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Abstract
Some relaxed hybrid iterative schemes for approximating a common element of the
sets of zeros of infinite maximal monotone operators and the sets of fixed points of
infinite weakly relatively non-expansive mappings in a real Banach space are
presented. Under mild assumptions, some strong convergence theorems are proved.
Compared to recent work, two new projection sets are constructed, which avoids
calculating infinite projection sets for each iterative step. Some inequalities are
employed sufficiently to show the convergence of the iterative sequences. A specific
example is listed to test the effectiveness of the new iterative schemes, and
computational experiments are conducted. From the example, we can see that
although we have infinite choices to choose the iterative sequences from an interval,
different choice corresponds to different rate of convergence.
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1 Introduction
Throughout this paper, let X be a real Banach space with norm ‖ · ‖ and X∗ be the dual
space of X. Let K be a non-empty closed and convex subset of X. Let 〈x, f 〉 be the value of
f ∈ X∗ at x ∈ X. We write xn → x to denote that {xn} converges strongly to x and xn ⇀ x
to denote that {xn} converges weakly to x.

Suppose that A is a multi-valued operator from X into X∗. A is said to be monotone [1]
if for ∀vi ∈ Aui, i = 1, 2, one has 〈u1 – u2, v1 – v2〉 ≥ 0. The monotone operator A is called
maximal monotone if R(J + kA) = X∗, for k > 0, where J : X → 2X∗ is the normalized duality
mapping defined by

J(x) =
{

f ∈ X∗ : 〈x, f 〉 = ‖x‖2 = ‖f ‖2}, ∀x ∈ X.

A point x ∈ D(A) is called a zero of A if Ax = 0. The set of zeros of A is denoted by A–10.
Suppose that the Lyapunov functional φ : X × X → (0, +∞) is defined as follows:

φ(x, y) = ‖x‖2 – 2
〈
x, j(y)

〉
+ ‖y‖2, ∀x, y ∈ X, j(y) ∈ J(y).
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Let T be a single-valued mapping of K into itself.
(1) If Tp = p, then p is called a fixed point of T . And Fix(T) denotes the set of fixed

points of T ;
(2) If there exists a sequence {xn} ⊂ K which converges weakly to p ∈ K such that

xn – Txn → 0, as n → ∞, then p is called an asymptotic fixed point of T [2]. And
F̂ix(T) denotes the set of asymptotic fixed points of T ;

(3) If there exists a sequence {xn} ⊂ K which converges strongly to p ∈ K such that
xn – Txn → 0, as n → ∞, then p is called a strong asymptotic fixed point of T [2].
And F̃ix(T) denotes the set of strong asymptotic fixed points of T ;

(4) T is called strongly relatively non-expansive [2] if F̂ix(T) = Fix(T) �= ∅ and
φ(p, Tx) ≤ φ(p, x) for x ∈ K and p ∈ Fix(T);

(5) T is called weakly relatively non-expansive [2] if F̃ix(T) = Fix(T) �= ∅ and
φ(p, Tx) ≤ φ(p, x) for x ∈ K and p ∈ Fix(T).

If X is a real reflexive and strictly convex Banach space and K is a non-empty closed
and convex subset of X, then for each x ∈ X there exists a unique point x0 ∈ K such that
‖x – x0‖ = inf{‖x – y‖ : y ∈ K}. In this case, we can define the metric projection mapping
PK : X → K by PK x = x0 for ∀x ∈ X [3].

If X is a real reflexive, strictly convex, and smooth Banach space and K is a non-empty
closed and convex subset of X, then for ∀x ∈ X, there exists a unique point x0 ∈ K such
that φ(x0, x) = inf{φ(y, x) : y ∈ K}. In this case, we can define the generalized projection
mapping �K : X → K by �K x = x0 for ∀x ∈ X [3].

