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Abstract
By utilizing the concept of generalized order, we investigate the growth of
Laplace–Stieltjes transform converging in the half plane and obtain one equivalence
theorem concerning the generalized order of Laplace–Stieltjes transforms. Besides,
we also study the problem on the approximation of this Laplace–Stieltjes transform
and give some results about the generalized order, the error, and the coefficients of
Laplace–Stieltjes transforms. Our results are extension and improvement of the
previous theorems given by Luo and Kong, Singhal, and Srivastava.
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1 Introduction
Laplace–Stieltjes transforms

F(s) =
∫ +∞

0
esx dα(x), s = σ + it, (1)

where α(x) is a bounded variation on any finite interval [0, Y ] (0 < Y < +∞), and σ and
t are real variables, as we know, if α(t) is absolutely continuous, then F(s) becomes the
classical Laplace integral of the form

F(s) =
∫ ∞

0
estg(t) dt. (2)

If α(t) is a step-function and satisfies

α(x) =

⎧⎪⎪⎨
⎪⎪⎩

a1 + a2 + · · · + an, λn < x < λn+1;

0, 0 ≤ x < λ1;
α(x+)+α(x–)

2 , x > 0,
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where the sequence {λn}∞0 satisfies

0 = λ1 < λ2 < λ3 < · · · < λn ↑ +∞, (3)

thus F(s) becomes a Dirichlet series

F(s) =
∞∑

n=1

aneλns, s = σ + it. (4)

(σ , t are real variables), an are nonzero complex numbers. Obviously, if α(t) is an increasing
continuous function which is not absolutely continuous, then the integral (1) defines a
class of functions F(s) which cannot be expressed either in the form (2) or (4).

Let a sequence {λn}∞n=1 satisfy (3), and

lim sup
n→+∞

(λn+1 – λn) = h < +∞, lim sup
n→+∞

n
λn

= D < ∞. (5)

Set

A∗
n = sup

λn<x≤λn+1,–∞<t<+∞

∣∣∣∣
∫ x

λn

eity dα(y)
∣∣∣∣,

if

lim sup
n→+∞

log A∗
n

λn
= 0, (6)

it is easy to get σ F
u = 0, that is, F(s) is analytic in the left half plane; if

lim sup
n→+∞

log A∗
n

λn
= –∞, (7)

it follows that σ F
u = +∞, that is, F(s) is analytic in the whole plane. For convenience, we

use Lβ to be a class of all the functions F(s) of the form (1) which are analytic in the half
plane �s < β (–∞ < β < ∞) and the sequence {λn} satisfies (3) and (5); L0 to be the class
of all the functions F(s) of the form (1) which are analytic in the half plane �s < 0 and the
sequence {λn} satisfies (3), (5), and (6); and L∞ to be the class of all the functions F(s) of
the form (1) which are analytic in the whole plane �s < +∞ and the sequence {λn} satisfies
(3), (5), and (7). Thus, if –∞ < β < 0 and F(s) ∈ Lβ , then F(s) ∈ L0.

In 1963, Yu [26] first proved the Valiron–Knopp–Bohr formula of the associated abscis-
sas of bounded convergence, absolute convergence, and uniform convergence of Laplace–
Stieltjes transform. Moreover, Yu [26] also estimated the growth of the maximal molecule
Mu(σ , F), the maximal term μ(σ , F), by introducing the concepts of the order of F(s), and
investigated the singular direction–Borel line of entire functions represented by Laplace–
Stieltjes transforms converging in the whole complex plane. After his wonderful works,
considerable attention has been paid to the value distribution and the growth of analytic
functions represented by Laplace–Stieltjes transforms converging in the whole plane or
the half plane (see [1, 3, 4, 6–8, 11–15, 18–25, 27]).
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Set

μ(σ , F) = max
n∈N

{
A∗

neλnσ
}

(σ < 0),

Mu(σ , F) = sup
0<x<+∞,–∞<t<+∞

∣∣∣∣
∫ x

0
e(σ+it)y dα(y)

∣∣∣∣ (σ < 0).

For F(s) ∈ L0, in view of Mu(σ , F) → +∞ as σ → 0–, the concepts of order and type can
be usually used in estimating the growth of F(s) precisely.

