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Abstract
This paper addresses approximately dual g-frames. First, we establish a connection
between approximately dual g-frames and dual g-frames and obtain a
characterization of approximately dual g-frames. Second, we give results on stability
of approximately dual g-frames, which cover the results obtained by other authors.
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1 Introduction
The notion of frame dates back to Gabor [1] (1946) and Duffin and Schaeffer [2] (1952).
Gabor [1] proposed the idea of decomposing a general signal in terms of elementary sig-
nals, and Duffin and Schaeffer [2] abstracted “these elementary signals” as the notion of
frame. However, the frame theory had not attracted much attention until the celebrated
work by Daubechies, Crossman, and Meyer [3] in 1986. So far, the theory of frame has seen
great achievements in pure mathematics, science, and engineering ([4–13]). In 2006, Sun
[14] introduced a generalized frame (simply g-frame), which covers all other generaliza-
tions of frames, for example, fusion frames [15], bounded quasiprojectors [16], and so on.
Now, the research of g-frames has obtained many results [17–19]. This paper addresses
approximately dual g-frames in Hilbert spaces.

Recall that a sequence {fi}i∈I in a separable Hilbert space H is a frame if

A1‖f ‖2 ≤
∑

i∈I

∣∣〈f , fn〉
∣∣2 ≤ B1‖f ‖2

for all f ∈H and some positive constants A1, B1. Given a frame {fi}i∈I , another frame {hi}i∈I

is said to be a dual frame of {fi}i∈I if

f =
∑

i∈I

〈f , fi〉hi, ∀f ∈ H ,

or, equivalently,

f =
∑

i∈I

〈f , hi〉fi, ∀f ∈ H .
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To find the dual frames for a general frame is a fundamental problem in the frame the-
ory. Usually, it is not easy due to involving complicated computation. In 2010, Chris-
tensen [20] introduced the notion of approximately dual frames. Bessel sequences {fi}i∈I

and {hi}i∈I in a separable Hilbert space H are said to be approximately dual frames if

∥∥∥∥f –
∑

i∈I

〈f , hi〉fi

∥∥∥∥ ≤ ‖f ‖, ∀f ∈ H ,

or
∥∥∥∥f –

∑

i∈I

〈f , fi〉hi

∥∥∥∥ ≤ ‖f ‖, ∀f ∈ H .

In 2014, Khosravi et al. [21] first introduced the notion of approximately dual g-frames,
which generalize the usual approximately dual frames. They proved that a pair of operator
sequences form approximately dual frames if and only if their induced sequences form a
pair of approximately dual g-frames. They also obtained some important properties and
applications of approximately dual frames. Later, many results on approximately dual g-
frames were obtained (see [22, 23]).

Motivated by [21], in this paper, we focus on the characterization and stability of ap-
proximately dual g-frames and their connection with dual g-frames. Sect. 2 is an auxiliary
one, where we recall some basic notions, properties, and some related results. In Sect. 3,
we establish a characterization of approximately dual g-frames and discuss some prop-
erties of approximately dual (dual) g-frames. In Sect. 4, we give some stability results of
approximately dual g-frames, which cover the results obtained by other authors.

2 Preliminaries
We begin with some basic notions and results of g-frames. See [14, 17, 18] for details.

Given separable Hilbert spaces H and V , let {Vj : j ∈ J} be a sequence of closed subspaces
of V with J being a subset of integers Z. The identity operator on H is denoted by IH . The
set of all bounded linear operators from H into Vj is denoted by L(H , Vj). Define

⊕

j∈J

Vj =
{
{aj}j∈J : aj ∈ Vj,

∥∥{aj}j∈J
∥∥2 =

∑

j∈J

‖aj‖2 < ∞
}

.

Then
⊕

j∈J Vj is a Hilbert space under the inner product

〈{aj}j∈J , {bj}j∈J
〉

=
∑

j∈J

〈aj, bj〉 for {aj}j∈J , {bj}j∈J ∈
⊕

j∈J

Vj.

Suppose {ej,k}k∈Kj is an orthonormal basis (simply o.n.b.) for Vj, where Kj ⊂ Z, j ∈ J . Define
ẽj,k = {δj,iei,k}i∈J , where δ is the Kronecker symbol. Then {ẽj,k}j∈J ,k∈Kj is an o.n.b. for

⊕
j∈J Vj

(see [17]).