Note that if X is a Hilbert space H , then PK and �K are coincidental.
Since maximal monotone operators and weakly (or strongly) relatively non-expansive

mappings have close connection with practical problems, one has a good reason to study
them. During past years, much work has been done in designing iterative schemes to ap-
proximate a common element of the set of zeros of maximal monotone operators and
the set of fixed points of weakly (or strongly) relatively non-expansive mappings. Among
them, a projection iterative scheme is considered as one of the effective iterative schemes
which almost always generates strongly convergent iterative sequences (see [4–8] and the
references therein). Next, we list some recent closely related work.

Klin-eam et al. [5] presented the following projection iterative scheme for maximal
monotone operator A and two strongly relatively non-expansive mappings B and C in
a real uniformly convex and uniformly smooth Banach space X.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

vn = J–1[βnJxn + (1 – βn)JC(J + rnA)–1Jxn],

yn = J–1[αnJxn + (1 – αn)JBvn],

Hn = {p ∈ K : φ(p, yn) ≤ φ(p, xn)},
Vn = {p ∈ K : 〈p – xn, Jx1 – Jxn〉 ≤ 0},
xn+1 = �Hn∩Vn (x1), n ∈ N .

(1.1)

Then {xn} generated by (1.1) converges strongly to �A–10∩Fix(B)∩Fix(C)(x1).
Compared to (1.1), the following so-called monotone projection iterative scheme for

maximal monotone operator A and strongly relatively non-expansive mapping B in a real



Wei and Agarwal Journal of Inequalities and Applications  (2018) 2018:179 Page 3 of 24

uniformly convex and uniformly smooth Banach space X is presented [4].

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ X, r1 > 0,

yn = (J + rnA)–1J(xn + en),

zn = J–1[αnJxn + (1 – αn)Jyn],

un = J–1[βnJxn + (1 – βn)JBzn],

H1 = {p ∈ X : φ(p, z1) ≤ α1φ(p, x1) + (1 – α1)φ(p, x1 + e1)},
V1 = {p ∈ X : φ(p, u1) ≤ β1φ(p, x1) + (1 – β1)φ(p, z1)},
W1 = X,

Hn = {p ∈ Hn–1 ∩ Vn–1 ∩ Wn–1 : φ(p, zn) ≤ αnφ(p, xn) + (1 – αn)φ(p, xn + en)},
Vn = {p ∈ Hn–1 ∩ Vn–1 ∩ Wn–1 : φ(p, un) ≤ βnφ(p, xn) + (1 – βn)φ(p, zn)},
Wn = {p ∈ Hn–1 ∩ Vn–1 ∩ Wn–1 : 〈p – xn, Jx1 – Jxn〉 ≤ 0},
xn+1 = �Hn∩Vn∩Wn (x1), n ∈ N .

(1.2)

Then {xn} generated by (1.2) converges strongly to �A–10∩Fix(B)(x1).
In recent work, Wei et al. [8] extended the corresponding topic to the case for infinite

maximal monotone operators Ai and infinite weakly relatively non-expansive mappings
Bi.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ X, r1,i ∈ (0, +∞), i ∈ N ,

yn,i = (J + rn,iAi)–1J(xn + en), i ∈ N ,

zn,i = J–1[αnJxn + (1 – αn)JBiyn,i], i ∈ N ,

V1 = X = W1,

Vn+1,i = {p ∈ X : 〈yn,i – p, J(xn + en) – Jyn,i〉 ≥ 0}, i ∈ N ,

Vn+1 = (
⋂∞

i=1 Vn+1,i) ∩ Vn,

Wn+1,i = {p ∈ Vn+1,i : φ(p, zn,i) ≤ αnφ(p, xn) + (1 – αn)φ(p, yn,i)}, i ∈ N ,

Wn+1 = (
⋂∞

i=1 Wn+1,i) ∩ Wn,

Un+1 = {p ∈ Wn+1 : ‖x1 – p‖2 ≤ ‖PWn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Un+1, n ∈ N .

(1.3)

Then {xn} generated by (1.3) converges strongly to

P⋂∞
n=1 Wn (x1) ∈

( ∞⋂

i=1

A–1
i 0

)

∩
( ∞⋂

i=1

Fix(Bi)

)

.

