone
matrices G̃– F̃ and Ĝ– F̂ , respectively. Moreover, for a nonnegative matrix G̃–1F̃ , according
to Perron–Frobenius theorem (see [4]), there is a positive Perron vector z such that

G̃–1F̃z = ρ
(
G̃–1F̃

)
z.

Hence, it follows from Lemma 2 that

ρ
(
Ĝ–1F̂

) ≤ ρ
(
G̃–1F̃

)
.

The proof is completed. �

Remark 1 From Theorem 3 and (14), we can see that under assumptions (H0)–(H3), the
inequalities

ρ
(
Ĝ–1F̂

) ≤ ρ
(
G̃–1F̃

) ≤ ρ
(
G–1F

)
< 1

hold. This confirms that the proposed preconditioner P̂ in (5) is more efficient than the
preconditioner P̃ [13] for accelerating the convergence rate of GAOR method for solving
LCP (1) with an M-matrix.

5 Numerical example
In this section, two examples are given for verifying the theoretical result.

Example 1 Linear complementarity problem with coefficient matrix

A1 =

⎡

⎢⎢⎢
⎢⎢
⎢
⎣

1.00000 –0.00580 –0.19350 –0.25471 –0.03885
–0.28424 1.00000 –0.16748 –0.21780 –0.21577
–0.24764 –0.26973 1.00000 –0.18723 –0.08949
–0.13880 –0.01165 –0.25120 1.00000 –0.13236
–0.25809 –0.08162 –0.13940 –0.04890 1.00000

⎤

⎥⎥⎥
⎥⎥
⎥
⎦

.

Tables 1 and 2 list ρ(G–1F), ρ(G̃–1F̃), and ρ(Ĝ–1F̂) for different α and �.

Table 1 ρ(G–1F), ρ (̃G–1̃F), and ρ (̂G–1̂F) with α = 0.1 and ωi = 0.1

Preconditioner (γ1, . . . ,γ5)T (β1, . . . ,β5)T ρ(·)
I – – 0.96934
P̃ (0, 1, 1, 1, 0.1)T (0, 0.1, 0, 0.01, 0.05)T 0.96311

(0, 1, 0, 1, 0)T (0, 0, 0.04, 0.04, 0.05)T 0.96750
P̂ (1, 1, 1, 1, 0.1)T (0.03, 0.1, 0, 0.01, 0.05)T 0.96292

(1, 1, 0, 1, 0)T (0, 0, 0.04, 0.04, 0.05)T 0.96708
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Table 2 ρ(G–1F), ρ (̃G–1̃F), and ρ (̂G–1̂F) with α = 0.1 and ωi = 0.9

Preconditioner (γ1, . . . ,γ5)T (β1, . . . ,β5)T ρ(·)
I – – 0.71690
P̃ (0, 1, 1, 1, 0.1)T (0, 0.1, 0, 0.01, 0.05)T 0.67388

(0, 1, 0, 1, 0)T (0, 0, 0.04, 0.04, 0.05)T 0.70036
P̂ (1, 1, 1, 1, 0.1)T (0.03, 0.1, 0, 0.01, 0.05)T 0.67153

(1, 1, 0, 1, 0)T (0, 0, 0.04, 0.04, 0.05)T 0.69654

Example 2 Let the coefficient matrix A of LCP (1) be given by

A =

(
I – Q U

L I – R

)

,

where Q = (qij) ∈ Rp×p, R = (rij) ∈ Rq×q, L = (lij) ∈ Rq×p, and U = (uij) ∈ Rp×q with

qii =
1

10(i + 1)
, 1 ≤ i ≤ p,

qij =
1

30
–

1
30j + i

, 1 ≤ i < j ≤ p,

qij =
1

30
–

1
30(i – j + 1) + i

, 1 ≤ j < i ≤ p,

rii =
1

10(p + i + 1)
, 1 ≤ i ≤ q,

rij =
1

30
–

1
30(p + j) + p + i

, 1 ≤ i < j ≤ q,

rij =
1

30
–

1
30(i – j + 1) + p + i

, 1 ≤ j < i ≤ q,

lij =
1

30(p + i – j + 1) + p + i
–

1
30

, 1 ≤ i ≤ q, 1 ≤ j ≤ p,

uij =
1

30(p + j) + i
–

1
30

, 1 ≤ i ≤ p, 1 ≤ j ≤ q.

It is obvious that A is an irreducible M-matrix.
Table 3 and Table 4 list ρ(G–1F), ρ(G̃–1F̃), and ρ(Ĝ–1F̂) with different α and � for Exam-

ple 2, where in P̃, let (γ1,γ2, . . . ,γn)T = (0, 1
3 , . . . , 1

3 )T , (β1,β1, . . . ,βn)T = (0, 0.003, . . . , 0.003)T

and in P̂, let (γ1,γ2, . . . ,γn)T = ( 1
3 , 1

3 , . . . , 1
3 )T , (β1,β1, . . . ,βn)T = (0.003, 0.003, . . . ,

0.003)T .

Table 3 ρ(G–1F), ρ (̃G–1̃F), and ρ(Ĝ–1F̂) with α = 0.1 and ωi = 0.6 for Example 2

n I P̃ P̂

5 0.46078 0.46040 0.46038
10 0.55689 0.55636 0.55635
15 0.65889 0.65833 0.65832
20 0.763952 0.763399 0.763395
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Table 4 ρ(G–1F), ρ (̃G–1̃F), and ρ(Ĝ–1F̂) with α = 0.2 and ωi = 0.7 for Example 2

n I P̃ P̂

5 0.37475 0.37400 0.37398
10 0.49391 0.49285 0.49284
15 0.62177 0.62063 0.62062
20 0.75501 0.75386 0.75385

From Tables 1, 2, 3, and 4 we can see that, for different choices of α and �, the inequalities

ρ
(
Ĝ–1F̂

) ≤ ρ
(
G̃–1F̃

)
< 1

hold, which verifies the theoretical result in Theorem 3.

6 Conclusions
In this paper, we present a new preconditioner P̂, which provides the preconditioning
effect on all the rows of A, to accelerate the convergence rate of the GAOR method to
solve LCP (1) with an M-matrix A, and consider the preconditioned GAOR method (6).
We prove that the original LCP (1) is equivalent to LCP (7), and show that the precondi-
tioned GAOR method (6) is convergent for solving LCP (1). Then a comparison theorem
on the preconditioned GAOR method (6) is obtained, which shows that the precondi-
tioned GAOR method (6) improves the convergence rate of the preconditioned GAOR
method in [13] for solving LCP (1). Together with the comparison result in [12], we know
that the preconditioned GAOR method (6) improves considerably the convergence rate
of the original GAOR method for solving LCP (1).
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