Definition 2.1 ([14]) A sequence {�j ∈ L(H , Vj)}j∈J is called a g-frame for H with respect
to (w.r.t.) {Vj}j∈J if

A‖f ‖2 ≤
∑

j∈J

‖�jf ‖2 ≤ B‖f ‖2 (2.1)



Fu and Zhang Journal of Inequalities and Applications  (2018) 2018:192 Page 3 of 13

for all f ∈ H and some positive constants A ≤ B. The numbers A, B are called the frame
bounds. If only the right-hand inequality of (2.1) is satisfied, then {�j}j∈J is called a g-Bessel
sequence for H w.r.t. {Vj}j∈J with bound B. If A = B = λ, then {�j}j∈J is called a λ-tight g-
frame. In addition, if λ = 1, then {�j}j∈J is called a Parsevel g-frame.

For a g-Bessel sequence {�j}j∈J with bound B, the operator

T� :
⊕

j∈J

Vj → H , T�F =
∑

j∈J

�∗
j fj, ∀F = {fj}j∈J ∈

⊕

j∈J

Vj,

is well-defined, and its adjoint is given by

T∗
� : H →

⊕

j∈J

Vj, T∗
�f = {�jf }j∈J , ∀f ∈ H .

The operator T� is called the synthesis operator, and T∗
� is called the analysis operator of

{�j}j∈J . For g-frame {�j}j∈J with bounds A and B, the operator

S� : H → H , S�f =
∑

j∈J

�∗
j �jf , ∀f ∈ H ,

is called a g-frame operator of {�j}j∈J . It is bounded, invertible, self-adjoint, and positive,
and AIH ≤ S� ≤ BIH . Let �̃j = �jS–1

� . Then {�̃j}j∈J is also a g-frame for H w.r.t. {Vj}j∈J with
the g-frame operator S–1

� and frame bounds 1
B and 1

A . {�̃j}j∈J is called thebcanonical dual
g-frame of {�j}j∈J (see [14]).

Definition 2.2 ([14]) Let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J . A g-frame {�j}j∈J is called
an alternate dual g-frame for {�j}j∈J if

f =
∑

j∈J

�∗
j �jf , ∀f ∈ H .

Moreover, {�j}j∈J is also an alternate dual g-frame for {�j}j∈J , that is,

f =
∑

j∈J

�∗
j �jf , ∀f ∈ H .

Definition 2.3 ([20]) Let {fj}j∈J and {gj}j∈J be two Bessel sequences for H with their re-
spective synthesis operators Tf and Tg . We say that{fj}j∈J and {gj}j∈J are approximately
dual frames if ‖IH – Tf T∗

g ‖ < 1 or ‖IH – TgT∗
f ‖ < 1.

It is clear that the operator Tf T∗
g is invertible.

Definition 2.4 ([21]) Let {�j}j∈J and {�j}j∈J be two g-Bessel sequences for H w.r.t. {Vj}j∈J

with their respective synthesis operators T� and T� . Then {�j}j∈J and {�j}j∈J are approx-
imately dual g-frames if ‖IH – T�T∗

�‖ < 1 or ‖IH – T�T∗
�‖ < 1.
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3 Dual and approximately dual g-frames
This section focuses on the connection between approximately dual g-frames and dual
g-frames and on a characterization of approximately dual g-frames.

Lemma 3.1 ([19]) Let {�j}j∈J and {�j}j∈J be two g-Bessel sequences for H w.r.t. {Vj}j∈J . Then
the following are equivalent:

(i) f =
∑

j∈J �∗
j �jf , ∀f ∈ H .

(ii) f =
∑

j∈J �∗
j �jf , ∀f ∈ H .

(iii) 〈f , g〉 =
∑

j∈J〈�jf ,�jg〉, ∀f , g ∈ H .
In case the equivalent conditions are satisfied, {�j}j∈J and {�j}j∈J are dual g-frames for H

w.r.t. {Vj}j∈J .

Lemma 3.2 ([14]) Let �j ∈ L(H , Vj) for every j ∈ J , and let {ej,k}k∈Kj be an o.n.b. for Vj. If
uj,k is defined by uj,k = �∗

j ej,k , then {�j}j∈J is a g-frame (g-Bessel sequence) for H if and only
if {uj,k}j∈J ,k∈Kj is a frame (Bessel sequence) for H .