Compared to traditional (monotone) projection iterative schemes (e.g., (1.1) and (1.2)),
some different ideas in (1.3) can be seen. (1) Metric projection mapping PWn+1 instead of
generalized projection mapping � is involved in (1.3). (2) The iterative item xn+1 can be
chosen arbitrarily in the set Un+1, while xn+1 in both (1.1) and (1.2) and some others are
needed to be the unique value of generalized projection mapping �. (3) {xn} in (1.3) con-
verges strongly to the unique value of metric projection mapping P, while {xn} in both (1.1)
and (1.2) converges strongly to the unique value of the generalized projection mapping �.
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A special case of (1.3) is presented as Corollary 2.13 in [8]. Now, we rewrite it as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ H , e1 ∈ H ,

yn = (I + rnA)–1(xn + en),

zn = αnxn + (1 – αn)Byn,

U1 = H = V1,

Un+1 = {p ∈ Un : (yn – p)(xn + en – yn) ≥ 0,

‖p – zn‖2 ≤ αn‖p – xn‖2 + (1 – αn)‖p – yn‖2},
Vn+1 = {p ∈ Un+1 : ‖x1 – p‖2 ≤ ‖PUn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Vn+1, n ∈ N .

(1.4)

Based on iterative scheme (1.4), an iterative sequence is defined as follows after taking
H = (–∞, +∞), Ax = 2x, Bx = x for x ∈ (–∞, +∞), en = αn = λn = 1

n , and rn = 2n–1:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

x1 = 1,

yn = xn+en
1+2rn

, n ∈ N ,

xn+1 = x1+yn–
√

(x1–yn)2+λn+1
2 , n ∈ N .

(1.5)

A computational experiment based on (1.5) is conducted in [8], from which we can see
the effectiveness of iterative scheme (1.4).

Inspired by the work of [8], three questions come to our mind. (1) In iterative scheme
(1.3), in each iterative step n, countable sets Vn+1,i and Wn+1,i are needed to be evaluated. It
is formidable. Can we avoid it? (2) xn+1 in either (1.3) or (1.4) can be chosen arbitrarily in a
set, can a different choice of xn+1 in Vn+1 lead to a different rate of convergence? (3) Which
one is better, our new one or those in [8]? In this paper, we shall answer the questions, con-
struct new simple projection sets in theoretical sense, and do computational experiments
for some special cases.

2 Preliminaries
In this section, we list some definitions and results we need later. The modulus of convexity
of X, δX : [0, 2] → [0, 1], is defined as follows [9]:

δX(ε) = sup

{
1 –

‖x + y‖
2

: x, y ∈ X,‖x‖ = ‖y‖ = 1,‖x – y‖ ≥ ε

}

for ∀ε ∈ [0, 2]. A Banach space X is called uniformly convex [9] if δX(ε) > 0 for ∀ε ∈ [0, 2].
A Banach space X is called uniformly smooth [9] if the limit limt→0

‖x+ty‖–‖x‖
t is attained

uniformly for (x, y) ∈ X × X with ‖x‖ = ‖y‖ = 1.
X is said to have Property (H): if for every sequence {xn} ⊂ X converging weakly to x ∈ X

and ‖xn‖ → ‖x‖, one has xn → x, as n → ∞. The uniformly convex and uniformly smooth
Banach space X has Property (H).

It is well known that if X is a real uniformly convex and uniformly smooth Banach space,
then the normalized duality mapping J is single-valued, surjective and J(kx) = kJ(x) for
x ∈ X and k ∈ (–∞, +∞). Moreover, J–1 is also the normalized duality mapping from X∗
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into X, and both J and J–1 are uniformly continuous on each bounded subset of X or X∗,
respectively [9].

Lemma 2.1 ([2]) Suppose that X is a uniformly convex and uniformly smooth Banach
space and K is a non-empty closed and convex subset of X. If B : K → K is weakly relatively
non-expansive, then Fix(B) is a closed and convex subset of X.

