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1 Introduction
Throughout this paper, let Mn be the set of all n × n complex matrices. We denote by In

the identity matrix in Mn. For two Hermitian matrices A, B ∈ Mn, we use A ≥ B (B ≤ A)
to mean that A – B is a positive semidefinite matrix. A matrix A ∈ Mn is called accretive-
dissipative if in its Cartesian (or Toeptliz) decomposition, A = �(A) + i�(A), the matrices
�(A) and �(A) are positive semidefinite, where �(A) = A+A∗

2 , �(A) = A–A∗
2i .

Let ‖| · ‖| denote any unitarily invariant norm on Mn. Note that tr is the usual trace
functional. For p > 0 and A ∈ Mn, let ‖A‖p = (

∑n
j=1 sp

j (A))
1
p , where s1(A) ≥ s2(A) ≥ · · · ≥

sn(A) are the singular values of A. Thus, ‖A‖p = (tr |A|p)
1
p . For p ≥ 1, this is the Schatten

p-norm of A. For more information about the Schatten p-norms, see [1, p. 92].
A real-valued continuous function f on an interval I is called matrix concave of order n

if f (αA + (1 – α)B) ≥ αf (A) + (1 – α)f (B) for any two Hermitian matrices A, B ∈ Mn with
spectrum in I and all α ∈ [0, 1]. Furthermore, f is called operator concave if f is matrix
concave for all n.

The numerical range of A ∈Mn is defined by

W (A) =
{

x∗Ax : x ∈ C
n, x∗x = 1

}
.

For α ∈ [0, π
2 ), Sα denotes the sector in the complex plane as follows:

Sα =
{

z ∈C : �z ≥ 0, |�z| ≤ (�z) tanα
}

.

Clearly, A is positive semidefinite if and only if W (A) ⊂ S0, and if W (A), W (B) ⊂ Sα for
some α ∈ [0, π

2 ), then W (A + B) ⊂ Sα . As 0 /∈ Sα , if W (A) ⊂ Sα , then A is nonsingular.
In [7], Kittaneh and Sakkijha gave the following Schatten-p norm inequalities involving

sums of accretive-dissipative matrices.
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Theorem 1.1 Let S, T ∈ Mn be accretive-dissipative. Then

2
–p
2
(‖S‖p

p + ‖T‖p
p
) ≤ ‖S + T‖p

p ≤ 2
3
2 p–1(‖S‖p

p + ‖T‖p
p
)

for p ≥ 1.

In [5], Garg and Aujla showed the following inequalities:

k∏

j=1

sj
(|A + B|r) ≤

k∏

j=1

sj
(
In + |A|r)

k∏

j=1

sj
(
In + |B|r) for 1 ≤ k ≤ n, 1 ≤ r ≤ 2; (1)

and

k∏

j=1

sj
(
In + f

(|A + B|)) ≤
k∏

j=1

sj
(
In + f

(|A|))
k∏

j=1

sj
(
In + f

(|B|)) for 1 ≤ k ≤ n, (2)

where A, B ∈Mn and f : [0,∞) → [0,∞) is an operator concave function.
By letting A, B ≥ 0, r = 1 and f (X) = X for any X ∈Mn in (1) and (2), we have

k∏

j=1

sj(A + B) ≤
k∏

j=1

sj(In + A)
k∏

j=1

sj(In + B) for 1 ≤ k ≤ n; (3)

and

k∏

j=1

sj(In + A + B) ≤
k∏

j=1

sj(In + A)
k∏

j=1

sj(In + B) for 1 ≤ k ≤ n. (4)

In this paper, we give a generalization of Theorem 1.1. Moreover, we present some in-
equalities for sector matrices based on (3) and (4) which remove the absolute values in (1)
and (2) from the right-hand side.

2 Main results
Before we give the main results, let us present the following lemmas that will be useful
later.

Lemma 2.1 ([2, 11]) Let A1, . . . , An ∈Mn be positive semidefinite. Then

n∑

j=1

‖Aj‖p
p ≤

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

≤ np–1
n∑

j=1

‖Aj‖p
p for p ≥ 1.

Lemma 2.2 ([3]) Let A, B ∈Mn be positive semidefinite. Then

‖A + iB‖p ≤ ‖A + B‖p ≤ √
2‖A + iB‖p for p ≥ 1.

Our first main result is a generalization of Theorem 1.1.