Definition 1.1 If Laplace–Stieltjes transform (1) satisfies σ F
u = 0 and

lim sup
σ→0–

log+ log+ Mu(σ , F)
– log(–σ )

= ρ, 0 ≤ ρ ≤ +∞,

we call F(s) of order ρ in the left half plane, where log+ x = max{log x, 0}. Furthermore, if
ρ ∈ (0, +∞), the type of F(s) is defined by

lim sup
σ→0–

log+ Mu(σ , F)
(– 1

σ
)ρ

= T , 0 ≤ T ≤ +∞.

Remark 1.1 However, if ρ = 0 and ρ = +∞, we cannot estimate the growth of such func-
tions precisely by using the concept of type.

In 2012 and 2014, Luo and Kong [9, 10] investigated the growth of Laplace–Stieltjes
transform converging on the whole plane and obtained the following.

Theorem 1.1 (see [10]) If the L-S transform F(s) ∈ L∞ and is of order ρ (0 < ρ < ∞), then

ρ = lim sup
n→+∞

λn logλn

– log A∗
n

.

Theorem 1.2 (see [9]) If the L-S transform F(s) ∈ L∞, then for p = 1, we have

lim sup
σ→+∞

h(log Mu(σ , F))
h(σ )

– 1 = lim sup
n→+∞

h(λn)
h(– 1

λn
log A∗

n)
,

and for p = 2, 3, . . . , we have

lim sup
n→+∞

h(λn)
h(– 1

λn
log A∗

n)
≤ lim sup

σ→+∞
h(log Mu(σ , F))

h(σ )

≤ lim sup
n→+∞

h(λn)
h(– 1

λn
log A∗

n)
+ 1,

where h(x) satisfies the following conditions:
(i) h(x) is defined on [a, +∞) and is positive, strictly increasing, differentiable and tends

to +∞ as x → +∞;
(ii) limx→+∞ d(h(x))

d(log[p] x)
= k ∈ (0, +∞), p ≥ 1, p ∈N

+, where log[0] x = x, log[1] x = log x, and
log[p] x = log(log[p–1] x).
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In this paper, the first aim is to investigate the growth of analytic functions represented
by Laplace–Stieltjes transforms with generalized order converging in the half plane, and
we obtain some theorems about the generalized order A∗

n and λn, which are improvements
of the previous results given by Luo and Kong [9, 10]. To state our results, we first introduce
the following notations and definitions.

Let � be a class of continuous increasing functions A such that A(x) ≥ 0 for x ≥ x0,
A(x) = A(x0) for x ≤ x0 and on [x0, +∞) the function A increases to +∞; and �0 be a
class such that �0 ⊂ � and A(x(1 + o(1)) = (1 + o(1))A(x) as x → +∞, for A ∈ �0; further,
A ∈ �0i if A ∈ � and for any η > 0, A(ηx) = (1 + o(1))A(x) as x → +∞. Obviously, it follows
�0i ⊂ �0 and h(x) ∈ �.

Definition 1.2 Let F(s) ∈ L0 and A ∈ �, B ∈ �. If

ρAB(F) = lim sup
σ→0–

A(log Mu(σ , F))
B(– 1

σ
)

,

then ρAB is called generalized order of F(s).

Remark 1.2 Let A(x) = log x and B = log x, then ρAB(F) = ρ .

Remark 1.3 Let A(x) = logp x and B = logq x, then ρAB(F) = ρ(p, q)(F), where ρ(p, q)(F) is
the (p, q)-order of F(s) (see [2]).

Remark 1.4 Let A(x) = log x and B = log log x, then ρAB(F) = ρl(F), where ρl(F) is the
logarithmic order of F(s).

2 Results and discussion
For generalized order of Laplace–Stieltjes transform (1), we obtain the following.

Theorem 2.1 Let F(s) ∈ L0, A ∈ �0i and B ∈ �0i be continuously differentiable, and the
function B increase more rapidly than A such that, for any constant η ∈ (0, +∞),

x
B–1(ηA(x))

→ +∞ (x0 ≤ x → +∞), (8)

and

A

(
x

B–1(ηA(x))

)
=

(
1 + o(1)

)
A(x) (x → +∞). (9)

If

lim
σ→0–

log Mu(σ , F)
– log(–σ )

= +∞ (10)

and

ρAB(F) = lim sup
σ→0–

A(log Mu(σ , F))
B(– 1

σ
)

, 0 ≤ ρAB(F) ≤ +∞,
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then

ρAB(F) = lim sup
n→+∞

A(λn)
B( λn

log A∗
n

)
.