The following two theorems give a method to construct new dual g-frames (approxi-
mately dual g-frames) from given dual g-fromes.

Theorem 3.1 Let {�j}j∈J and {�j}j∈J be dual g-frames for H w.r.t. {Vj}j∈J , and let O1 and
O2 be two bounded operators on H such that O2O∗

1 = IH (‖IH – O2O∗
1‖ < 1). Then {�jO1}j∈J

and {�jO2}j∈J are dual g-frames (approximately dual g-frames) for H w.r.t. {Vj}j∈J .

Proof By a standard argument, {�j}j∈J is a g-Bessel sequence with synthesis operator T�.
Since O1 is a bounded operator on H , we see that {�jO1}j∈J is a g-Bessel sequence with
synthesis operator TO� = O1T�. Similarly, {�jO2}j∈J is also a g-Bessel sequence with syn-
thesis operator TO� = O2T� . By Lemma 3.1 we have

TO�T∗
O�f = O2T�T∗

�O∗
1f = O2O∗

1f = f
(∥∥IH – TO�T∗

O�

∥∥ =
∥∥IH – O2T�T∗

�O∗
1
∥∥ =

∥∥IH – O2O∗
1
∥∥ < 1

)

for all f ∈ H . �

Corollary 3.1 Let {�j}j∈J and {�j}j∈J be dual g-frames for H w.r.t. {Vj}j∈J , and let T be a
unitary operator on H . Then {�jT}j∈J and {�jT}j∈J are dual g-frames (approximately dual
g-frames) for H w.r.t. {Vj}j∈J .

Theorem 3.2 Assume that {�j}j∈J and {�j}j∈J are dual g-frames for H w.r.t. {Vj}j∈J , and
let {�j}j∈J and {�j}j∈J also be dual g-frames for H w.r.t. {Vj}j∈J . Then for any α ∈C, {�j}j∈J

and {α�j + (1 – α)�j}j∈J are dual g-frames for H w.r.t. {Vj}j∈J .

Proof By a standard argument, {α�j + (1 – α)�j}j∈J is a g-Bessel sequence for H w.r.t.
{Vj}j∈J . By Lemma 3.1 we have

∑

j∈J

〈
�jf ,

(
α�j + (1 – α)�j

)
g
〉

=
∑

j∈J

〈�jf ,α�jg〉 +
∑

j∈J

〈
�jf , (1 – α)�jg

〉

= ᾱ
∑

j∈J

〈�jf ,�jg〉 + (1 – ᾱ)
∑

j∈J

〈�jf ,�jg〉



Fu and Zhang Journal of Inequalities and Applications  (2018) 2018:192 Page 5 of 13

= ᾱ〈f , g〉 + (1 – ᾱ)〈f , g〉
= 〈f , g〉

for all f , g ∈ H . �

Obviously, if {�j}j∈J and {�j}j∈J are dual g-frames for H w.r.t. {Vj}j∈J , then {�j}j∈J and
{�j}j∈J are approximately dual g-frames for H w.r.t. {Vj}j∈J . However, the converse is not
true in general. The following theorem gives a sufficient condition for approximately dual
g-frames to be dual g-frames.

Theorem 3.3 Let {�j}j∈J and {�j}j∈J be approximately dual g-frames for H w.r.t. {Vj}j∈J

with synthesis operators T� and T� , respectively. Then T�T∗
� is invertible; furthermore,

the sequences {�j}j∈J and {(T�T∗
�)–1�j}j∈J are dual g-frames.

Proof Since {�j}j∈J and {�j}j∈J are approximately dual g-frames for H w.r.t. {Vj}j∈J , we have
‖IU – T�T∗

�‖ < 1, and thus T�T∗
� is invertible on H . By Lemma 3.1 we have

〈f , g〉 =
〈(

T�T∗
�

)(
T�T∗

�

)–1f , g
〉

=
〈
T∗

�

(
T�T∗

�

)–1f , T∗
�g

〉

=
∑

j∈J

〈
�j

(
T�T∗

�

)–1f ,�jg
〉

for all f , g ∈ H . �

For Theorem 3.3, a natural question is whether a g-frame always corresponds to an ap-
proximately dual g-frame. The following theorem gives an affirmative answer.

