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Abstract
The aim of present work is to study some kinds of well-posedness for a class of
generalized variational-hemivariational inequality problems involving set-valued
operators. Some systematic approaches are presented to establish some equivalence
theorems between several classes of well-posedness for the inequality problems and
some corresponding metric characterizations, which generalize many known results.
Finally, the well-posedness for a class of generalized mixed equilibrium problems is
also considered.
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1 Introduction
Nowadays, well-posedness has been drawing great attention in the field of optimization
problems and related problems such as variational inequalities, hemivariational inequali-
ties, fixed point problems, equilibrium problems, and inclusion problems (see [1, 5, 9, 11,
17, 19, 21, 23, 33]). The classical concept of well-posedness for a global minimization prob-
lem was first introduced by Tikhonov [35], which required the existence and uniqueness
of a solution to the global minimization problem and the convergence of every minimizing
sequence toward the unique solution. Thereafter, the concept of well-posedness has been
generalized to variational inequalities. The initial notion of well-posedness for variational
inequality is due to Lucchetti and Patrone [28]. Fang [13, 14] generalized two kinds of
well-posedness for a mixed variational inequality problem in a Banach space. For further
results on the well-posedness of variational inequalities, we refer to [2, 4, 12–14, 16, 22,
27, 28] and the references therein.

As an important and useful generalization of variational inequality, hemivariational in-
equality, which was first studied by Panagiotopoulos [32], has a great development in re-
cent years by several works [6, 29, 31]. Many authors are interested in generalizing the con-
cept of well-posedness to hemivariational inequalities. In 1995, Goeleven and Mentagui
[15] generalized the concept of the well-posedness to a hemivariational inequality and
presented some basic results concerning the well-posed hemivariational inequality. Re-
cently, using the concept of approximating sequence, Xiao et al. [37, 38] introduced a con-
cept of well-posedness for a hemivariational inequality and a variational-hemivariational
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inequality. Ceng, Lur, and Wen [3] considered an extension of well-posedness for a min-
imization problem to a class of generalized variational-hemivariational inequalities with
perturbations in reflexive Banach spaces. For more recent works on the well-posedness
for variational-hemivariational inequalities, we refer to [3, 15, 18, 19, 26, 37, 38] and the
references therein.

In the last years, many authors studied the existence results for some types of hemi-
variational inequalities involving set-valued operators [34, 36, 39]. In 2011, Zhang and
He [39] studied a kind of hemivariational inequalities of Hartman–Stampacchia type by
introducing the concept of stable quasimonotonicity. They supposed that the constraint
set is a bounded (or unbounded), closed, and convex subset in a reflexive Banach space.
The authors gave sufficient conditions for the existence and boundedness of solutions. In
2013, Tang and Huang [34] generalized the result of [39] by introducing the concept of
stable φ-quasimonotonicity and obtained some existence theorems when the constrained
set is nonempty, bounded (or unbounded), closed, and convex in a reflexive Banach space.
Hereafter, Wangkeeree and Preechasilp [36] generalized the results of [34] and [39] by
introducing the concept of stable f -quasimonotonicity. Very recently, Liu and Zeng ob-
tained some existence results for a class of hemivariational inequalities involving the sta-
ble (g, f ,α)-quasimonotonicity [25], a result on the well-posedness for mixed quasivaria-
tional hemivariational inequalities [26], and some existence results for a class of quasim-
ixed equilibrium problems involving the (f , g, h)-quasimonotonicity [24].

Let K be a nonempty, closed, and convex subset of a real Banach space X with its dual
X∗, and let F : K → P(X∗) be a set-valued operator, where P(X∗) is the set of all nonempty
subsets of X∗. Let T : K → X∗ be a perturbation, and let f ∈ X∗ be a given element. Let
g : K × K → R := R ∪{±∞} be a function such that D(g) = {u ∈ K : g(u, v) �= –∞,∀v ∈ K} �=
∅. Let J : X → R be a locally Lipschitz function, and let J◦(u, v) denote the generalized
directional derivative in the sense of Clarke of a locally Lipschitz functional J : X → R
at u in the direction v. In this paper, we discuss the following generalized variational-
hemivariational inequality (GVHVI):

Find u ∈ K such that, for some u∗ ∈ F(u),

〈
u∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ 0, ∀v ∈ K .