Theorem 2.2 Let F(s) ∈ L0, A ∈ �0i, and B ∈ �0i be continuously differentiable, and the
function A increase more rapidly than B such that, for any constant η ∈ (0, +∞),

x
A–1(ηB(x))

↑ +∞ (x0 ≤ x → +∞), (11)

and

B

(
x

A–1(ηB(x))

)
=

(
1 + o(1)

)
B(x) (x → +∞). (12)

If F(s) satisfies (10) and

ρAB(F) = lim sup
σ→0–

A(log Mu(σ , F))
B(– 1

σ
)

, 0 ≤ ρAB(F) ≤ +∞,

then

ρAB(F) = lim sup
n→+∞

A(log A∗
n)

B(λn)
.

If Laplace–Stieltjes transform (1) satisfies A∗
n = 0 for n ≥ k + 1 and A∗

k �= 0, then F(s) will
be said to be an exponential polynomial of degree k usually denoted by pk , i.e., pk(s) =∫ λk

0 exp(sy) dα(y). If we choose a suitable function α(y), the function pk(s) may be reduced
to a polynomial in terms of exp(sλi), that is,

∑k
i=1 bi exp(sλi). We denote 	k to be the class

of all exponential polynomials of degree almost k, that is,

	k =

{ k∑
i=1

bi exp(sλi) : (b1, b2, . . . , bk) ∈C
k

}
.

For F(s) ∈ Lβ , –∞ < β < 0, we denote by En(F ,β) the error in approximating the function
F(s) by exponential polynomials of degree n in uniform norm as

En(F ,β) = inf
p∈	n

‖F – p‖β , n = 1, 2, . . . ,

where

‖F – p‖β = max
–∞<t<+∞

∣∣F(β + it) – p(β + it)
∣∣.

In 2017, Singhal and Srivastava [17] studied the approximation of Laplace–Stieltjes
transforms of finite order converging on the whole plane and obtained the following the-
orem.
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Theorem 2.3 (see [17]) If Laplace–Stieltjes transform F(s) ∈ L∞ and is of order ρ (0 < ρ <
∞) and of type T , then for any real number –∞ < β < +∞, we have

ρ = lim sup
n→+∞

λn logλn

– log En–1(F ,β) exp(–βλn)
= lim sup

n→+∞
λn logλn

– log En–1(F ,β)

and

T = lim sup
n→+∞

λn

ρe
(
En–1(F ,β) exp(–βλn)

) ρ
λn = lim sup

n→+∞
λn

ρ exp(ρβ + 1)
(
En–1(F ,β)

) ρ
λn .

In the same year, the author and Kong [20] investigated the approximation of Laplace–
Stieltjes transform F(s) ∈ L0 with infinite order and obtained the following.

Theorem 2.4 (see [20, Theorem 2.5]) If the Laplace–Stieltjes transform F(s) ∈ L0 and is
of infinite order, if λn ∼ λn+1, then for any real number –∞ < β < +∞, then for any fixed
real number –∞ < α < 0, we have

lim sup
σ→0–

X(log+ Mu(σ , F))
log(– 1

σ
)

= ρ∗ ⇐⇒ lim sup
n→∞

X(λn)
log+ λn

log+[En–1(F ,α) exp{–αλn}]
= ρ∗, (13)

where 0 < ρ∗ < ∞, X(·)-order can be seen in [20].

The second purpose of this paper is to study the approximation of Laplace–Stieltjes
transform F(s) ∈ L0 with generalized order, and our results are listed as follows.

Theorem 2.5 Let F(s) ∈ L0, A ∈ �0i, and B ∈ �0i be continuously differentiable satisfying
(8) and (9), and let the function B increase more rapidly than A. If F(s) satisfies (10) and

ρAB(F) = lim sup
σ→0–

A(log Mu(σ , F))
B(– 1

σ
)

, 0 ≤ ρAB(F) ≤ +∞,

then for any real number –∞ < β < 0, we have

ρAB(F) = lim sup
n→+∞

A(λn)
B( λn

log[En–1(F ,β) exp{–βλn}] )
.

Theorem 2.6 Under the assumptions of Theorem 2.2, then for any real number –∞ < β <
0, we have

ρAB(F) = lim sup
n→+∞

A(log En–1(F ,β))
B(λn)

.