Theorem 2.3 Let A1, . . . , An ∈Mn be accretive-dissipative. Then

2
–p
2

n∑

j=1

‖Aj‖p
p ≤

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

≤ (2n2)
p
2

n

n∑

j=1

‖Aj‖p
p for p ≥ 1.
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Proof Let Aj = Bj + iCj be the Cartesian decompositions of Aj, j = 1, . . . , n. Then we have

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

=

∥
∥
∥
∥
∥

n∑

j=1

(Bj + iCj)

∥
∥
∥
∥
∥

p

p

=

∥
∥
∥
∥
∥

n∑

j=1

Bj + i
n∑

j=1

Cj

∥
∥
∥
∥
∥

p

p

≥ 2
–p
2

∥
∥
∥
∥
∥

n∑

j=1

Bj +
n∑

j=1

Cj

∥
∥
∥
∥
∥

p

p

(by Lemma 2.2)

= 2
–p
2

∥
∥
∥
∥
∥

n∑

j=1

(Bj + Cj)

∥
∥
∥
∥
∥

p

p

≥ 2
–p
2

n∑

j=1

‖Bj + Cj‖p
p (by Lemma 2.1)

≥ 2
–p
2

n∑

j=1

‖Bj + iCj‖p
p (by Lemma 2.2)

= 2
–p
2

n∑

j=1

‖Aj‖p
p,

which proves the first inequality.
To prove the second inequality, compute

∥
∥
∥
∥
∥

n∑

j=1

Aj

∥
∥
∥
∥
∥

p

p

=

∥
∥
∥
∥
∥

n∑

j=1

(Bj + iCj)

∥
∥
∥
∥
∥

p

p

=

∥
∥
∥
∥
∥

n∑

j=1

Bj + i
n∑

j=1

Cj

∥
∥
∥
∥
∥

p

p

≤
∥
∥
∥
∥
∥

n∑

j=1

Bj +
n∑

j=1

Cj

∥
∥
∥
∥
∥

p

p

(by Lemma 2.2)

=

∥
∥
∥
∥
∥

n∑

j=1

(Bj + Cj)

∥
∥
∥
∥
∥

p

p

≤ np–1
n∑

j=1

‖Bj + Cj‖p
p (by Lemma 2.1)

≤ np–12
p
2

n∑

j=1

‖Bj + iCj‖p
p (by Lemma 2.2)

=
(2n2)

p
2

n

n∑

j=1

‖Aj‖p
p,

which completes the proof. �

Remark 2.4 By letting n = 2 in Theorem 2.3, we thus get Theorem 1.1.
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The following lemma is the well-known Fan–Hoffman inequality.

Lemma 2.5 ([12, p. 63]) Let A ∈Mn. Then

λj(�A) ≤ sj(A),

where λj(·) denotes the jth largest eigenvalue.

In [4], Drury and Lin presented a reverse version of Lemma 2.5 as follows.

Lemma 2.6 Let A ∈Mn be such that W (A) ⊂ Sα . Then

sj(A) ≤ sec2(α)λj(�A),

where λj(·) denotes the jth largest eigenvalue.

Theorem 2.7 Let A, B ∈Mn be such that W (A), W (B) ⊂ Sα . Then

k∏

j=1

sj(A + B) ≤ sec2k(α)
k∏

j=1

sj(In + A)
k∏

j=1

sj(In + B) for 1 ≤ k ≤ n; (5)

and

k∏

j=1

sj(In + A + B) ≤ sec2k(α)
k∏

j=1

sj(In + A)
k∏

j=1

sj(In + B) for 1 ≤ k ≤ n. (6)

Proof We have

k∏

j=1

sj(A + B) ≤ sec2k(α)
k∏

j=1

sj
(�(A + B)

)
(by Lemma 2.6)

= sec2k(α)
k∏

j=1

sj
(�(A) + �(B)

)

≤ sec2k(α)
k∏

j=1

sj
(
In + �(A)

) k∏

j=1

sj
(
In + �(B)

) (
by (3)

)

= sec2k(α)
k∏

j=1

sj
(�(In + A)

) k∏

j=1

sj
(�(In + B)

)

≤ sec2k(α)
k∏

j=1

sj(In + A)
k∏

j=1

sj(In + B) (by Lemma 2.5)

which proves (5).
To prove (6), compute

k∏

j=1

sj(In + A + B) ≤ sec2k(α)
k∏

j=1

sj
(�(In + A + B)

)
(by Lemma 2.6)
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= sec2k(α)
k∏

j=1

sj
(
In + �(A) + �(B)

)

≤ sec2k(α)
k∏

j=1

sj
(
In + �(A)

) k∏

j=1

sj
(
In + �(B)

) (
by (4)

)

= sec2k(α)
k∏

j=1

sj
(�(In + A)

) k∏

j=1

sj
(�(In + B)

)

≤ sec2k(α)
k∏

j=1

sj(In + A)
k∏

j=1

sj(In + B), (by Lemma 2.5)

which completes the proof. �

Corollary 2.8 Let A, B ∈Mn be such that W (A), W (B) ⊂ Sα . Then, for all unitarily invari-
ant norms ‖| · ‖| on Mn,

‖|A + B‖| ≤ sec2(α)‖|In + A‖|‖|In + B‖|;

and

‖|In + A + B‖| ≤ sec2(α)‖|In + A‖|‖|In + B‖|.