Theorem 3.4 Let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J with the synthesis operator T�

and frame bounds A and B. Then {B–1�j}j∈J is an approximately dual g-frame of {�j}j∈J .

Proof Note that {�j}j∈J is a g-frame for H w.r.t. {Vj}j∈J and T� is its synthesis operator. So
{B–1�j}j∈J is also g-frame with synthesis operator B–1T�, and

∥∥IH – B–1T�T∗
�

∥∥ = sup
‖f ‖=1

∣∣〈(IH – B–1T�T∗
�

)
f , f

〉∣∣

≤ B – A
B

< 1.

It follows that {B–1�j}j∈J is an approximately dual g-frame of {�j}j∈J . �

From Theorem 3.4 we know that every g-frame has at least an approximately dual g-
frame. Next, we characterize all approximately dual g-frames for a given g-frame. For this
purpose, we need to establish some lemmas.

Lemma 3.3 Let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J , let T� be its synthesis operator,
and let {ẽj,k}j∈J ,k∈Kj be an o.n.b. for

⊕
j∈J Vj. Then {�j}j∈J and {�j}j∈J are approximately

dual g-frames if and only if �∗
j ej,k = Tẽj,k (∀j ∈ J , k ∈ Kj), where T :

⊕
j∈J Vj → H is a linear

bounded operator such that ‖IH – TT∗
�‖ < 1.
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Proof Necessity. Suppose {�j}j∈J is an approximately dual g-frame of {�j}j∈J . Then {�j}j∈J

is a g-frame, and ‖IH – T�T∗
�‖ < 1, where T� is the synthesis operator of {�j}j∈J . Notice

that

T� ẽj,k = T�

({δj,iei,k}i∈J
)

=
∑

i∈J

�∗
j δj,iei,k = �∗

j ej,k .

Denote T = T� . Then T :
⊕

j∈J Vj → H is a linear bounded operator satisfying
‖IH – TT∗

�‖ < 1 and �∗
j ej,k = Tẽj,k for j ∈ J , k ∈ Kj.

Next, we prove the converse. Suppose T :
⊕

j∈J Vj → H is a linear bounded operator
satisfying ‖IH – TT∗

�‖ < 1 and �∗
j ej,k = Tẽj,k for j ∈ J , k ∈ Kj. Then

TT∗
�f = T

({�jf }j∈J
)

= T
(∑

j∈J

∑

k∈Kj

〈�jf , ej,k〉ẽj,k

)

=
∑

j∈J

∑

k∈Kj

〈�jf , ej,k〉Tẽj,k

=
∑

j∈J

∑

k∈Kj

〈�jf , ej,k〉�∗
j ej,k

=
∑

j∈J

�∗
j

∑

k∈Kj

〈�jf , ej,k〉ej,k

=
∑

j∈J

�∗
j �jf

for f ∈ H . Since {ẽj,k}j∈J ,k∈Kj is an o.n.b. for
⊕

j∈J Vj, we have that {Tẽj,k}j∈J ,k∈Kj is a Bessel
sequence for H . Let uj,k = Tẽj,k . Then uj,k = �∗

j ej,k . By Lemma 3.2 {�j}j∈J is a g-Bessel se-
quence for H w.r.t. {Vj}j∈J . Let T� be the synthesis operator of {�j}j∈J . Then T = T� and
‖IH – T�T∗

�‖ < 1, and hence {�j}j∈J and {�j}j∈J are approximately dual g-frames. �

From Lemma 3.3 we know that T is very important. The following lemma gives an ex-
plicit expression of T in Lemma 3.3.

Lemma 3.4 Let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J with the synthesis operator T� and
the frame operator S�. Then ‖IH – TT∗

�‖ < 1 (T :
⊕

j∈J Vj → H) if and only if T = S–1
� T� +

W (I – T∗
�QS–1

� T�), where I is the identity operator on
⊕

j∈J Vj, and W :
⊕

j∈J Vj → H and
Q : H → H are linear bounded operators satisfying ‖WT∗

�(IH – Q)‖ < 1.