3 Conclusions
Regarding Theorems 2.1 and 2.2, the generalized order of Laplace–Stieltjes transforms are
discussed by using the more abstract functions, and some related theorems among λn, A∗

n
and the generalized order are obtained. Moreover, we also investigate some properties of
approximation on analytic functions defined by Laplace–Stieltjes transforms of general-
ized order. For the topic of the growth and approximation of Laplace–Stieltjes transforms
of generalized order, it seems that this topic has never been treated before. Our theorems
are generalization and improvement of the previous results given by Luo and Kong [9, 10],
Singhal and Srivastava [17].
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4 Methods
To prove our results, we also need to give the following lemmas (see [16]).

Let 
0 denote the set of positive unbounded functions φ on (–∞, 0) such that the deriva-
tive φ′ is positive, continuous, and increasing to +∞ on (–∞, 0). Thus, if φ ∈ 
0, then
φ(x) → ζ ≥ 0 and φ′(x) → 0 as x → –∞. Let ϕ be the inverse function of φ′, then ϕ is con-
tinuous on (0, +∞) and increases to 0. Set φ ∈ 
0 and ψ(x) = x– φ(x)

φ′(x) . For –∞ < x < x+ι < 0,
since φ′ is increasing on (–∞, 0), we have

φ′(x)φ(x + ι) – φ′(x + ι)φ(x) < φ′(x)
[
φ(x + ι) – φ(x)

]
= φ′(x)

∫ x+ι

x
φ′(t) dt

< (x + ι – x)φ′(x)φ′(x + ι),

that is,

ψ(x) = x –
φ(x)
φ′(x)

< x + ι –
φ(x + ι)
φ′(x + ι)

= ψ(x + ι).

Thus, it means that ψ is an increasing function on (–∞, 0).
Next, we will prove that ψ(x) → 0 as x → 0, that is, there is no constant η < 0 such that

ψ(x) ≤ η for all x ∈ (–∞, 0). Assume that there exist two constants η, K1 such that ψ(x) ≤ η

for all x ∈ (–∞, 0) and η < K1 < 0. Since ψ is an increasing function and ψ(x) < x < 0, then
it follows φ′(x)

φ(x) ≤ 1
x–η

for K1 ≤ x < 0. Thus, it follows

logφ(x) = logφ(K1) +
∫ x

K1

φ′(t)
φ(t)

dt ≤ logφ(K1) +
∫ x

K1

1
t – η

dt

= logφ(K1) + log
x – η

K1 – η
.

Hence φ(x) ≤ φ(K1) x–η

K1–η
. In view of φ′(x) → +∞ (x → 0), we get a contradiction. Thus, it

follows ψ(x) → 0 as x → 0.
Besides, let ψ–1 be the inverse function of ψ . Then ψ–1 is an increasing function on

(–∞, 0) and φ′(ψ–1(σ )) increases to +∞ on (–∞, 0).

Lemma 4.1 Let φ ∈ 
0, then the conclusion that logμ(σ , F) ≤ φ(σ ) for any σ ∈ (–∞, 0)
holds if and only if log A∗

n ≤ –λnψ(ϕ(λn)) for all n ≥ 0.

Proof Suppose that logμ(σ , F) ≤ φ(σ ) for any σ ∈ (–∞, 0), then log A∗
n ≤ φ(σ ) – σλn for

all n > 0 and σ ∈ (–∞, 0). Thus, take σ = ϕ(λn), it follows for all n ≥ 0 that

log A∗
n ≤ φ

(
ϕ(λn)

)
– λnϕ(λn) = –λn

(
ϕ(λn) –

φ(ϕ(λn))
φ′(ϕ(λn))

)
= –λnψ

(
ϕ(λn)

)
.

On the contrary, assume that log A∗
n ≤ –λnψ(ϕ(λn)) for all n ≥ 0. Since, for any σ < 0 and

x < 0,

(σ – x)φ′(x) ≤
∫ σ

x
φ′(t) dt = φ(σ ) – φ(x),
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then it follows

logμ(σ , F) ≤ max
{

–λnψ
(
ϕ(λn)

)
+ λnσ : n ≥ 0

} ≤ max
{

–tψ
(
ϕ(t)

)
+ tσ : t ≥ 0

}

= max
{

–φ′(x)ψ(x) + σ + φ′(x) : x > –∞}

= max
{

(σ – x)φ′(x) + φ(x) : x > –∞}
= φ(σ ).

Therefore, this completes the proof of Lemma 4.1. �

Lemma 4.2 If the L-S transform F(s) ∈ L∞, then for any σ (–∞ < σ < 0) and ε (> 0), we
have

1
p
μ(σ , F) ≤ Mu(σ , F) ≤ Cμ

(
(1 – ε)σ , F

) 1
–σ

,

where p > 2 and C ( �= 0) are constants.