Now, let us consider some particular cases of GVHVI.
(a) If T ≡ 0, f ≡ 0, and g ≡ 0, then GVHVI is reduced to the following form:

Find u ∈ K and u∗ ∈ F(u) such that

〈
u∗, v – u

〉
+ J◦(u; v – u) ≥ 0, ∀v ∈ K .

The existence of solutions to this inequality was recently studied by Zhang and He
[39].

(b) If T ≡ 0 and f ≡ 0, and g(u, v) = φ(v) – φ(u) for all u, v ∈ K , then GVHVI is reduced
to the following form:

Find u ∈ K and u∗ ∈ F(u) such that

〈
u∗, v – u

〉
+ φ(v) – φ(u) + J◦(u; v – u) ≥ 0, ∀v ∈ K .

The existence of solutions to this inequality was studied by Tang and Huang [34].
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(c) If T ≡ 0 and f ≡ 0, then GVHVI is reduced to the following form:
Find u ∈ K and u∗ ∈ F(u) such that

〈
u∗, v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ 0, ∀v ∈ K .

The existence of solutions to this inequality was studied by Wangkeeree and Preechasilp
[36].

Inspired by previous works, we study the well-posedness for GVHVI, which general-
izes many known works. Under relatively weak conditions, we establish some equivalence
results and some metric characterizations for the strong and weak α-well-posed GVHVI
in the generalized sense. In particular, we present equivalence results on weak α-well-
posedness for GVHVI, which were considered by few authors.

This paper is organized as follows. In Sect. 2, we recall some basic preliminaries of single-
valued and set-valued mappings, metric concepts, Clarke’s generalized directional deriva-
tive, and some classes of well-posedness for GVHVI. In Sect. 3, we show some equivalence
results for the well-posedness for GVHVI and some corresponding metric characteriza-
tions. Theorems 3.3, 3.5, and 3.6 are the main results in this section. In the last section, we
also present the well-posedness for a class of generalized mixed equilibrium problems.

2 Preliminaries
Let R, R+, and N be the sets of real numbers, nonnegative real numbers, and natural num-
bers, respectively. Let X be a real Banach space with norm ‖ · ‖X . Denote by X∗ its dual
space and by 〈·, ·〉X the duality pairing between X∗ and X. Let Xw be the Banach space X
with weak topology.

Definition 2.1 Let K be a nonempty subset of X. A function f : K → R is said to be
(i) convex on K if for all finite subsets {u1, . . . , un} ⊂ K and {λ1, . . . ,λn} ⊂ R+ such that

∑n
i=1 λi = 1 and

∑n
i=1 λiui ∈ K , we have

f

( n∑

i=1

λiui

)

≤
n∑

i=1

λif (ui);

(ii) (weakly) upper semicontinuous (u.s.c. for short) at u if for any sequence
{un}n≥1 ⊂ K with (un ⇀ u) un → u, we have

lim sup
n→∞

f (un) ≤ f (u).

(iii) (weakly) lower semicontinuous (l.s.c. for short) at u, if for any sequence
{un}n≥1 ⊂ K with (un ⇀ u) un → u, we have

lim inf
n→∞ f (un) ≥ f (u).

The function f is said to be (weakly) u.s.c. (l.s.c.) on K if f is (weakly) u.s.c. (l.s.c.) at
all u ∈ K .
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Definition 2.2 ([20]) Let K be a nonempty subset of X. An operator β : K → X is said to
be affine if for any ui ∈ K (i = 1, 2, . . . , n) and λi ∈ [0, 1] with

∑n
i=1 λi = 1, we have

β

( n∑

i=1

λivi

)

=
n∑

i=1

λiβ(ui).

Definition 2.3 A set-valued operator F : K → P(X∗) is said to be
(i) lower semicontinuous (l.s.c.) at u0 if for any u∗

0 ∈ F(u0) and sequence {un}n≥1 ⊂ K
with un → u0, there exists a sequence u∗

n ∈ F(un) that converges to u∗
0 .

(ii) lower hemicontinuous (l.h.c.) if the restriction of F to every line segment of K is
lower semicontinuous with respect to the weak topology in X∗.

Definition 2.4 A set-valued operator F : K → P(X∗) is said to be monotone if for all
u, v ∈ K ,

〈
v∗ – u∗, v – u

〉 ≥ 0, ∀u∗ ∈ F(u),∀v∗ ∈ F(v).