Lemma 2.2 ([1]) Let A : X → 2X∗ be a maximal monotone operator, then
(1) A–10 is a closed and convex subset of X ;
(2) if xn → x and yn ∈ Axn with yn ⇀ y, or xn ⇀ x and yn ∈ Axn with yn → y, then

x ∈ D(A) and y ∈ Ax.

Lemma 2.3 ([8]) Let K be a non-empty closed and convex subset of a uniformly smooth
Banach space X. Let x ∈ X and x0 ∈ K . Then φ(x0, x) = infy∈K φ(y, x) if and only if 〈x0 –
z, Jx – Jx0〉 ≥ 0 for all z ∈ K .

Lemma 2.4 ([10]) Let X be a real uniformly smooth and uniformly convex Banach space,
and let {xn} and {yn} be two sequences of X. If either {xn} or {yn} is bounded and φ(xn, yn) →
0 as n → ∞, then xn – yn → 0 as n → ∞.

Lemma 2.5 ([11]) Let X be a real uniformly smooth and uniformly convex Banach space
and A : X → 2X∗ be a maximal monotone operator with A–10 �= ∅. Then, for ∀x ∈ X, ∀y ∈
A–10, and r > 0, one has φ(y, (J + rA)–1Jx) + φ((J + rA)–1Jx, x) ≤ φ(y, x).

Let {Kn} be a sequence of non-empty closed and convex subsets of X. Then the strong
lower limit of {Kn}, s- lim inf Kn, is defined as the set of all x ∈ X such that there exists xn ∈
Kn for almost all n and it tends to x as n → ∞ in the norm; the weak upper limit of {Kn},
w- lim sup Kn, is defined as the set of all x ∈ X such that there exists a subsequence {Knm}
of {Kn} and xnm ∈ Knm for every nm and it tends to x as nm → ∞ in the weak topology; the
limit of {Kn}, lim Kn, is the common value when s- lim inf Kn = w- lim sup Kn [12].

Lemma 2.6 ([12]) Let {Kn} be a decreasing sequence of closed and convex subsets of X, i.e.,
Kn ⊂ Km if n ≥ m. Then {Kn} converges in X and lim Kn =

⋂∞
n=1 Kn.

Lemma 2.7 ([13]) Suppose that X is a real uniformly convex Banach space. If lim Kn exists
and is not empty, then {PKn x} converges weakly to Plim Kn x for every x ∈ X. Moreover, if X
has Property (H), the convergence is in norm.

Lemma 2.8 ([14]) Let X be a real uniformly convex Banach space and r ∈ (0, +∞). Then
there exists a continuous, strictly increasing, and convex function η : [0, 2r] → [0, +∞)
with η(0) = 0 such that ‖kx + (1 – k)y‖2 ≤ k‖x‖2 + (1 – k)‖y‖2 – k(1 – k)η(‖x – y‖) for
k ∈ [0, 1], x, y ∈ X with ‖x‖ ≤ r and ‖y‖ ≤ r.

Lemma 2.9 ([15]) Let X be the same as that in Lemma 2.8. Then there exists a con-
tinuous, strictly increasing, and convex function η : [0, 2r] → [0, +∞) with η(0) = 0 such
that ‖∑∞

i=1 kixi‖2 ≤ ∑∞
i=1 ki‖xi‖2 – k1kmη(‖x1 – xm‖) for all {xn}∞n=1 ⊂ {x ∈ X : ‖x‖ ≤ r},

{kn}∞n=1 ⊂ (0, 1) with
∑∞

n=1 kn = 1 and m ∈ N .
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3 Main results
In this section, our discussion is based on the following conditions:

(I1) X is a real uniformly convex and uniformly smooth Banach space and J : X → X∗ is
the normalized duality mapping;

(I2) Ai : X → X∗ is maximal monotone and Bi : X → X is weakly relatively non-expansive
for each i ∈ N . And (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)) �= ∅;
(I3) {en} ⊂ X is the error sequence such that en → 0, as n → ∞;
(I4) {rn,i} and {λn} are two real number sequences in (0, +∞) with infn rn,i > 0 for i ∈ N

and λn → 0, as n → ∞;
(I5) {an,i} and {bi} are two real number sequences in (0, 1) and

∑∞
i=1 an,i = 1 =

∑∞
i=1 bi for

n ∈ N ;
(I6) {αn} and {βn} are two real number sequences in [0, 1).