Proof From (5) and (6), we obtain

k∏

j=1

sj(A + B) ≤
k∏

j=1

sj
(
sec(α)(In + A)

)
sj
(
sec(α)(In + B)

)
for 1 ≤ k ≤ n;

and

k∏

j=1

sj(In + A + B) ≤
k∏

j=1

sj
(
sec(α)(In + A)

)
sj
(
sec(α)(In + B)

)
for 1 ≤ k ≤ n,

which is equivalent to the following inequalities:

k∏

j=1

s
1
2
j (A + B) ≤

k∏

j=1

s
1
2
j
(
sec(α)(In + A)

)
s

1
2
j
(
sec(α)(In + B)

)
for 1 ≤ k ≤ n;

and

k∏

j=1

s
1
2
j (In + A + B) ≤

k∏

j=1

s
1
2
j
(
sec(α)(In + A)

)
s

1
2
j
(
sec(α)(In + B)

)
for 1 ≤ k ≤ n.

By the property of majorization [1, p. 42], we have

k∑

j=1

s
1
2
j (A + B) ≤

k∑

j=1

s
1
2
j
(
sec(α)(In + A)

)
s

1
2
j
(
sec(α)(In + B)

)
for 1 ≤ k ≤ n;
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and

k∑

j=1

s
1
2
j (In + A + B) ≤

k∑

j=1

s
1
2
j
(
sec(α)(In + A)

)
s

1
2
j
(
sec(α)(In + B)

)
for 1 ≤ k ≤ n.

Now, by the Cauchy–Schwarz inequality, we obtain

k∑

j=1

s
1
2
j (A + B) ≤

( k∑

j=1

sj
(
sec(α)(In + A)

)
) 1

2
( k∑

j=1

sj
(
sec(α)(In + B)

)
) 1

2

for 1 ≤ k ≤ n;

and

k∑

j=1

s
1
2
j (In + A + B) ≤

( k∑

j=1

sj
(
sec(α)(In + A)

)
) 1

2
( k∑

j=1

sj
(
sec(α)(In + B)

)
) 1

2

for 1 ≤ k ≤ n,

which is equivalent to the following inequalities:

∥
∥|A + B| 1

2
∥
∥2

k ≤ ∥
∥sec(α)(In + A)

∥
∥

k

∥
∥sec(α)(In + B)

∥
∥

k ;

and

∥
∥|In + A + B| 1

2
∥
∥2

k ≤ ∥
∥sec(α)(In + A)

∥
∥

k

∥
∥sec(α)(In + B)

∥
∥

k .

By the generalization of Fan dominance theorem [8], we have

∥
∥
∣
∣|A + B| 1

2
∥
∥
∣
∣2 ≤ ∥

∥
∣
∣sec(α)(In + A)

∥
∥
∣
∣
∥
∥
∣
∣sec(α)(In + B)

∥
∥
∣
∣; (7)

and

∥
∥
∣
∣|In + A + B| 1

2
∥
∥
∣
∣2 ≤ ∥

∥
∣
∣sec(α)(In + A)

∥
∥
∣
∣
∥
∥
∣
∣sec(α)(In + B)

∥
∥
∣
∣. (8)

Let A + B = U|A + B|, In + A + B = V |In + A + B| be the polar decomposition of A + B and
In + A + B, respectively, where U and V are unitary matrices. Thus, by (7), we have

‖|A + B‖| =
∥
∥
∣
∣U|A + B|∥∥∣∣

=
∥
∥
∣
∣
(|A + B| 1

2
)2∥∥

∣
∣

≤ ∥
∥
∣
∣|A + B| 1

2
∥
∥
∣
∣2

≤ ∥
∥
∣
∣sec(α)(In + A)

∥
∥
∣
∣
∥
∥
∣
∣sec(α)(In + B)

∥
∥
∣
∣

= sec(α)2∥∥
∣
∣(In + A)

∥
∥
∣
∣
∥
∥
∣
∣(In + B)

∥
∥
∣
∣.