Proof We will adapt the method as in Yu [26] and Kong and Hong [5]. Set

I(x;σ + it) =
∫ x

0
exp

{
(σ + it)y

}
dα(y).

In view of (5), there exists a positive number ξ satisfying 0 < λn+1 – λn ≤ ξ (n = 1, 2, 3, . . .).
Thus, it yields e–ξσ < p

2 for σ sufficiently close to 0–, where p > 2 is a constant. For x > λn,
it follows

∫ x

λn

exp{ity}dα(y) =
∫ x

λn

exp{–σy}dyI(y;σ + it)

= I(y;σ + it) exp{–σy}|xλn + σ

∫ x

λn

exp{–σy}I(y;σ + it) dy.

Then, for any σ < 0 and any x ∈ (λn,λn+1], it yields

∣∣∣∣
∫ x

λn

exp{ity}dα(y)
∣∣∣∣ ≤ Mu(σ , F)

[
exp{–xσ } + exp{–σλn} +

∣∣exp{–xσ } – exp{–σλn}
∣∣]

≤ 2Mu(σ , F) exp
{

–(λn + ξ )σ
} ≤ pMu(σ , F) exp{–λnσ },

which implies

1
p
μ(σ , F) ≤ Mu(σ , F). (14)

On the other hand, for any x > 0, it follows that there exists a positive integer n ∈ N+

such that λn < x ≤ λn+1. Thus, it follows

∫ x

0
exp

{
(σ + it)y

}
dα(y) =

n–1∑
k=1

∫ λk+1

λk

exp
{

(σ + it)y
}

dα(y) +
∫ x

λn

exp
{

(σ + it)y
}

dα(y).

Set Ik(x; it) =
∫ x
λn

exp{ity}dα(y) (λk < x ≤ λk+1), then for any real number t and σ < 0, it
follows |Ik(x; it)| ≤ A∗

k ≤ μ(σ , F)e–λkσ . Thus, for any ε ∈ (0, 1) and σ < 0, it yields |Ik(x; it)| ≤
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μ((1 – ε)σ , F)e–λk (1–ε)σ and

∫ x

0
exp

{
(σ + it)y

}
dα(y) =

n–1∑
k=1

[
exp{λk+1σ }Ik(λk+1; it) – σ

∫ λk+1

λk

exp{σy}Ik(y; it) dy
]

+ exp{xσ }In(x; it) – σ

∫ x

λn

exp{σy}In(y; it) dy.

Hence, we can deduce
∣∣∣∣
∫ x

0
exp

{
(σ + it)y

}
dα(y)

∣∣∣∣

≤
n–1∑
k=1

μ
(
(1 – ε)σ , F

)
exp

{
–λk(1 – ε)σ

}(
exp{λk+1σ } +

∣∣exp{λk+1σ } – exp{λkσ }∣∣)

+ μ
(
(1 – ε)σ , F

)
exp

{
–λn(1 – ε)σ

}(
exp{xσ } +

∣∣exp{xσ } – exp{λnσ }∣∣)

= μ
(
(1 – ε)σ , F

) +∞∑
k=1

exp{λkεσ }.

In view of (5), for the above ε, there exists N1 ∈ N+ such that, for any n > N1, we have
λn > n

D+ε
. Hence it follows for σ → 0– that

+∞∑
k=1

exp{λkεσ } ≤
N1∑
k=1

exp{λkεσ } +
+∞∑

k=N1+1

exp

{
k

εσ

D + ε

}
< C

1
–σ

, (15)

where C is a constant on ε and (5). Therefore, this lemma is proved from (14) and (15). �

4.1 Proofs of Theorems 2.1 and 2.2
4.1.1 The proof of Theorem 2.1
Suppose that ρ := ρAB(F) < +∞ and

ϑ = lim sup
n→+∞

A(λn)
B( λn

log A∗
n

)
.

