
Bai Journal of Inequalities and Applications  (2018) 2018:197 
https://doi.org/10.1186/s13660-018-1782-z

R E S E A R C H Open Access

On 1
w + 1

x + 1
y + 1

z = 1
2 and some of its

generalizations
Tingting Bai1*

*Correspondence:
baiting-ting@hotmail.com
1College of Mathematics and
Information Science, Baoji University
of Arts and Sciences, Baoji, China

Abstract
In this paper, we give a straightforward approach to obtaining the solution of the
Diophantine equation 1

w + 1
x +

1
y +

1
z =

1
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y +
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z =

m
n for any two positive integersm and n has only a finite

number of solutions in the positive integers w, x, y, and z.
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1 Introduction and preliminaries
The unit fractional decomposition of certain rational fractions was considered one of fas-
cinating problems by the ancient Egyptians. One of such problems is a well-known con-
jecture due to Erdos and Strauss in 1948. They conjectured that for each n > 1, the Dio-
phantine equation

4
n

=
1
x

+
1
y

+
1
z

has a solution in positive integers x, y, and z. Although it has been investigated by many
mathematicians, the conjecture is still open. A good number of partial results have
been obtained by several mathematicians (see [1, 3, 5, 6, 8, 9]). Mordell [7] has proven
that the conjecture is true for all n except possibly cases in which n is congruent to
1, 121, 169, 289, 361, 529 (mod 840). For the extensive literature +Sierpinski, Schinzel, and
others, we refer the reader to [4]. Recently, Elsholtz and Tao [2] investigated the average
behavior of a number of positive integer solutions in x, y, and z of the above Diophantine
equation in the case when n is prime.

In this paper, we consider an analogue of the above conjecture of Erdos and Strauss.
More precisely, we study the Diophantine equation

1
w

+
1
x

+
1
y

+
1
z

=
1
2

(1.1)

and give a detailed solution to Eq. (1.1). We also draw our attention to some of the gener-
alizations of Eq. (1.1). We use elementary arguments and inequalities to prove the results.
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2 Main results and discussion
In this section, we first find the solutions in positive integers x, y, z, and w of Eq. (1.1).

Without loss of generality, we may assume that w ≤ x ≤ y ≤ z. Then Eq. (1.1) gives:
(a) 1

w < 1
2 and thus w ≥ 3;

(b) 1
w + 1

x + 1
y + 1

z ≥ 4
z and thus z ≥ 8; and

(c) 1
w + 1

x + 1
y + 1

z ≤ 4
w and thus w ≤ 8.

Using (a) and (c), we see that w ∈ {3, 4, 5, 6, 7, 8}. Thus Eq. (1.1) can be rewritten as fol-
lows:

When w = 3,

1
x

+
1
y

+
1
z

=
1
6

, (2.1)

When w = 4,

1
x

+
1
y

+
1
z

=
1
4

, (2.2)

When w = 5,

1
x

+
1
y

+
1
z

=
3

10
, (2.3)

When w = 6,

1
x

+
1
y

+
1
z

=
1
3

, (2.4)

When w = 7,

1
x

+
1
y

+
1
z

=
5

14
, (2.5)

When w = 8,

1
x

+
1
y

+
1
z

=
3
8

. (2.6)

We now find the solution of Eq. (2.1).
Clearly 1

x < 1
6 and thus x > 6.

Under the assumption x ≤ y ≤ z, Eq. (2.1) gives 1
x + 1

y + 1
z ≤ 3

x and thus x ≤ 18.
Hence x ∈ {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}, and thus we have the following cases:
For x = 7,

1
y

+
1
z

=
1

42
, (2.7)

For x = 8,

1
y

+
1
z

=
1

24
, (2.8)
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For x = 9,

1
y

+
1
z

=
1

18
, (2.9)

For x = 10,

1
y

+
1
z

=
1

15
, (2.10)

For x = 11,

1
y

+
1
z

=
5

66
, (2.11)

For x = 12,

1
y

+
1
z

=
1

12
, (2.12)

For x = 13,

1
y

+
1
z

=
7

78
, (2.13)

For x = 14,

1
y

+
1
z

=
2

21
, (2.14)

For x = 15,

1
y

+
1
z

=
1

10
, (2.15)

For x = 16,

1
y

+
1
z

=
5

48
, (2.16)

For x = 17,

1
y

+
1
z

=
11

102
, (2.17)

For x = 18,

1
y

+
1
z

=
1
9

. (2.18)

Equations (2.7), (2.8), (2.9), (2.10), (2.12), (2.14), (2.15), (2.18) may be written as follows:

(y – 42)(z – 42) = 1764, (2.7′)
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(y – 24)(z – 24) = 576, (2.8′)

(y – 18)(z – 18) = 324, (2.9′)

(y – 15)(z – 15) = 225, (2.10′)

(y – 12)(z – 12) = 144, (2.12′)

(y – 10)(z – 10) = 100, (2.15′)

(y – 9)(z – 9) = 81. (2.18′)

Under the assumption x ≤ y ≤ z, Eq. (2.1) gives 1
x + 1

y + 1
z ≥ 3

z and thus

z ≥ 18. (2.13)

Under inequality (2.13) and (y – 42) ≤ (z – 42), Eq. (2.7′) leads to:

(y – 42) = 1, (z – 42) = 1764,

(y – 42) = 2, (z – 42) = 882,

(y – 42) = 3, (z – 42) = 588,

(y – 42) = 4, (z – 42) = 441,

(y – 42) = 6, (z – 42) = 294,

(y – 42) = 7, (z – 42) = 252,

(y – 42) = 9, (z – 42) = 196,

(y – 42) = 12, (z – 42) = 147,

(y – 42) = 14, (z – 42) = 126,

(y – 42) = 18, (z – 42) = 98.

Thus (y, z) ∈ {(43, 1806), (44, 924), (45, 630), (46, 483), (48, 336), (49, 294), (51, 238),
(54, 189), (56, 168), (60, 140)}.

Hence Eq. (2.7′) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 7, 43, 1806), (3, 7, 44, 924), (3, 7, 45, 630), (3, 7, 46, 483), (3, 7, 48, 336),

(3, 7, 49, 294), (3, 7, 51, 238), (3, 7, 54, 189), (3, 7, 56, 168), (3, 7, 60, 140)
}

.

Under inequality (2.13) and (y – 24) ≤ (z – 24), Eq. (2.8′) gives the following solutions:

(y, z) =
{

(25, 600), (26, 312), (27, 216), (28, 168), (30, 120), (32, 96), (33, 88), (36, 72),

(40, 60), (42, 56)
}

.

Hence Eq. (2.8′) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 8, 25, 600), (3, 8, 26, 312), (3, 8, 27, 216), (3, 8, 28, 168), (3, 8, 30, 120),
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(3, 8, 32, 96), (3, 8, 33, 88), (3, 8, 36, 72), (3, 8, 40, 60), (3, 8, 42, 56)
}

.

Under inequality (2.13) and (y – 18) ≤ (z – 18), Eq. (2.9′) gives the following solutions:

(y, z) ∈ {
(19, 342), (20, 180), (21, 126), (22, 99), (24, 72), (27, 54), (30, 45), (36, 36)

}
.

Hence Eq. (2.9′) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 9, 19, 342), (3, 9, 20, 180), (3, 9, 21, 126), (3, 9, 22, 99), (3, 9, 24, 72),

(3, 9, 27, 54), (3, 9, 30, 45), (3, 9, 36, 36)
}

.

Under inequality (2.13) and (y – 15) ≤ (z – 15), Eq. (2.10′) gives the following solutions:

(y, z) ∈ {
(16, 240), (18, 90), (20, 60), (24, 40), (30, 30)

}
.

Hence Eq. (2.10′) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 10, 16, 240), (3, 10, 18, 90), (3, 10, 20, 60), (3, 10, 24, 40), (3, 10, 30, 30)

}
.

Under inequality (2.13) and (y – 12) ≤ (z – 12), Eq. (2.12′) gives the following solutions:

(y, z) ∈ {
(13, 156), (14, 84), (15, 60), (16, 48), (18, 36), (20, 30), (21, 28), (24, 24)

}
.

Hence Eq. (2.12′) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 12, 13, 156), (3, 12, 14, 84), (3, 12, 15, 60), (3, 12, 16, 48), (3, 12, 18, 36),

(3, 12, 20, 30), (3, 12, 21, 28), (3, 12, 24, 24)
}

.

Under inequality (2.13) and (y – 10) ≤ (z – 10), Eq. (2.15′) gives the following solutions:

(y, z) ∈ {
(11, 110), (12, 60), (14, 35), (15, 30), (20, 20)

}
.

Hence Eq. (2.15′) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 15, 11, 110), (3, 15, 12, 60), (3, 15, 14, 35), (3, 15, 15, 30), (3, 15, 20, 20)

}
.

Under inequality (2.13) and (y – 9) ≤ (z – 9), Eq. (2.18′) gives the following solutions:

(y, z) ∈ {
(10, 90), (12, 36), (18, 18)

}
.