Proof First, we suppose that ‖IH – TT∗
�‖ < 1 (T ∈ L(

⊕
j∈J Vj, H)). Then TT∗

� is invertible.
Let W = T and Q = (TT∗

�)–1. Then

S–1
� T� + W

(
I – T∗

�QS–1
� T�

)
= S–1

� T� + T
(
I – T∗

�

(
TT∗

�

)–1S–1
� T�

)

= S–1
� T� + T – TT∗

�

(
TT∗

�

)–1S–1
� T�

= S–1
� T� + T – S–1

� T� = T .
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Conversely, assume that T = S–1
� T� + W (I – T∗

�QS–1
� T�). Then

TT∗
� =

(
S–1

� T� + W
(
I – T∗

�QS–1
� T�

))
T∗

�

= S–1
� T�T∗

� + WT∗
� – WT∗

�QS–1
� T�T∗

�

= IU + WT∗
� – WT∗

�Q.

Therefore

∥∥IH – TT∗
�

∥∥ =
∥∥WT∗

�(IH – Q)
∥∥ < 1. �

Now, we turn to characterizing all approximately dual g-frames for a given g-frame.

Theorem 3.5 Let {�j ∈ L(H , Vj)} be a sequence, and let {�j}j∈J be a g-frame for H w.r.t.
{Vj}j∈J with the synthesis operator T� and the frame operator S�. Then {�j}j∈J and {�j}j∈J

are approximately dual g-frames if and only if

�∗
j ej,k = S–1

� �∗
j ej,k + W ẽj,k –

∑

j′∈J

∑

k′∈Kj

〈
QS–1

� �∗
j ej,k ,�∗

j′ej′ ,k′
〉
W ẽj′ ,k′ , ∀j ∈ J , k ∈ Kj, (3.1)

where W :
⊕

j∈J Vj → H and Q : H → H are linear bounded operators satisfying
‖WT∗

�(IH – Q)‖ < 1.

Proof First, we assume that {�j}j∈J and {�j}j∈J are approximately dual g-frames. By Lem-
mas 3.3 and 3.4 we have

�∗
j ej,k =

(
S–1

� T� + W
(
I – T∗

�QS–1
� T�

))
ẽj,k , (3.2)

where I is the identity operator on
⊕

j∈J Vj, and W :
⊕

j∈J Vj → H and Q : H → H are
linear bounded operators satisfying ‖WT∗

�(IU – Q)‖ < 1. Set zj,k = W ẽj,k . We know that
{zj,k}j∈J ,k∈Kj is a Bessel sequence for H . Using the notations uj,k := �∗

j ej,k and vj,k := �∗
j ej,k ,

we have

{〈
QS–1

� uj,k , uj′ ,k′
〉}

j′∈J ,k′∈Kj
∈ l2

for any j ∈ J and k ∈ Kj. So
∑

j′∈J
∑

k′∈Kj
〈QS–1

� uj,k , uj′ ,k′ 〉zj′ ,k′ converges unconditionally. By
(3.2) we have

vj,k = S–1
� T�ẽj,k + W ẽj,k – WT∗

�QS–1
� T�ẽj,k

= S–1
� uj,k + zj,k – WT∗

�QS–1
� uj,k

= S–1
� uj,k + zj,k – W

(∑

j′∈J

∑

k′∈Kj

〈
�j′QS–1

� uj,k , ej′ ,k′
〉
ẽj′ ,k′

)

= S–1
� uj,k + zj,k –

∑

j′∈J

∑

k′∈Kj

〈
QS–1

� uj,k ,�∗
j′ej′ ,k′

〉
W ẽj′ ,k′

= S–1
� uj,k + zj,k –

∑

j′∈J

∑

k′∈Kj

〈
QS–1

� uj,k , uj′ ,k′
〉
zj′ ,k′ ,
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that is,

�∗
j ej,k = S–1

� �∗
j ej,k + W ẽj,k –

∑

j′∈J

∑

k′∈Kj

〈
QS–1

� �∗
j ej,k ,�∗

j′ej′ ,k′
〉
W ẽj′ ,k′

for all j ∈ J , k ∈ Kj.
Now we prove the converse. Assume that (3.1) holds. For any f ∈ H , using the no-

tations uj,k := �∗
j ej,k , vj,k := �∗

j ej,k , and zj,k := W ẽj,k , by a standard argument we get that
∑

j∈J
∑

k∈Kj
〈f , uj,k〉S–1

� uj,k converges unconditionally to f . Therefore

∑

j∈J
�∗

j �jf =
∑

j∈J
�∗

j

∑

k∈Kj

〈�jf , ej,k〉ej,k

=
∑

j∈J

∑

k∈Kj

〈
f ,�∗

j ej,k
〉
�∗

j ej,k

=
∑

j∈J

∑

k∈Kj

〈f , uj,k〉vj,k

=
∑

j∈J

∑

k∈Kj

〈f , uj,k〉
(

S–1
� uj,k + zj,k –

∑

j′∈J

∑

k′∈Kj

〈
QS–1

� uj,k , uj′ ,k′
〉
zj′ ,k′

)