Definition 2.5 Let S be a nonempty subset of X. The measure μ of noncompactness for
the set S is defined by

μ(S) := inf

{

ε > 0 : S =
n⋃

i=1

Si, diam |Si| < ε, i = 1, 2, . . . , n

}

,

where diam|Si| is the diameter of the set Si.

Now, let us recall the definitions of the Clarke generalized directional derivative and
generalized gradient for a locally Lipschitz function ϕ : X → R (see [6, 10]). The Clarke
generalized directional derivative ϕ0(u; v) of ϕ at the point u ∈ X in the direction v ∈ X is
defined as

ϕ0(u; v) := lim sup
λ→0+,ζ→u

ϕ(ζ + λv) – ϕ(ζ )
λ

.

The Clarke subdifferential or generalized gradient of ϕ at u ∈ X, denoted by ∂ϕ(u), is the
subset of X∗ given by

∂ϕ(u) :=
{

u∗ ∈ X∗ : ϕ0(u; v) ≥ 〈
u∗, v

〉
X ,∀v ∈ X

}
.

Lemma 2.6 ([6], Proposition 2.1.1) Let ϕ : X → R be locally Lipschitz of rank Lu > 0 near u.
Then

(i) ϕ0(u; v) is u.s.c. as a function of (u, v) and, as a function of v alone, is Lipschitz of
rank Lu near u on X and satisfies

∣∣ϕ0(u; v)
∣∣ ≤ Lu‖v‖X ;

(ii) the gradient ∂ϕ(u) is a nonempty, convex, and weakly∗ compact subset of X∗

bounded by a Lipschitz constant Lu near x;
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(iii) for every v ∈ X , we have

ϕ0(u; v) = max
{〈

u∗, v
〉|u∗ ∈ ∂ϕ(u)

}
.

We end this section with the notions of several classes of α-approximating sequences
and α-well-posedness for GVHVI. Let α : X → R+ be a functional.

Definition 2.7 A sequence {un} in K is an α-approximating sequence for GVHVI if there
exist {u∗

n} in X∗ with u∗
n ∈ F(un) and a nonnegative sequence {εn} with εn → 0 as n → ∞

such that, for every n ∈ N ,

〈
u∗

n + Tun – f , v – un
〉
+ g(un, v) + J◦(un; v – un) ≥ –εnα(v – un), ∀v ∈ K .

In particular, if α(·) = ‖ · ‖X , then {un} is said to be an approximating sequence for GVHVI.

Definition 2.8 GVHVI is said to be strongly (respectively, weakly) α-well-posed if it
has a unique solution u and every α-approximating sequence {un} strongly (respectively,
weakly) converges to u. In particular, if α(·) = ‖ · ‖X , then GVHVI is said to be strongly
(respectively, weakly) well-posed.

Definition 2.9 GVHVI is said to be strongly (respectively, weakly) α-well-posed in the
generalized sense if the solution set � of GVHVI is nonempty and every α-approximating
sequence {un} has a subsequence that strongly (respectively, weakly) converges to some
point of �. In particular, if α(·) = ‖ · ‖X , then GVHVI is said to be strongly (respectively,
weakly) well-posed in the generalized sense.

Remark 2.10 Strong α-well-posedness (in the generalized sense) implies weak α-well-
posedness (in the generalized sense), but the converse is not true in general.

3 The characterizations of well-posedness for GVHVI
In this section, we establish metric characterizations and derive some conditions under
which GVHVI is strongly (weakly) α-well-posed.

For any ε > 0, we define the following two sets:

�α(ε) =
{

u ∈ K : ∃u∗ ∈ F(u) such that
〈
u∗ + Tu – f , v – u

〉
+ g(u, v)

+ J◦(u; v – u) ≥ –εα(v – u),∀v ∈ K
}

and

α(ε) =
{

u ∈ K :
〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u)

≥ –εα(v – u),∀v ∈ K ,∀v∗ ∈ F(v)
}

.

Denote by � the set of solutions to GVHVI. It is clear that � = �0(ε).

Lemma 3.1 Assume that:
(i) K is a nonempty closed subset of a real Banach space X ;
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(ii) T : K → X∗
w is continuous;

(iii) g : K × K → R is u.s.c. with respect to the first variable;
(iv) α : X → R+ is such that lim infn→∞ α(vn) ≤ α(v) whenever vn → v.

Then, for every ε > 0, the set α(ε) is closed in X.