Hence Eq. (2.18′) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 18, 10, 90), (3, 18, 12, 36), (3, 18, 18, 18)

}
.

Since y ≤ z, 1
y + 1

z ≤ 2
y and thus Eq. (2.11) gives

5
66

≤ 2
y

⇒ y ≤ 26.
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Again we have y ≥ x = 11 and hence y ∈ {11, 12, 13, . . . , 26}. Therefore the solutions of
Eq. (2.11) are as follows:

(y, z) ∈ {
(14, 231), (15, 110), (22, 22)

}
.

Hence Eq. (2.11) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 11, 14, 231), (3, 11, 15, 110), (3, 11, 22, 22)

}
.

Since y ≤ z, 1
y + 1

z ≤ 2
y and thus Eq. (2.13) gives

7
78

≤ 2
y

⇒ y ≤ 22.

Again we have y ≥ x = 13 and hence y ∈ {13, 14, . . . , 22}. Therefore the solutions of
Eq. (2.13) are as follows:

(y, z) = (13, 78).

Hence Eq. (2.13) leads to the following solutions of Eq. (1.1):

(w, x, y, z) = (3, 13, 13, 78).

Since y ≤ z, 1
y + 1

z ≤ 2
y and thus Eq. (2.14) gives

2
21

≤ 2
y

⇒ y ≤ 21.

Again we have y ≥ x = 14 and hence y ∈ {14, . . . , 21}. Therefore the solutions of Eq. (2.14)
are as follows:

(y, z) ∈ {
(14, 42), (15, 35), (21, 21)

}
.

Hence Eq. (2.14) leads to the following solutions of Eq. (1.1):

(w, x, y, z) ∈ {
(3, 14, 14, 42), (3, 14, 15, 35), (3, 14, 21, 21)

}
.

Since y ≤ z, 1
y + 1

z ≤ 2
y and thus Eq. (2.16) gives

5
48

≤ 2
y

⇒ y ≤ 19.

Again we have y ≥ x = 16 and hence y ∈ {16, 17, 18, 19}. Therefore the solutions of
Eq. (2.16) are as follows:

(y, z) = (16, 24).
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Hence Eq. (2.16) leads to the following solutions of Eq. (1.1):

(w, x, y, z) = (3, 16, 16, 24).

Since y ≤ z, 1
y + 1

z ≤ 2
y and thus Eq. (2.17) gives

11
102

≤ 2
y

⇒ y ≤ 18.

Again we have y ≥ x = 17 and hence y ∈ {17, 18}.
This shows that Eq. (2.17) has no integer solution and hence Eq. (1.1) too has no integer

solutions.
We now solve Eq. (2.2), that is, Eq. (1.1) when w = 4.
It is clear that 1

x < 1
4 ⇒ x > 4.

Under the assumption x ≤ y ≤ z, Eq. (2.2) gives 1
x + 1

y + 1
z ≤ 3

x and thus x ≤ 12.
Hence x ∈ {5, 6, 7, 8, 910, 11, 12} and thus we have the following cases:
For x = 5,

1
y

+
1
z

=
1

20
, (2.14)

For x = 6,

1
y

+
1
z

=
1

12
, (2.15)

For x = 7,

1
y

+
1
z

=
3

28
, (2.16)

For x = 8,

1
y

+
1
z

=
1
8

, (2.17)

For x = 9,

1
y

+
1
z

=
5

36
, (2.18)

For x = 10,

1
y

+
1
z

=
3

20
, (2.19)

For x = 11,

1
y

+
1
z

=
7

44
, (2.20)



Bai Journal of Inequalities and Applications  (2018) 2018:197 Page 8 of 13

For x = 12,

1
y

+
1
z

=
1
6

. (2.21)

Solving Eqs. (2.14)–(2.21) by the above procedure, we get:

(x, y, z) ∈ {
(5, 21, 420), (2, 22, 220), (5, 24, 120), (5, 25, 100), (5, 28, 70), (5, 30, 60),

(6, 13, 156), (6, 14, 84), (6, 15, 60), (6, 16, 48), (6, 18, 36), (6, 20, 30), (6, 21, 28),

(6, 24, 24), (8, 9, 72), (8, 10, 40), (8, 12, 24), (8, 26, 20), (12, 7, 42),

(12, 8, 24), (12, 9, 18), (12, 10, 15), (12, 12, 12), (7, 10, 140), (7, 12, 42),

(7, 14, 28), (9, 9, 36), (9, 12, 18), (10, 10, 20), (10, 12, 15)
}

.