Similarly, by (8) we have

‖|In + A + B‖| ≤ sec2(α)‖|In + A‖|‖|In + B‖|,

which completes the proof. �
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Taking k = n in Theorem 2.7, we obtain the following corollary.

Corollary 2.9 Let A, B ∈ Mn be such that W (A), W (B) ⊂ Sα . Then

∣
∣det(A + B)

∣
∣ ≤ sec2n(α)

∣
∣det(In + A)

∣
∣
∣
∣det(In + B)

∣
∣;

and

∣
∣det(In + A + B)

∣
∣ ≤ sec2n(α)

∣
∣det(In + A)

∣
∣
∣
∣det(In + B)

∣
∣.

Lemma 2.10 ([13]) Let A ∈ Mn be such that W (A) ⊂ Sα . Then, for all unitarily invariant
norms ‖| · ‖| on Mn,

‖|A‖| ≤ sec(α)
∥
∥
∣
∣�(A)

∥
∥
∣
∣.

Next we give an improvement of Corollary 2.8.

Theorem 2.11 Let A, B ∈ Mn be such that W (A), W (B) ⊂ Sα . Then, for all unitarily in-
variant norms ‖| · ‖| on Mn,

‖|A + B‖| ≤ sec(α)‖|In + A‖|‖|In + B‖|; (9)

and

‖|In + A + B‖| ≤ sec(α)‖|In + A‖|‖|In + B‖|. (10)

Proof By (3), (4), and the proof of Corollary 2.8, we obtain

∥
∥
∣
∣�(A) + �(B)

∥
∥
∣
∣ ≤ ∥

∥
∣
∣In + �(A)

∥
∥
∣
∣
∥
∥
∣
∣In + �(B)

∥
∥
∣
∣; (11)

and

∥
∥
∣
∣In + �(A) + �(B)

∥
∥
∣
∣ ≤ ∥

∥
∣
∣In + �(A)

∥
∥
∣
∣
∥
∥
∣
∣In + �(B)

∥
∥
∣
∣. (12)

Hence

‖|A + B‖| ≤ sec(α)
∥
∥
∣
∣�(A + B)

∥
∥
∣
∣ (by Lemma 2.10)

= sec(α)
∥
∥
∣
∣�(A) + �(B)

∥
∥
∣
∣

≤ sec(α)
∥
∥
∣
∣In + �(A)

∥
∥
∣
∣
∥
∥
∣
∣In + �(B)

∥
∥
∣
∣

(
by (11)

)

= sec(α)
∥
∥
∣
∣�(In + A)

∥
∥
∣
∣
∥
∥
∣
∣�(In + B)

∥
∥
∣
∣

≤ sec(α)‖|In + A‖|‖|In + B‖|,

which proves (9).



Yang and Lu Journal of Inequalities and Applications  (2018) 2018:183 Page 8 of 11

To prove (10), compute

‖|In + A + B‖| ≤ sec(α)
∥
∥
∣
∣�(In + A + B)

∥
∥
∣
∣ (by Lemma 2.10)

= sec(α)
∥
∥
∣
∣In + �(A) + �(B)

∥
∥
∣
∣

≤ sec(α)
∥
∥
∣
∣In + �(A)

∥
∥
∣
∣
∥
∥
∣
∣In + �(B)

∥
∥
∣
∣

(
by (12)

)

= sec(α)
∥
∥
∣
∣�(In + A)

∥
∥
∣
∣
∥
∥
∣
∣�(In + B)

∥
∥
∣
∣

≤ sec(α)‖|In + A‖|‖|In + B‖|,

which completes the proof. �

The following lemma can be obtained by Lemma 2.5.

Lemma 2.12 ([6, p. 510]) If A ∈Mn has positive definite real part, then

det (�A) ≤ |det A|.

Lemma 2.13 ([10]) Let A ∈Mn be such that W (A) ⊂ Sα . Then

secn(α) det(�A) ≥ |det A|.

Now we are ready to give an improvement of Corollary 2.9.