Theorem 3.1 Let {xn} be generated by the following iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ X, e1 ∈ X,

yn = J–1[αnJxn + (1 – αn)
∑∞

i=1 an,iJ(J + rn,iAi)–1J(xn + en)],

zn = J–1[βnJxn + (1 – βn)
∑∞

i=1 biJBiyn],

U1 = X = V1,

Un+1 = {v ∈ Un : φ(v, yn) ≤ αnφ(v, xn) + (1 – αn)φ(v, xn + en),

φ(v, zn) ≤ βnφ(v, xn) + (1 – βn)φ(v, yn)},
Vn+1 = {v ∈ Un+1 : ‖x1 – v‖2 ≤ ‖PUn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Vn+1, n ∈ N .

(3.1)

If 0 ≤ supn αn < 1 and 0 ≤ supn βn < 1, then xn → P⋂∞
m=1 Um (x1) ∈ (

⋂∞
i=1 A–1

i 0) ∩
(
⋂∞

i=1 Fix(Bi)), as n → ∞.

Proof We split the proof into seven steps.
Step 1. Un is a non-empty closed and convex subset of X for each n ∈ N .
Noticing the definition of Lyapunov functional, we have

φ(v, yn) ≤ αnφ(v, xn) + (1 – αn)φ(v, xn + en)

⇐⇒ 2αn〈v, Jxn〉 + 2(1 – αn)
〈
v, J(xn + en)

〉
– 2〈v, Jyn〉

≤ αn‖xn‖2 + (1 – αn)‖xn + en‖2 – ‖yn‖2

and

φ(v, zn) ≤ βnφ(v, xn) + (1 – βn)φ(v, yn)

⇐⇒ 2βn〈v, Jxn〉 + 2(1 – βn)〈v, Jyn〉 – 2〈v, Jzn〉
≤ βn‖xn‖2 + (1 – βn)‖yn‖2 – ‖zn‖2.

Thus Un is closed and convex for each n ∈ N .
Next, we shall prove that (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)) ⊂ Un, which implies that Un �= ∅.
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For this, we shall use inductive method. Now, ∀q ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 Fix(Bi)).

If n = 1, then q ∈ U1 = X is obviously true. In view of the convexity of ‖ · ‖2 and
Lemma 2.5, we have

φ(q, y1) = ‖q‖2 – 2

〈

q,α1Jx1 + (1 – α1)
∞∑

i=1

a1,iJ(J + r1,iAi)–1J(x1 + e1)

〉

+

∥∥∥∥∥
α1Jx1 + (1 – α1)

∞∑

i=1

a1,iJ(J + r1,iAi)–1J(x1 + e1)

∥∥∥∥∥

2

≤ ‖q‖2 – 2α1〈q, Jx1〉 – 2(1 – α1)
∞∑

i=1

a1,i
〈
q, J(J + r1,iAi)–1J(x1 + e1)

〉

+ α1‖x1‖2 + (1 – α1)
∞∑

i=1

a1,i
∥∥(J + r1,iAi)–1J(x1 + e1)

∥∥2

= α1φ(q, x1) + (1 – α1)
∞∑

i=1

a1,iφ
(
q, (J + r1,iAi)–1J(x1 + e1)

)

≤ α1φ(q, x1) + (1 – α1)φ(q, x1 + e1).

Moreover, from the definition of weakly relatively non-expansive mapping, we have

φ(q, z1) ≤ ‖q‖2 – 2β1〈q, Jx1〉 – 2(1 – β1)
∞∑

i=1

bi〈q, JBiy1〉

+ β1‖x1‖2 + (1 – β1)
∞∑

i=1

bi‖Biy1‖2

= β1φ(q, x1) + (1 – β1)
∞∑

i=1

biφ(q, Biy1) ≤ β1φ(q, x1) + (1 – β1)φ(q, y1).