We now solve Eq. (2.3), that is, Eq. (1.1) when w = 5.
We see that 1

x < 3
10 ⇒ x ≥ 3.

Under the assumption x ≤ y ≤ z, Eq. (2.3) gives 1
x + 1

y + 1
z ≤ 3

x and thus x ≤ 10.
Hence x ∈ {3, 4, 5, 6, 7, 8, 9, 10} and thus Eq. (2.3) leads to the following equations:
For x = 3,

1
y

+
1
z

= –
1

10
, (2.22)

For x = 4,

1
y

+
1
z

=
1

20
, (2.23)

For x = 5,

1
y

+
1
z

=
1

10
, (2.24)

For x = 6,

1
y

+
1
z

=
2

15
, (2.25)

For x = 7,

1
y

+
1
z

=
11
70

, (2.26)

For x = 8,

1
y

+
1
z

=
7

40
, (2.27)

For x = 9,

1
y

+
1
z

=
17
90

, (2.28)



Bai Journal of Inequalities and Applications  (2018) 2018:197 Page 9 of 13

For x = 10,

1
y

+
1
z

=
1
5

. (2.29)

We avoid Eq. (2.22) because it leads to negative solutions.
Solving Eqs. (2.23)–(2.29) by the above procedure, we get:

(x, y, z) ∈ {
(4, 21, 420), (4, 22, 220), (4, 24, 120), (4, 25, 100), (4, 28, 70), (4, 30, 60),

(4, 40, 40), (5, 11, 110), (5, 12, 60), (5, 14, 35), (5, 15, 30), (5, 20, 20), (10, 6, 30),

(10, 10, 10), (6, 8, 120), (6, 9, 45), (6, 10, 30), (6, 12, 20), (6, 15, 15), (7, 7, 70),

(8, 8, 20)
}

.

We now solve Eq. (2.4), that is, Eq. (1.1) when w = 6.
It is clear that 1

x < 1
3 ⇒ x > 3.

Under the assumption x ≤ y ≤ z, Eq. (2.4) gives 1
x + 1

y + 1
z ≤ 3

x and thus x ≤ 9.
Hence x ∈ {4, 5, 6, 7, 8, 9} and thus Eq. (2.4) leads to the following equations:
For x = 4,

1
y

+
1
z

=
1

12
, (2.30)

For x = 5,

1
y

+
1
z

=
2

15
, (2.31)

For x = 6,

1
y

+
1
z

=
1
6

, (2.32)

For x = 7,

1
y

+
1
z

=
4

21
, (2.33)

For x = 8,

1
y

+
1
z

=
5

24
. (2.34)

Solving Eqs. (2.30)–(2.26) by the above procedure, we get:

(x, y, z) ∈ {
(4, 13, 156), (4, 14, 84), (4, 15, 60), (4, 16, 48), (4, 18, 36), (4, 20, 30), (4, 21, 28),

(6, 7, 42), (6, 8, 24), (6, 9, 18), (6, 10, 15), (6, 12, 12), (6, 15, 10), (5, 8, 120),

(5, 9, 45), (5, 10, 30), (5, 12, 20), (5, 15, 15), (7, 7, 21), (8, 8, 12), (8, 12, 8),

(8, 24, 6)
}

.
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We now solve Eq. (2.5), that is, Eq. (1.1) when w = 7.
It is clear that 1

x < 5
14 ⇒ x ≥ 2.

Under the assumption x ≤ y ≤ z, Eq. (2.5) gives 1
x + 1

y + 1
z ≤ 3

x and thus x ≤ 8.
Hence x ∈ {2, 3, 4, 5, 6, 7, 8} and thus Eq. (2.5) leads to the following equations:
For x = 2,

1
y

+
1
z

= –
1
7

, (2.35)

For x = 3,

1
y

+
1
z

=
1

42
, (2.36)

For x = 4,

1
y

+
1
z

=
3

28
, (2.37)

For x = 5,

1
y

+
1
z

=
11
70

, (2.38)

For x = 6,

1
y

+
1
z

=
4

21
, (2.39)

For x = 8,

1
y

+
1
z

=
3

14
. (2.40)

We avoid Eq. (2.35) because it leads to negative solutions.
Solving Eqs. (2.36)–(2.40) by the above procedure, we get:

(x, y, z) ∈ {
(3, 43, 1806), (3, 44, 924), (3, 45, 630), (3, 48, 483), (3, 49, 294), (6, 6, 42),

(6, 7, 21), (6, 9, 18), (6, 10, 15), (6, 12, 12), (4, 10, 140), (4, 12, 42),

(4, 14, 28), (5, 7, 70)
}

.