In view of the definition of generalized order and Lemma 4.2, for any ε > 0, there exists a
constant σ0 < 0 such that, for all 0 > σ > σ0,

logμ(σ , F) ≤ A–1
(

(ρ + ε)B
(

–
1
σ

))
+ log p,

that is,

log A∗
n ≤ A–1

(
(ρ + ε)B

(
–

1
σ

))
– λnσ + log p, n ≥ 0. (16)

Choosing

–
1
σ

= B–1
(

1
ρ + ε

A

(
λn

B–1( A(λn)
ρ+ε

)

))
,
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we conclude from (9) and (16) that

log A∗
n ≤ λn

B–1( A(λn)
ρ+ε

)
+

λn

B–1( 1
ρ+ε

A( λn
B–1( A(λn)

ρ+ε )
))

+ log p

=
(1 + o(1))λn

B–1((1 + o(1)) A(λn)
ρ+ε

)
, as n → +∞,

which implies

A(λn) ≤ (ρ + ε)B
(

(1 + o(1))λn

log A∗
n

)
, as n → +∞. (17)

Since A ∈ �0i, B ∈ �0i and let ε → 0+, we can conclude from (17) that ϑ ≤ ρ .
Assume ϑ < ρ , then we can choose a constant ρ1 such that ϑ < ρ1 < ρ . Since B–1( A(x)

ρ1
)

is an increasing function, then there exists a positive integer n0 such that, for n ≥ n0,

log A∗
n ≤ λn

B–1( A(λn)
ρ1

)
≤

∫ λn

λn0

1
B–1( A(t)

ρ1
)

dt + K1, (18)

where here and further Kj is a constant.
Since φ ∈ 
0, and let

φ(σ ) =
∫ – 1

σ

– 1
σ0

A–1(ρ1B(t))
t2 dt + K2 for 0 > σ ≥ σ0.

Then it follows

φ′(σ ) = A–1
(

ρ1B

(
–

1
σ

))
, ϕ(λn) = –

1
B–1( A(λn)

ρ1
)
,

[
λnψ

(
ϕ(λn)

)]′ =
[
λnϕ(λn) – φ

(
ϕ(λn)

)]′ = ϕ(λn),

and

–λnψ
(
ϕ(λn)

)
= –

∫ λn

λn0

ϕ(t) dt + K2 =
∫ λn

λn0

1
B–1( A(t)

ρ1
)

dt + K2. (19)

Thus, in view of (18) and (19), it follows

logμ(σ , F) ≤ φ(σ ) =
∫ – 1

σ

– 1
σ0

A–1(ρ1B(t))
t2 dt + K2

≤ A–1
(

ρ1B

(
–

1
σ

))∫ – 1
σ

– 1
σ1

dt
t2 + K3

≤ –σ1A
–1

(
ρ1B

(
–

1
σ

))
+ K3. (20)

Since A ∈ �0i, in view of (10), (20) and by applying Lemma 4.2, we can deduce ρAB(F) ≤
ρ1, which implies a contradiction with ρAB(F) > ρ1. Hence ϑ = ρAB(F).
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If ρAB(F) = +∞, by using the same argument as above, it is easy to prove that the con-
clusion is true. Therefore, this completes the proof of Theorem 2.1.

4.1.2 The proof of Theorem 2.2
Suppose that ρ := ρAB(F) < +∞ and

ϑ1 = lim sup
n→+∞

A(log A∗
n)

B(λn)
.

In view of the definition of generalized order and Lemma 4.2, for any ε > 0, there exists a
constant σ0 < 0 such that, for all 0 > σ > σ0,

logμ(σ , F) ≤ A–1
(

(ρ + ε)B
(

–
1
σ

))
+ log p,

that is,

log A∗
n ≤ A–1

(
(ρ + ε)B

(
–

1
σ

))
– λnσ + log p, n ≥ 0. (21)

Choosing – 1
σ

= λn, we conclude from (21) that

log A∗
n ≤ A–1((ρ + ε)B(λn)

)
+ 1 + log p

≤ (
1 + o(1)

)
A–1((ρ + ε)B(λn)

)
, as n → +∞. (22)

Since A ∈ �0i, B ∈ �0i and let ε → 0+, we can conclude from (22) that ϑ1 ≤ ρ .
Assume ϑ1 < ρ , then we can choose a constant ρ2 such that ϑ1 < ρ2 < ρ . It means that

there exists a positive integer n0 such that, for n ≥ n0,

log A∗
n ≤ A–1(ρ2B(λn)

)
,

that is,

logμ(σ , F) ≤ max
{
A–1(ρ2B(λn)

)
+ λnσ : n ≥ n0

}
+ K5. (23)

In view of (10), the following equation

A–1(ρ2B(t)
)