=
∑

j∈J

∑

k∈Kj

〈f , uj,k〉S–1
� uj,k +

∑

j∈J

∑

k∈Kj

〈f , uj,k〉zj,k

–
∑

j∈J

∑

k∈Kj

〈f , uj,k〉
∑

j′∈J

∑

k′∈Kj

〈
QS–1

� uj,k , uj′ ,k′
〉
zj′ ,k′

= f +
∑

j∈J

∑

k∈Kj

〈f , uj,k〉zj,k –
∑

j∈J

∑

k∈Kj

〈
Q

∑

j′∈J

∑

k′∈Kj

〈f , uj,k〉S–1
� uj,k , uj′ ,k′

〉
zj′ ,k′

= f +
∑

j∈J

∑

k∈Kj

〈f , uj,k〉zj,k –
∑

j∈J

∑

k∈Kj

〈Qf , uj′ ,k′ 〉zj′ ,k′

= f +
∑

j∈J

∑

k∈Kj

〈f – Qf , uj,k〉zj,k

for all f ∈ H . Next, we prove that {�j}j∈J is a g-Bessel sequence for H w.r.t. {Vj}j∈J . Indeed,

∑

j∈J

‖�jf ‖2 =
∑

j∈J

∑

k∈Kj

∣∣〈�jf , ej,k〉
∣∣2

=
∑

j∈J

∑

k∈Kj

∣∣〈f , vj,k〉
∣∣2

=
∑

j∈J

∑

k∈Kj

∣∣∣∣

〈
f , S–1

� uj,k + zj,k –
∑

j′∈J

∑

k′∈Kj

〈
QS–1

� uj,k , uj′ ,k′
〉
zj′ ,k′

〉∣∣∣∣
2

≤ C1

(∑

j∈J

∑

k∈Kj

∣∣〈f , S–1
� uj,k

〉∣∣2 +
∑

j∈J

∑

k∈Kj

∣∣〈f , zj,k〉
∣∣2

+
∑

j∈J

∑

k∈Kj

∣∣∣∣

〈
Q∗ ∑

j′∈J

∑

k′∈Kj

〈f , zj′ ,k′ 〉uj′ ,k′ , S–1
� uj,k

〉∣∣∣∣
2)
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≤ C2

(
‖f ‖2 +

∥∥∥∥Q∗ ∑

j′∈J

∑

k′∈Kj

〈f , zj′ ,k′ 〉uj′ ,k′

∥∥∥∥
2)

≤ C3

(
‖f ‖2 +

∑

j′∈J

∑

k′∈Kj

∣∣〈f , zj′k′ 〉∣∣2
)

≤ C4‖f ‖2

for all f ∈ H , where C1, C2, C3, and C4 are different positive constants. Let T� be the
synthesis operator of {�j}j∈J . Then

∥∥(
IH – T�T∗

�

)
f
∥∥ =

∥∥∥∥
∑

j∈J

∑

k∈Kj

〈f – Qf , uj,k〉zj,k

∥∥∥∥

=
∥∥∥∥
∑

j∈J

∑

k∈Kj

〈f – Qf , uj,k〉W ẽj,k

∥∥∥∥

=
∥∥∥∥W

∑

j∈J

∑

k∈Kj

〈f – Qf , uj,k〉ẽj,k

∥∥∥∥

=
∥∥∥∥W

∑

j∈J

∑

k∈Kj

〈
�j(f – Qf ), ej,k

〉
ẽj,k

∥∥∥∥

=
∥∥WT∗

�(f – Qf )
∥∥

≤ ∥∥WT∗
�(IH – Q)

∥∥‖f ‖

for all f ∈ H . Therefore ‖IH – T�T∗
�‖ < 1, and thus {�j}j∈J and {�j}j∈J are approximately

dual g-frames. �

4 Perturbations of approximately dual g-frames
The stability of frames is of great importance in frame theory, and it is studied widely by a
lot of authors ([4, 18]). In this section, we show that, under some conditions, approximately
dual g-frames and g-frames are stable under some perturbations. We first introduce some
lemmas.