Thus q ∈ U2.
Suppose the result is true for n = k + 1. Then, if n = k + 2, we have

φ(q, yk+1) = ‖q‖2 – 2

〈

q,αk+1Jxk+1 + (1 – αk+1)
∞∑

i=1

ak+1,iJ(J + rk+1,iAi)–1J(xk+1 + ek+1)

〉

+

∥∥∥∥∥
αk+1Jxk+1 + (1 – αk+1)

∞∑

i=1

ak+1,iJ(J + rk+1,iAi)–1J(xk+1 + ek+1)

∥∥∥∥∥

2

≤ ‖q‖2 – 2αk+1〈q, Jxk+1〉

– 2(1 – αk+1)
∞∑

i=1

ak+1,i
〈
q, J(J + rk+1,iAi)–1J(xk+1 + ek+1)

〉

+ αk+1‖xk+1‖2 + (1 – αk+1)
∞∑

i=1

ak+1,i
∥∥(J + rk+1,iAi)–1J(xk+1 + ek+1)

∥∥2

= αk+1φ(q, xk+1) + (1 – αk+1)
∞∑

i=1

ak+1,iφ
(
q, (J + rk+1,iAi)–1J(xk+1 + ek+1)

)

≤ αk+1φ(q, xk+1) + (1 – αk+1)φ(q, xk+1 + ek+1).
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Moreover,

φ(q, zk+1) ≤ ‖q‖2 – 2βk+1〈q, Jxk+1〉 – 2(1 – βk+1)
∞∑

i=1

bi〈q, JBiyk+1〉

+ βk+1‖xk+1‖2 + (1 – βk+1)
∞∑

i=1

bi‖Biyk+1‖2

= βk+1φ(q, xk+1) + (1 – βk+1)
∞∑

i=1

biφ(q, Biyk+1)

≤ βk+1φ(q, xk+1) + (1 – βk+1)φ(q, yk+1).

Then q ∈ Uk+2. Therefore, by induction, (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 Fix(Bi)) ⊂ Un for n ∈ N .

Step 2. PUn+1 (x1) → P⋂∞
m=1 Um (x1), as n → ∞.

It follows from Lemma 2.6 that lim Un exists and lim Un =
⋂∞

n=1 Un �= ∅. Since X has
Property (H), then Lemma 2.7 implies that PUn+1 (x1) → P⋂∞

m=1 Um (x1), as n → ∞.
Step 3. Vn �= ∅, for N ∪ {0}, which ensures that {xn} is well defined.
Since ‖PUn+1 (x1) – x1‖ = infy∈Un+1 ‖y – x1‖, then for λn+1, there exists δn+1 ∈ Un+1 such

that ‖x1 – δn+1‖2 ≤ (infy∈Un+1 ‖x1 – y‖)2 + λn+1 = ‖PUn+1 (x1) – x1‖2 + λn+1. This ensures that
Vn+1 �= ∅ for n ∈ N ∪ {0}.

Step 4. Both {xn} and {PUn+1 (x1)} are bounded.
Since λn → 0, then there exists M1 > 0 such that λn < M1 for n ∈ N . Step 2 implies that

{PUn+1 (x1)} is bounded, and then there exists M2 > 0 such that ‖PUn+1 (x1)‖ ≤ M2 for n ∈ N .
Set M = (M2 +‖x1‖)2 +M1. Since xn+1 ∈ Vn+1, then ‖x1 –xn+1‖2 ≤ ‖PUn+1 (x1)–x1‖2 +λn+1 ≤
M, ∀n ∈ N . Thus {xn} is bounded.