Proof Let {un} ⊂ α(ε) be s sequence such that un → u in X. Then u ∈ K , and, for all v ∈ K
and v∗ ∈ F(v),

〈
v∗ + Tun – f , v – un

〉
+ g(un, v) + J◦(un; v – un) ≥ –εα(v – un).

By the assumptions and the properties of J◦ we have

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u)

≥ lim sup
n→∞

[〈
v∗ + Tun – f , v – un

〉
+ g(un, v) + J◦(un; v – un)

]

≥ lim sup
n→∞

–εα(v – un)

= –ε lim inf
n→∞ α(v – un)

≥ –εα(v – u),

and hence

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) – εα(v – u), ∀v ∈ K ,∀v∗ ∈ F(v),

which shows that u ∈ α(ε). �

Lemma 3.2 Assume that:
(i) K is a nonempty convex subset of a real Banach space X ;

(ii) F : K → P(X∗) is l.h.c. and monotone;
(iii) g : K × K → R is convex with respect to the second variable;
(iv) α : X → R+ is convex with α(tv) = tα(v) for all t ≥ 0 and v ∈ X .

Then �α(ε) = α(ε) for all ε > 0.

Proof We first show that �α(ε) ⊂ α(ε). Indeed, take arbitrary u ∈ �α(ε). Then there
exists u∗ ∈ F(u) such that

〈
u∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ –εα(v – u), ∀v ∈ K .

According to the monotonicity of F , we obtain

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ –εα(v – u), ∀v ∈ K ,∀v∗ ∈ F(v),

which means that u ∈ α(ε). Therefore �α(ε) ⊂ α(ε).
Now we show that α(ε) ⊂ �α(ε). Indeed, take arbitrary u ∈ α(ε). Then

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ –εα(v – u), ∀v ∈ K ,∀v∗ ∈ F(v).
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Since the set K is convex, for any v ∈ K and λ ∈ [0, 1], taking vλ := λv + (1 – λ)u ∈ K in this
inequality, we have

〈
v∗
λ + Tu – f , vλ – u

〉
+ g(u, vλ) + J◦(u; vλ – u) ≥ –εα(vλ – u), ∀v∗

λ ∈ F(vλ).

Then by (iii), (iv), and the properties of J◦ we obtain

〈
v∗
λ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ –εα(v – u), ∀v∗

λ ∈ F(vλ). (3.1)

Let u∗ ∈ F(u) be fixed, and let v∗
λ ∈ F(vλ) be such that v∗

λ ⇀ u∗ in X∗ (the existence of such
a sequence is ensured by the fact that F is l.h.c.). Taking the limit as λ → 0 in (3.1), we
obtain

〈
u∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u)

= lim
λ→0

[〈
v∗
λ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u)

]

≥ –εα(v – u),

which implies that u ∈ �α(ε). The proof is complete. �

The following result is a consequence of Lemmas 3.1 and 3.2.

Theorem 3.3 Assume that:
(i) K is a nonempty closed convex subset of a real Banach space X ;

(ii) F : K → P(X∗) is l.h.c. and monotone;
(iii) T : K → X∗

w is continuous;
(iv) g : K × K → R is u.s.c. with respect to the first variable and convex with respect to

the second variable;
(v) α : X → R+ is continuous and convex with α(tv) = tα(v) for all t ≥ 0 and v ∈ X .

Then �α(ε) = α(ε) is closed in X for all ε > 0. Moreover, � = �0(ε) = 0(ε), that is, GVHVI
is equivalent to the following problem:

Find u ∈ K such that

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ 0, ∀v ∈ K , v∗ ∈ F(v).

Theorem 3.4 GVHVI is strongly α-well-posed if and only if � is nonempty and

lim
ε→0

diam
(
�α(ε)

)
= 0.

Proof The proof is similar to that of Theorem 4.3 in [26] by the assumptions of g . �

Theorem 3.5 Assume that all the assumptions of Theorem 3.3 are satisfied. Then GVHVI
is strongly α-well-posed if and only if

�α(ε) �= ∅ ∀ε ≥ 0 and lim
ε→0

diam
(
�α(ε)

)
= 0. (3.2)
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Proof Suppose that GVHVI is strongly α-well-posed. Then GVHVI has a unique solution
u ∈ K , and thus � �= ∅. Now, we prove that (3.2) holds. Clearly, �α(ε) ⊃ � �= ∅. For the
second part of (3.2), arguing by contradiction, let us assume that diam(�α(ε)) does not
tend to 0 as ε → 0. Thus for any nonnegative sequence {εn} with εn → 0 as n → ∞, there
exists a constant β > 0 such that, for each n ∈ N , there exist u(1)

n , u(2)
n ∈ �α(εn) satisfying

∥∥u(1)
n – u(2)

n
∥∥ > β > 0. (3.3)