+ tσ = 0

has a unique solution t1 := t(σ ) such that t1 ↑ +∞ as σ → 0–, and for t ≥ t1 we can deduce
that A–1(ρ2B(t)) + tσ ≤ 0. Hence, it follows

logμ(σ , F) ≤ max
{
A–1(ρ2B(t)

)
+ tσ : t0 ≤ t ≤ t1

}
+ K6

≤ A–1(ρ2B(t1)
)

+ K6. (24)

In view of

–
1
σ

=
t1

A–1(ρ2B(t1))
,
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it follows from (12) that

B

(
–

1
σ

)
= B

(
t1

A–1(ρ2B(t1))

)
=

(
1 + o(1)

)
B(t1), σ → 0–. (25)

Hence, we can deduce from (24) and (25) that

logμ(σ , F) ≤ A–1
(

ρ2
(
1 + o(1)

)
B

(
–

1
σ

))
, as σ → 0–,

which implies ρAB(F) ≤ ρ2 < ρAB(F) by combining Lemma 4.2 and (10), a contradiction.
Therefore, ϑ1 = ρAB(F).

If ρAB(F) = +∞, by using the same argument as above, it is easy to prove that the con-
clusion is true. Therefore, this completes the proof of Theorem 2.2.

4.2 Proofs of Theorems 2.5 and 2.6
4.2.1 The proof of Theorem 2.5
Suppose that ρ := ρAB(F) < +∞ and

ϑ3 = lim sup
n→+∞

A(λn)
B( λn

log[En–1(F ,β) exp{–βλn}] )
.

In view of the definition of generalized order and Lemma 4.2, for any ε > 0, there exists a
constant σ0 < 0 such that, for all 0 > σ > σ0,

log Mu(σ , F) ≤ A–1
(

(ρ + ε)B
(

–
1
σ

))
. (26)

Since F(s) ∈ L0, and for any constant β (–∞ < β < 0), then F(s) ∈ Lβ . Hence, for β < σ < 0
and pk ∈ 	k , it follows

Ek(F ,β) ≤ ‖F – pk‖β ≤ ∣∣F(β + it) – pk(β + it)
∣∣

≤
∣∣∣∣
∫ +∞

0
exp{sy}dα(y) –

∫ λk

0
exp{sy}dα(y)

∣∣∣∣ =
∣∣∣∣
∫ ∞

λk

exp{sy}dα(y)
∣∣∣∣. (27)

Let

Ij+k(b; it) =
∫ b

λj+k

exp{ity}dα(y) (λj+k < b ≤ λj+k+1),

then |Ij+k(b; it)| ≤ A∗
j+k . In view of

∣∣∣∣
∫ ∞

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣ = lim

b→+∞

∣∣∣∣
∫ b

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣,
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where –∞ < β < 0, hence

∣∣∣∣
∫ b

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣

=

∣∣∣∣∣
n+k–1∑

j=k

∫ λj+1

λj

exp{βy}dyIj(y; it) +
∫ b

λn+k

exp{βy}dyIn+k(y; it)

∣∣∣∣∣

=

∣∣∣∣∣
[n+k–1∑

j=k

eλj+1β Ij(λj+1; it) – β

∫ λj+1

λj

eβyIj(y; it) dy

]

+ eβbIn+k(b; it) – β

∫ b

λn+k

eβyIj(y; it) dy

∣∣∣∣∣

≤
n+k–1∑

j=k

[
A∗

j eλj+1β + A∗
j
(
eλj+1β – eλjβ

)]
+ 2eβλn+k+1 A∗

n+k – eβλn+k A∗
n+k

≤ 2
n+k∑
j=k

A∗
neλn+1β .

Therefore, we conclude

∣∣∣∣
∫ ∞

λk

exp
{

(β + it)y
}

dα(y)
∣∣∣∣ ≤ 2

+∞∑
n=k

A∗
n exp{βλn+1}, as n → +∞. (28)

In view of Lemma 4.2, it follows A∗
n ≤ pMu(σ , F)e–σλn . So, for any σ (β < σ < 0), it yields

from (27) and (28) that

En(F ,β) ≤ 2
∞∑

k=n+1

A∗
k–1 exp{βλk} ≤ 2pMu(σ , F)

∞∑
k=n+1

exp
{

(β – σ )λk
}

. (29)

In view of (5), we can choose h′ (0 < h′ < h) such that (λn+1 – λn) ≥ h′ for n ≥ 0. Then,
for σ ≥ β

2 , it follows from (29) that

En(F ,β) ≤ Mu(σ , F) exp
{
λn+1(β – σ )