Theorem 2.14 Let A, B ∈ Mn be such that W (A), W (B) ⊂ Sα . Then

∣
∣det(A + B)

∣
∣ ≤ secn(α)

∣
∣det(In + A)

∣
∣
∣
∣det(In + B)

∣
∣; (13)

and

∣
∣det(In + A + B)

∣
∣ ≤ secn(α)

∣
∣det(In + A)

∣
∣
∣
∣det(In + B)

∣
∣. (14)

Proof Letting k = n in (3) and (4), we have

det
(�(A) + �(B)

) ≤ det
(
In + �(A)

)
det

(
In + �(B)

)
; (15)

and

det
(
In + �(A) + �(B)

) ≤ det
(
In + �(A)

)
det

(
In + �(B)

)
. (16)

Thus

∣
∣det(A + B)

∣
∣ ≤ secn(α) det

(�(A + B)
)

(by Lemma 2.13)

= secn(α) det
(�(A) + �(B)

)

≤ secn(α) det
(
In + �(A)

)
det

(
In + �(B)

) (
by (15)

)
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= secn(α) det
(�(In + A)

)
det

(�(In + B)
)

≤ secn(α)
∣
∣det(In + A)

∣
∣
∣
∣det(In + B)

∣
∣ (by Lemma 2.12)

which proves (13).
To prove (14), compute

∣
∣det(In + A + B)

∣
∣ ≤ secn(α) det

(�(In + A + B)
)

(by Lemma 2.13)

= secn(α) det
(
In + �(A) + �(B)

)

≤ secn(α) det
(
In + �(A)

)
det

(
In + �(B)

) (
by (16)

)

= secn(α) det
(�(In + A)

)
det

(�(In + B)
)

≤ secn(α)
∣
∣det(In + A)

∣
∣
∣
∣det(In + B)

∣
∣ (by Lemma 2.12)

which completes the proof. �

Lemma 2.15 ([9]) Let A, B ∈Mn be positive semidefinite. Then

∣
∣det (A + iB)

∣
∣ ≤ det (A + B) ≤ 2

n
2
∣
∣det (A + iB)

∣
∣.

We remark that (2) extends the well-known Rotfel’d inequality:

det
(
In + μ|A + B|p) ≤ det

(
In + μ|A|p)det

(
In + μ|B|p) for μ > 0, 0 ≤ p ≤ 1. (17)

Finally, we present two inequalities for accretive-dissipative matrices.

Theorem 2.16 Let A, B ∈ Mn be accretive-dissipative and μ > 0. Then

∣
∣det (A + B)

∣
∣ ≤ 2n∣∣det (In + A)

∣
∣
∣
∣det (In + B)

∣
∣; (18)

and

∣
∣det

(
In + μ(A + B)

)∣
∣ ≤ 2n∣∣det (In + μA)

∣
∣
∣
∣det (In + μB)

∣
∣. (19)

In particular,

∣
∣det (In + A + B)

∣
∣ ≤ 2n∣∣det (In + A)

∣
∣
∣
∣det (In + B)

∣
∣.

Proof Let A = A1 + iA2 and B = B1 + iB2 be the Cartesian decompositions of A and B. By
(3) and (17), we obtain

det (A1 + A2 + B1 + B2) ≤ det (In + A1 + A2) det (In + B1 + B2); (20)

and

det
(
In + μ(A1 + A2 + B1 + B2)

) ≤ det
(
In + μ(A1 + A2)

)
det

(
In + μ(B1 + B2)

)
. (21)
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Hence

∣
∣det (A + B)

∣
∣ =

∣
∣det (A1 + iA2 + B1 + iB2)

∣
∣

=
∣
∣det

(
(A1 + B1) + i(A2 + B2)

)∣
∣

≤ det (A1 + B1 + A2 + B2) (by Lemma 2.15)

= det (A1 + A2 + B1 + B2)

≤ det (In + A1 + A2) det (In + B1 + B2)
(
by (20)

)

≤ 2n∣∣det (In + A1 + iA2)
∣
∣
∣
∣det (In + B1 + iB2)

∣
∣ (by Lemma 2.15)

= 2n∣∣det (In + A)
∣
∣
∣
∣det (In + B)

∣
∣,

which proves (18).
To prove (19), compute

∣
∣det

(
In + μ(A + B)

)∣
∣

=
∣
∣det

(
In + μ(A1 + iA2 + B1 + iB2)

)∣
∣

=
∣
∣det

(
In + μ(A1 + B1) + μi(A2 + B2)

)∣
∣

≤ det
(
In + μ(A1 + B1 + A2 + B2)

)
(by Lemma 2.15)

= det
(
In + μ(A1 + A2 + B1 + B2)

)

≤ det
(
In + μ(A1 + A2)

)
det

(
In + μ(B1 + B2)

) (
by (21)

)

≤ 2n∣∣det
(
In + μ(A1 + iA2)

)∣
∣
∣
∣det

(
In + μ(B1 + iB2)

)∣
∣ (by Lemma 2.15)

= 2n∣∣det (In + μA)
∣
∣
∣
∣det (In + μB)

∣
∣,

which completes the proof. �
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