Since u(1)
n , u(2)

n ∈ �α(εn), we know that the sequences {u(1)
n } and {u(2)

n } are both α-
approximating sequences of GVHVI, and thus

lim
n→ u(1)

n = lim
n→ u(2)

n = u. (3.4)

From (3.3) and (3.4) we have

0 < β <
∥∥u(1)

n – u(2)
n

∥∥ ≤ ∥∥u(1)
n – u

∥∥ +
∥∥u(2)

n – u
∥∥ → 0,

which is a contradiction.
Conversely, assume that condition (3.2) holds. Let {un} in K be an α-approximating se-

quence for GVHVI. Then, there exist {u∗
n} in X∗ with u∗

n ∈ F(un) and a nonnegative se-
quence {εn} with εn → 0 as n → ∞ such that, for every n ∈ N ,

〈
u∗

n + Tun – f , v – un
〉
+ g(un, v) + J◦(un; v – un) ≥ –εnα(v – un), ∀v ∈ K ,

that is, un ∈ �α(εn) for all n ∈ N . By condition (3.2) we deduce that the sequence {un} is a
Cauchy sequence, and so {un} converges strongly to some point u ∈ K . Let us show that
u ∈ K is a solution for GVHVI. By the monotonicity of F we obtain that, for every n ∈ N ,

〈
v∗ + Tun – f , v – un

〉
+ g(un, v) + J◦(un; v – un)

≥ 〈
u∗

n + Tun – f , v – un
〉
+ g(un, v) + J◦(un; v – un)

≥ –εnα(v – un), ∀v ∈ K , v∗ ∈ F(v).

By the assumptions we obtain that

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u)

≥ lim sup
n→∞

[〈
v∗ + Tun – f , v – un

〉
+ g(un, v) + J◦(un; v – un)

]

≥ lim sup
n→∞

–εnα(v – un)

= lim sup
n→∞

α
(
–εn(v – un)

)

= 0,

which implies that

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ 0, ∀v ∈ K ,∀v∗ ∈ F(v).
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It follows from Theorem 3.3 that there exists u∗ ∈ F(u) such that

〈
u∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ 0, ∀v ∈ K .

Then u ∈ K is a solution of GVHVI.
Finally, we prove that the solution u is unique. If there exists another solution u′ ∈ K ,

then u, u1 ∈ �α(ε) for all ε > 0, and

0 <
∥∥u – u′∥∥ ≤ diam

(
�α(ε)

) → 0 as ε → 0,

which is a contradiction. This completes the proof. �

Theorem 3.6 Assume that:
(i) K is a nonempty closed convex subset of a real reflexive Banach space X ;

(ii) F : K → P(X∗) is l.h.c. and monotone;
(iii) T : K → X∗ is compact;
(iv) g : K × K → R is weakly u.s.c. with respect to the first variable and convex with

respect to the second variable;
(v) lim supn→∞ J◦(un; v – un) ≤ J◦(u; v – u) for all v ∈ X whenever un ⇀ u as n → ∞;

(vi) α : X → R+ is a continuous and convex functional with α(tv) = tα(v) for all t ≥ 0
and v ∈ X .

Then GVHVI is weakly α-well-posed if and only if GVHVI has a unique solution and there
exists ε0 > 0 such that �α(ε0) is nonempty and bounded.

Proof The necessity is obvious. We now prove the sufficiency. Let {un} be an α-
approximating sequence for GVHVI. Then, there exist {u∗

n} in X∗ with u∗
n ∈ F(un) and

a nonnegative sequence {εn} with εn → 0 as n → ∞ such that, for every n ∈ N ,

〈
u∗

n + Tun – f , v – un
〉
+ g(un, v) + J◦(un; v – un) ≥ –εnα(v – un)

for all v ∈ K . We claim that the sequence {un} is bounded in X. Indeed, since �α(ε0) is
bounded and �α(ε) ⊂ �α(ε0) for all ε ∈ (0, ε0), there exists n0 ∈ N such that εn0 ∈ (0, ε0)
and un ∈ �α(ε0) for all n ≥ n0, which shows that {un} is bounded in X.