} ∞∑
k=n+1

exp
{

(λk – λn+1)(β – σ )
}

≤ Mu(σ , F) exp
{
λn+1(β – σ )

}
exp

{
–

β

2
h′(n + 1)

} ∞∑
k=n+1

exp

{
β

2
h′k

}

= Mu(σ , F) exp
{
λn+1(β – σ )

}(
1 – exp

{
β

2
h′

})–1

,

that is,

En–1(F ,β) ≤ KMu(σ , F) exp
{
λn(β – σ )

}
, (30)

where K is a constant. Hence, it follows from (26) and (30) that

log
[
En–1(F ,β) exp{–βλn}

] ≤ A–1
(

(ρ + ε)B
(

–
1
σ

))
– λnσ + log K , n ≥ 0. (31)
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Let

–
1
σ

= B–1
(

1
ρ + ε

A

(
λn

B–1( A(λn)
ρ+ε

)

))
,

we conclude from (9) and (31) that

log
[
En–1(F ,β) exp{–βλn}

] ≤ λn

B–1( A(λn)
ρ+ε

)
+

λn

B–1( 1
ρ+ε

A( λn
B–1( A(λn)

ρ+ε )
))

+ log K

=
(1 + o(1))λn

B–1((1 + o(1)) A(λn)
ρ+ε

)
, as n → +∞,

which implies

A(λn) ≤ (ρ + ε)B
(

(1 + o(1))λn

log[En–1(F ,β) exp{–βλn}]
)

, as n → +∞. (32)

Since A ∈ �0i, B ∈ �0i and let ε → 0+, we can conclude from (32) that ϑ3 ≤ ρ .
Assume ϑ3 < ρ , then we can choose a constant ρ3 such that ϑ3 < ρ3 < ρ . Since B–1( A(x)

ρ3
)

is an increasing function, then there exists a positive integer n0 such that, for n ≥ n0,

log
[
En–1(F ,β) exp{–βλn}

] ≤ λn

B–1( A(λn)
ρ3

)
≤

∫ λn

λn0

1
B–1( A(t)

ρ3
)

dt + K1. (33)

For any β < 0, then there exists p1 ∈ 	n–1 such that

‖F – p1‖ ≤ 2En–1(F ,β). (34)

And since

A∗
n exp{βλn} = sup

λn<x≤λn+1,–∞<t<+∞

∣∣∣∣
∫ x

λn

exp{ity}dα(y)
∣∣∣∣ exp{βλn}

≤ sup
λn<x≤λn+1,–∞<t<+∞

∣∣∣∣
∫ x

λn

exp
{

(β + it)y
}

dα(y)
∣∣∣∣

≤ sup
–∞<t<+∞

∣∣∣∣
∫ ∞

λn

exp
{

(β + it)y
}

dα(y)
∣∣∣∣,

thus, for any p ∈ 	n–1, it follows

A∗
n exp{βλn} ≤ ∣∣F(β + it) – p(β + it)

∣∣ ≤ ‖F – p‖β . (35)

Hence, for any β < 0 and F(s) ∈ L0, it follows from (34) and (35) that

A∗
n ≤ 2En–1(F ,β) exp{–βλn}. (36)

Hence, (18) follows from (33) and (36).
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Since φ ∈ 
0, and let

φ(σ ) =
∫ – 1

σ

– 1
σ0

A–1(ρ1B(t))
t2 dt + K2 for 0 > σ ≥ σ0,

and

ϕ(λn) = –
1

B–1( A(λn)
ρ1

)
.

By using the same argument as in the proof of Theorem 2.1, we conclude

logμ(σ , F) ≤ φ(σ ) =
∫ – 1

σ

– 1
σ0

A–1(ρ1B(t))
t2 dt + K2

≤ –σ1A
–1

(
ρ1B

(
–

1
σ

))
+ K3. (37)

Since A ∈ �0i, in view of (10), (37) and by applying Lemma 4.2, we can deduce ρAB(F) ≤
ρ3, which implies a contradiction with ρAB(F) > ρ1. Hence ϑ3 = ρAB(F).

If ρAB(F) = +∞, by using the same argument as above, it is easy to prove that the con-
clusion is true. Therefore, this completes the proof of Theorem 2.5.

4.2.2 The proof of Theorem 2.6
By combining the arguments as in the proofs of Theorems 2.2 and 2.5, we can easily prove
the conclusion of Theorem 2.6.
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