Step 5. xn+1 – PUn+1 (x1) → 0, as n → ∞.
Since xn+1 ∈ Vn+1 ⊂ Un+1 and Un is a convex subset of X, then for ∀k ∈ (0, 1), kPUn+1 (x1) +

(1 – k)xn+1 ∈ Un+1. Thus

∥∥PUn+1 (x1) – x1
∥∥≤ ∥∥kPUn+1 (x1) + (1 – k)xn+1 – x1

∥∥. (3.2)

Since {xn} is bounded, it follows from (3.2) and Lemma 2.8 that

∥∥PUn+1 (x1) – x1
∥∥2 ≤ ∥∥kPUn+1 (x1) + (1 – k)xn+1 – x1

∥∥2

≤ k
∥∥PUn+1 (x1) – x1

∥∥2 + (1 – k)‖xn+1 – x1‖2

– k(1 – k)η
(∥∥PUn+1 (x1) – xn+1

∥∥).

Therefore, kη(‖PUn+1 (x1)–xn+1‖) ≤ ‖xn+1 –x1‖2 –‖PUn+1 (x1)–x1‖2 ≤ λn+1. Letting k → 1
first and then n → ∞, we know that PUn+1 (x1) – xn+1 → 0, as n → ∞.

Step 6. xn → P⋂∞
m=1 Um (x1), yn → P⋂∞

m=1 Um (x1) and zn → P⋂∞
m=1 Um (x1), as n → ∞.

From Step 2 and Step 5, we know that xn → P⋂∞
m=1 Um (x1), as n → ∞. And then xn+1 –

xn → 0, as n → ∞. Since xn+1 ∈ Vn+1 ⊂ Un+1 and en → 0, then

0 ≤ φ(xn+1, yn) ≤ αnφ(xn+1, xn) + (1 – αn)φ(xn+1, xn + en)

= αn‖xn+1‖2 + αn‖xn‖2 – 2αn〈xn+1, Jxn〉
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+ (1 – αn)‖xn+1‖2 + (1 – αn)‖xn + en‖2 – 2(1 – αn)
〈
xn+1, J(xn + en)

〉

= ‖xn+1‖2 – αn‖xn‖2 – (1 – αn)‖xn + en‖2

+ 2αn〈xn – xn+1, Jxn〉 + 2(1 – αn)
〈
xn + en – xn+1, J(xn + en)

〉

≤ (‖xn+1‖2 – ‖xn + en‖2) + αn
(‖xn + en‖2 – ‖xn‖2) + 2αn‖xn‖‖xn+1 – xn‖

+ 2(1 – αn)‖xn + en‖‖xn + en – xn+1‖ → 0.

Then Lemma 2.4 implies that xn+1 – yn → 0 and then yn → P⋂∞
m=1 Um (x1), as n → ∞.

Since xn+1 ∈ Vn+1 ⊂ Un+1 and J is uniformly continuous on each bounded subset of X,
then

0 ≤ φ(xn+1, zn) ≤ βnφ(xn+1, xn) + (1 – βn)φ(xn+1, yn)

= βn
(〈xn+1, Jxn+1 – Jxn〉 + 〈xn – xn+1, Jxn〉

)
+ (1 – βn)φ(xn+1, yn)

≤ βn‖xn+1‖‖Jxn+1 – Jxn‖ + βn‖xn‖‖xn+1 – xn‖ + (1 – βn)φ(xn+1, yn) → 0.

Using Lemma 2.4 again, we have xn+1 – zn → 0 and then zn → P⋂∞
m=1 Um (x1), as n → ∞.

Step 7. P⋂∞
m=1 Um (x1) ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)).
First, we shall show that P⋂∞

m=1 Um (x1) ∈⋂∞
i=1 A–1

i 0.
From (3.1) and Lemma 2.5, for ∀q ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)), we have

φ(q, yn) ≤ αnφ(q, xn) + (1 – αn)
∞∑

i=1

an,iφ
(
q, (J + rn,iAi)–1J(xn + en)

)

≤ αnφ(q, xn)

+ (1 – αn)
∞∑

i=1

an,i
[
φ(q, xn + en) – φ

(
(J + rn,iAi)–1J(xn + en), xn + en

)]
.