Since the Banach space X is reflexive, we can choose a subsequence of {un}, denoted by
{un} again, such that un ⇀ u as n → ∞ for some u ∈ X. Let us show that u ∈ K is a solution
for GVHVI. Obviously, u ∈ K . By the monotonicity of F we obtain that

〈
v∗ + Tun – f , v – un

〉
+ g(un, v) + J◦(un; v – un)

≥ 〈
u∗

n + Tun – f , v – un
〉
+ g(un, v) + J◦(un; v – un)

≥ –εnα(v – un), ∀v ∈ K , v∗ ∈ F(v),∀n ∈ N .

By the assumptions, we obtain that

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u)

≥ lim sup
n→∞

[〈
v∗ + Tun – f , v – un

〉
+ g(un, v) + J◦(un; v – un)

]
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≥ lim sup
n→∞

–εnα(v – un)

= lim sup
n→∞

α
(
–εn(v – un)

)

= 0,

which implies that

〈
v∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ 0, ∀v ∈ K ,∀v∗ ∈ F(v).

It follows from Theorem 3.3 that there exists u∗ ∈ F(u) such that

〈
u∗ + T u – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≥ 0, ∀v ∈ K ,

Therefore u ∈ K is a solution to problem GVHVI, and so we get that GVHVI is weakly
α-well-posed by the uniqueness of the solution to problem GVHVI. This completes the
proof. �

Remark 3.7 In the theorem, condition (v) can be found in [30], and the condition that there
exists ε0 > 0 such that �α(ε0) is nonempty and bounded can be replaced by the conditions
that K is bounded or that there exists n0 ∈ N such that, for every u ∈ K \ Bn0 , there exists
v ∈ K with ‖v‖ < ‖u‖ such that

sup
u∗∈F(u)

〈
u∗ + Tu – f , v – u

〉
+ g(u, v) + J◦(u; v – u) ≤ –

1
n0

.

See [34, 36, 39] for more detail.

Next, we give some equivalence results for the strong α-posedness in the generalized
sense.

Theorem 3.8 Assume that all the assumptions of Theorem 3.5 are satisfied. Then GVHVI
is strongly α-well-posed in the generalized sense if and only if � is nonempty compact and

lim
ε→0

e
(
�α(ε),�

)
= 0,

where e(A, B) := supa∈A d(a, B) with d(a, B) := infb∈B ‖a – b‖.

Proof The proof is similar to that of Theorem 5.1 in [26] by the assumptions of g . �

Theorem 3.9 Assume that all the assumptions of Theorem 3.5 are satisfied. Then GVHVI
is strongly α-well-posed in the generalized sense if and only if

�α(ε) �= ∅, ∀ε > 0, and lim
ε→0

μ
(
�α(ε)

)
= 0.

Proof The proof is similar to that of Theorem 3.2 in [3] by the assumptions of g . �
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Theorem 3.10 Assume that all the assumptions of Theorem 3.6 are satisfied. Then GVHVI
is weakly α-well-posed in the generalized sense if and only if there exists ε0 > 0 such that
�α(ε0) is nonempty and bounded.

Proof The proof is similar to that of Theorem 3.6 by the assumptions of g . �

4 Well-posedness for GMEP
In this section, we consider the following generalized mixed equilibrium problem (GMEP):

Find u ∈ K such that, for some u∗ ∈ F(u),

〈
u∗,η(u, v)

〉
+ 〈Tu – f , v – u〉 + g(u, v) + h(u, v) ≥ 0, ∀v ∈ K ,

where η : K ×K → X is an operator. The existence of solutions to this problem when T ≡ 0
and f ≡ 0 can be found in [25].

To study GMEP, we introduce the concept of η-monotonicity (see [7, 8]).

Definition 4.1 Let F : K → P(X∗) be a set-valued operator. F is said to be η-monotone if
there exists a function η : K × K → X such that, for all u, v ∈ K ,

〈
v∗ – u∗,η(u, v)

〉 ≥ 0, ∀u∗ ∈ F(u),∀v∗ ∈ F(v). (4.1)

Remark 4.2 If η(u, v) = v – u for all u, v ∈ X, then (4.1) becomes

〈
v∗ – u∗, v – u

〉 ≥ 0, ∀u∗ ∈ F(u),∀v∗ ∈ F(v),

that is, F is monotone.