Lemma 4.1 ([17]) Let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J with bounds A and B, λ1,λ2 ∈
(–1, 1), μ ≥ 0, and max{λ1 + μ√

A
,λ2} < 1. If {�j ∈ L(H , Vj)}j∈J satisfies

∥∥∥∥
∑

j∈J1

(�j – �j)∗gj

∥∥∥∥ ≤ λ1

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + λ2

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + μ

(∑

j∈J1

‖gj‖2
) 1

2

for an arbitrary finite subset J1 ⊂ J and gj ∈ Vj, then {�j}j∈J is a g-frame for H w.r.t. {Vj}j∈J

with bounds

((1 – λ1)
√

A – μ)2

(1 + λ2)2 ,
((1 + λ1)

√
B + μ)2

(1 – λ2)2 .
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Lemma 4.2 ([14]) Let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J . Then for gj ∈ Vj satisfying
f =

∑
j∈J �∗

j gj, we have

∑

j∈J

‖gj‖2 ≥
∑

j∈J

‖�̃jf ‖2.

Lemma 4.3 ([14]) {�j}j∈J is a g-Bessel sequence with an upper bound B if and only if

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥
2

≤ B
∑

j∈J1

‖gj‖2, gj ∈ Vj,

where J1 is an arbitrary finite subset of J .

Theorem 4.1 Let �j ∈ L(H , Vj), let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J with bounds A
and B and the synthesis operator T�, and let {�j}j∈J be alternate dual for {�j}j∈J with the
upper bound C and the synthesis operator T�. Assume that there are constants λ1, μ ≥ 0,
and 0 ≤ λ2 < 1 satisfying

∥∥∥∥
∑

j∈J1

(�j – �j)∗gj

∥∥∥∥ ≤ λ1

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + λ2

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + μ

(∑

j∈J1

‖gj‖2
) 1

2
, (4.1)

where J1 is an arbitrary finite subset of J , and gj ∈ Vj. If

λ1 + λ2
√

BC
(

1 +
λ1 + λ2 + μ√

B

1 – λ2

)
+ μ

√
C < 1,

then {�j}j∈J and {�j}j∈J are approximately dual g-frames.

Proof By Lemma 4.2 we have C ≥ 1
A and BC ≥ B

A ≥ 1. Note that

λ1 + λ2
√

BC
(

1 +
λ1 + λ2 + μ√

B

1 – λ2

)
+ μ

√
C < 1.

It follows that λ1 + μ√
A

< 1. By Lemma 4.1 {�j}j∈J is a g-frame for H w.r.t. {Vj}j∈J with bounds

A
(

1 –
λ1 + λ2 + μ√

A

1 + λ2

)2

, B
(

1 +
λ1 + λ2 + μ√

B

1 – λ2

)2

.

Denote by T� the synthesis operator of {�j}j∈J . From (4.1) we have

‖T�c – T�c‖ ≤ λ1‖T�c‖ + λ2‖T�c‖ + μ‖c‖⊕
j∈J Vj (4.2)

for any c = {cj}j∈J ∈ ⊕
j∈J Vj. Take c = T∗

�f in (4.2). Then

∥∥(
IH – T�T∗

�

)
f
∥∥ ≤ λ1‖f ‖ + λ2

∥∥T�T∗
�f

∥∥ + μ
∥∥T∗

�f
∥∥⊕

j∈J Vj

≤ λ1‖f ‖ + λ2
√

C‖T�‖‖f ‖ + μ
√

C‖f ‖
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≤ λ1‖f ‖ + λ2
√

BC
(

1 +
λ1 + λ2 + μ√

B

1 – λ2

)
‖f ‖ + μ

√
C‖f ‖

=
(

λ1 + λ2
√

BC
(

1 +
λ1 + λ2 + μ√

B

1 – λ2

)
+ μ

√
C

)
‖f ‖

for any f ∈ H . So

∥∥IH – T�T∗
�

∥∥ ≤ λ1 + λ2
√

BC
(

1 +
λ1 + λ2 + μ√

B

1 – λ2

)
+ μ

√
C < 1.