Finally, we solve Eq. (2.6), that is, Eq. (1.1) when w = 8.
We observe that 1

x < 3
8 ⇒ x ≥ 2.

Under the assumption x ≤ y ≤ z, Eq. (2.6) gives 1
x + 1

y + 1
z ≤ 3

x and thus x ≤ 8.
Hence x ∈ {2, 3, 4, 5, 6, 7, 8} and thus Eq. (2.6) leads to the following equations:
For x = 2,

1
x

+
1
y

= –
1
8

, (2.41)
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For x = 3,

1
y

+
1
z

=
1

24
, (2.42)

For x = 4,

1
y

+
1
z

=
1
8

, (2.43)

For x = 5,

1
y

+
1
z

=
7

40
, (2.44)

For x = 6,

1
y

+
1
z

=
5

24
, (2.45)

For x = 7,

1
y

+
1
z

=
13
56

, (2.46)

For x = 8,

1
y

+
1
z

=
1
4

. (2.47)

We avoid Eq. (2.41) because it leads to negative solutions.
Solving Eqs. (2.42)–(2.47) by the above procedure, we get:

(x, y, z) ∈{
(3, 25, 600), (3, 26, 312), (3, 27, 213), (3, 28, 168), (3, 30, 120), (3, 32, 96),

(4, 9, 72), (4, 10, 40), (4, 12, 24), (4, 16, 16), (8, 5, 20), (8, 6, 12), (8, 8, 8),

(5, 6, 120), (5, 8, 20), (6, 9, 72), (6, 10, 40), (6, 12, 24), (6, 16, 16)
}

.

The above solutions (w, x, y, z) are found under the assumption w ≤ x ≤ y ≤ z. Thus we
can conclude that any permutation of (w, x, y, z) is a solution of Eq. (1.1).

We now state the following theorem which follows the above discussion.

Theorem 2.1 The equation 1
w + 1

x + 1
y + 1

z = 1
2 has only a finite number of solutions in the

positive integers w, x, y, and z.

We now state and prove general results.

Theorem 2.2 The Diophantine equation

1
w

+
1
x

+
1
y

+
1
z

=
m
n

, (2.48)
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where m, n > 1 are integers, has only a finite number of solutions in the positive integers
w, x, y, and z.

Proof Let us assume that w ≤ x ≤ y ≤ z. Then

4
z

≤ 1
w

+
1
x

+
1
y

+
1
z

≤ 4
w

⇒ 4
z

≤ m
n

≤ 4
w

⇒ 1
z

≤ m
4n

≤ 1
w

⇒ z ≥ 4n
m

≥ w.

Again 1
w < m

n and thus w > n
m .

This shows that w ∈ ( n
m , 4n

m ] and hence xhas only a finite number of integer values.
Now let w = p1 be such an integer value. Then Eq. (2.48) gives

1
x

+
1
y

+
1
z

=
m
n

–
1
p1

=
p1m – n

p1n
=

m2

n2
. (2.49)

Also, x ≤ y ≤ z ⇒ 3
z ≤ m1

n1
≤ 3

x ⇒ x ≤ 3n1
m1

≤ z.
But x > n1

m1
as 1

x < m1
n1

. Thus x ∈ ( n1
m1

, 3n1
m1

] and hence xcan take only a finite number of
integer values. Let x = p2 be such a value. Then Eq. (2.49) implies

1
y

+
1
z

=
m1

n1
–

1
p2

=
m2

n2
. (2.50)

Since m2
n2

≤ 2
y , so that y ∈ [p2, 2n2

m2
] and thus ycan also take only a finite number of integer

values. Finally, if y = p3 is such a value, then Eq. (2.50) gives z = p3n2
p3m–n2

. Thus the number
of integer values of z is also finite. �

Following a similar procedure, we can also establish the following result.

Theorem 2.3 The Diophantine equation

1
x1

+
1
x2

+
1
x3

+ · · · +
1
xn

=
p
q

, (2.51)

where p, q > 1 are integers, has only a finite number of solutions in the positive integers
x1, x2, . . . , xn.

3 Conclusion
In this paper, we explicitly find the solutions in positive integers w, x, y, and z of the title
equation. Applying an analogue procedure, we prove that the Diophantine equation

1
w

+
1
x

+
1
y

+
1
z

=
m
n

,

where m, n > 1 are integers, has only a finite number of solutions in the positive integers
w, x, y, and z. We finally claim that the same holds for Eq. (2.51).
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