For any ε > 0, we define the following two sets:

�η,α(ε) =
{

u ∈ K : ∃u∗ ∈ F(u) such that
〈
u∗,η(u, v)

〉
+ 〈Tu – f , v – u〉 + g(u, v)

+ h(u, v)) ≥ –εα(v – u),∀v ∈ K
}

and

η,α(ε) =
{

u ∈ K :
〈
v∗,η(u, v)

〉
+ 〈Tu – f , v – u〉 + g(u, v)

+ h(u, v) ≥ –εα(v – u),∀v ∈ K ,∀v∗ ∈ F(v)
}

.

Denote by �η the set of solutions to GMEP. It is clear that � = �0(ε).
We can obtain similar results.

Theorem 4.3 Assume that all the assumptions of Theorem 3.3 are satisfied and, in addi-
tion, η : K × K → X is continuous on K × K with η(u, u) = 0 for any u ∈ K and affine with
respect to the first variable. Let h : K × K → R be such that:

(i) h(u, u) = 0 for all u ∈ X ,
(ii) for all v ∈ K , h(·, v) is u.s.c.,

(iii) for all u ∈ K , h(u, ·) is convex.
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Then �η,α(ε) = η,α(ε) is closed in X for all ε > 0. Moreover, �η = �η,0(ε) = η,0(ε), that is,
GMEP is equivalent to the following problem:

Find u ∈ K such that

〈
v∗ + Tu – f ,η(u, v)

〉
+ g(u, v) + h(u, v) ≥ 0, ∀v ∈ K , v∗ ∈ F(v).

Theorem 4.4 Assume that all the assumptions of Theorem 3.5 are satisfied and, in addi-
tion, η : K × K → X is continuous on K × K with η(u, u) = 0 for any u ∈ K and affine with
respect to the first variable. Let h : K × K → R be such that:

(i) h(u, u) = 0 for all u ∈ X ,
(ii) for all v ∈ K , h(·, v) is u.s.c.,

(iii) for all u ∈ K , h(u, ·) is convex.
Then GMVHVI is strongly α-well-posed if and only if

�η,α(ε) �= ∅, ∀ε ≥ 0, and lim
ε→0

diam
(
�η,α(ε)

)
= 0.

Theorem 4.5 Assume that all the assumptions of Theorem 3.6 are satisfied and, in addi-
tion, η : K × K → X is continuous on K × K with η(u, u) = 0 for any u ∈ K and affine with
respect to the first variable. Let h : K × K → R be such that:

(i) h(u, u) = 0 for all u ∈ X ,
(ii) for all v ∈ K , h(·, v) is weakly u.s.c.,

(iii) for all u ∈ K , h(u, ·) is convex.
Then GMEP is weakly α-well-posed if and only if GMEP has a unique solution and there
exists ε0 > 0 such that �α(ε0) is nonempty and bounded.

Theorem 4.6 Assume that all the assumptions of Theorem 3.5 are satisfied and, in addi-
tion, η : K × K → X is continuous on K × K with η(u, u) = 0 for any u ∈ K and affine with
respect to the first variable. Let h : K × K → R is such that:

(i) h(u, u) = 0 for all u ∈ X ,
(ii) for all v ∈ K , h(·, v) is u.s.c.,

(iii) for all u ∈ K , h(u, ·) is convex.
Then GMEP is strongly α-well-posed in the generalized sense if and only if

�η,α(ε) �= ∅, ∀ε > 0, and lim
ε→0

μ
(
�η,α(ε)

)
= 0.

Theorem 4.7 Assume that all the assumptions of Theorem 3.6 are satisfied and, in addi-
tion, η : K × K → X is continuous on K × K with η(u, u) = 0 for any u ∈ K and affine with
respect to the first variable. Let h : K × K → R be such that:

(i) h(u, u) = 0 for all u ∈ X ,
(ii) for all v ∈ K , h(·, v) is weakly u.s.c.,
(iii) for all u ∈ K , h(u, ·) is convex.

Then GMEP is weakly α-well-posed in the generalized sense if and only if there exists ε0 > 0
such that �α(ε0) is nonempty and bounded.

5 Conclusion
In this paper, inspired by the previous works, we study the well-posedness for GVHVI.
Under relatively weak conditions for the data F , T , g , J (see Theorems 3.3 and 3.6), we
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provide some equivalence results for the strong and weak α-well-posed GVHVI in the
generalized sense. Our results generalize and improve many known results and can be
applied to many other problems.
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