Thus {�j}j∈J and {�j}j∈J are approximately dual g-frames if λ1 + λ2
√

BC(1 +
λ1+λ2+ μ√

B
1–λ2

) +
μ

√
C < 1. �

From Theorem 4.1 we can obtain immediately the following corollary.

Corollary 4.1 Let �j ∈ L(H , Vj), let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J with bounds A
and B and the synthesis operator T� , and let {�j}j∈J be the canonical dual for {�j}j∈J with
the synthesis operator T�. Suppose that there are constants λ1, μ ≥ 0, and 0 ≤ λ2 < 1 such
that

∥∥∥∥
∑

j∈J1

(�j – �j)∗gj

∥∥∥∥ ≤ λ1

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + λ2

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + μ

(∑

j∈J1

‖gj‖2
) 1

2
, (4.3)

where J1 is an arbitrary finite subset of J , and gj ∈ Vj. If λ1 + λ2

√
B
A (1 +

λ1+λ2+ μ√
B

1–λ2
) + μ√

A
< 1,

then {�j}j∈J and {�j}j∈J are approximately dual g-frames.

Note that {�j}j∈J is a Parseval g-frame for H w.r.t. {Vj}j∈J . Then {�j}j∈J is the canonical
dual for itself. We have the following:

Corollary 4.2 Let �j ∈ L(H , Vj), and let {�j}j∈J be a Parseval g-frame for H w.r.t. {Vj}j∈J .
Assume that there are constants λ,μ ≥ 0 such that

∥∥∥∥
∑

j∈J1

(�j – �j)∗gj

∥∥∥∥ ≤ λ

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + μ

(∑

j∈J1

‖gj‖2
) 1

2
(4.4)

for an arbitrary finite subset J1 ⊂ J and gj ∈ Vj. If λ + μ < 1, then {�j}j∈J and {�j}j∈J are
approximately dual g-frames.

Corollary 4.3 Let {�j ∈ L(H , Vj)}j∈J be a sequence, and let {�j}j∈J be a g-frame for H w.r.t.
{Vj}j∈J . Also, let {�j}j∈J be an alternate dual for {�j}j∈J with the upper bound C. If there
exists a constant R such that CR < 1 and

∑

j∈J

∥∥(�j – �j)f
∥∥2 ≤ R‖f ‖2, ∀f ∈ H , (4.5)

then {�j}j∈J and {�j}j∈J are approximately dual g-frames.
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Proof Take λ1 = λ2 = 0 and μ =
√

R in Theorem 4.1. From Lemma 4.3 we know that (4.1)
is equivalent to (4.5). Since CR < 1, we have that {�j}j∈J and {�j}j∈J are approximately dual
g-frames. �

Remark 4.1 Corollary 4.1 and Corollary 4.3 are Proposition 3.10(i) and Theorem 3.1(i) in
[21], respectively. They are particular cases of our Theorem 4.1.

Theorem 4.2 Let {�j}j∈J be a g-frame for H w.r.t. {Vj}j∈J with synthesis operator T� and
bounds A and B. Assume that �j ∈ L(H , Vj) for all j ∈ J and there exist constants λ1,λ2,μ ≥
0 such that

∥∥∥∥
∑

j∈J1

(�j – �j)∗gj

∥∥∥∥ ≤ λ1

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + λ2

∥∥∥∥
∑

j∈J1

�∗
j gj

∥∥∥∥ + μ

(∑

j∈J1

‖gj‖2
) 1

2
(4.6)

for an arbitrary finite subset J1 ⊂ J and gj ∈ Vj. If λ1 + μ√
A

< 1 and λ2 + (λ1

√
B
A + μ√

A
) ×

1+λ2
1–(λ1+ μ√

A
) < 1, then {�j}j∈J is a g-frame for H w.r.t. {Vj}j∈J , and {�̃j}j∈J and {�j}j∈J are ap-

proximately dual g-frames.

Proof We can prove the theorem by an argument similar to that of Theorem 4.1. �

5 Conclusions
For a given frame, it is usually not easy to find a dual frame. The notion of approximately
dual frames was introduced by Christensen in 2010. It is a generalization of dual frames.
In this paper, on one hand, we obtain the link between approximately dual g-frames and
dual g-frames and characterize approximately dual g-frames. On the other hand, we give
stability results of approximately dual g-frames, which cover the results obtained by other
authors.
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