Then

(1 – αn)
∞∑

i=1

an,iφ
(
(J + rn,iAi)–1J(xn + en), xn + en

)

≤ αnφ(q, xn) – φ(q, yn) + (1 – αn)φ(q, xn + en)

= αn
[
φ(q, xn) – φ(q, xn + en)

]
+
[
φ(q, xn + en) – φ(q, yn)

]

≤ ‖xn‖2 – ‖xn + en‖2 + 2‖q‖∥∥J(xn + en) – Jxn
∥∥

+ ‖xn + en‖2 – ‖yn‖2 + 2‖q‖∥∥Jyn – J(xn + en)
∥∥.

Since 0 ≤ supn αn < 1, then
∑∞

i=1 an,iφ((J + rn,iAi)–1J(xn + en), xn + en) → 0, which implies
from Lemma 2.4 that (J + rn,iAi)–1J(xn + en) – (xn + en) → 0, as n → ∞. Thus from Step 6,
(J + rn,iAi)–1J(xn + en) → P⋂∞

m=1 Um (x1), as n → ∞.
Denote un,i = (J + rn,iAi)–1J(xn + en), then Jun,i + rn,iAiun,i = J(xn + en). Since un,i →

P⋂∞
m=1 Um (x1), xn → P⋂∞

m=1 Um (x1), en → 0, infn rn,i > 0 and J is uniformly continuous on
each bounded subset of X, then Aiun,i → 0 for i ∈ N , as n → ∞. Using Lemma 2.2,
P⋂∞

m=1 Um (x1) ∈⋂∞
i=1 A–1

i 0.
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Next, we shall show that P⋂∞
m=1 Um (x1) ∈⋂∞

i=1 Fix(Bi).
Since zn = J–1[βnJxn + (1 – βn)

∑∞
i=1 biJBiyn], then Jzn – Jxn = (1 – βn)(

∑∞
i=1 biJBiyn – Jxn).

Since both J and J–1 are uniformly continuous on each bounded subset of X, zn →
P⋂∞

m=1 Um (x1), xn → P⋂∞
m=1 Um (x1) and 0 ≤ supn βn < 1, then

∑∞
i=1 biJBiyn – Jxn → 0, which

implies that J–1(
∑∞

i=1 biJBiyn) → P⋂∞
m=1 Um (x1), as n → ∞.

Employing Lemma 2.9, for ∀q ∈ (
⋂∞

i=1 A–1
i 0) ∩ (

⋂∞
i=1 Fix(Bi)), we have

φ

(

q, J–1

( ∞∑

i=1

biJBiyn

))

= ‖q‖2 – 2

〈

q,
∞∑

i=1

biJBiyn

〉

+

∥∥∥∥∥

∞∑

i=1

biJBiyn

∥∥∥∥∥

2

≤ ‖q‖2 – 2
∞∑

i=1

bi〈q, JBiyn〉 +
∞∑

i=1

bi‖Biyn‖2 – b1bkη
(‖JB1yn – JBkyn‖

)

=
∞∑

i=1

biφ(q, Biyn) – b1bkη
(‖JB1yn – JBkyn‖

)
. (3.3)

Since Jyn → JP⋂∞
m=1 Um (x1) and

∑∞
i=1 biJBiyn → JP⋂∞

m=1 Um (x1), then from the definition of
weakly relatively non-expansive mapping and (3.3), we have

b1bkη
(‖JB1yn – JBkyn‖

)

≤
∞∑

i=1

biφ(q, Biyn) – φ

(

q, J–1

( ∞∑

i=1

biJBiyn

))

≤
∞∑

i=1

biφ(q, yn) – φ

(

q, J–1

( ∞∑

i=1

biJBiyn

))

= ‖yn‖2 – 2〈q, Jyn〉 + 2
∞∑

i=1

bi〈q, JBiyn〉 –

∥∥∥∥∥

∞∑

i=1

biJBiyn

∥∥∥∥∥

2

→ 0,

as n → ∞. This ensures that JB1yn – JBkyn → 0 for k �= 1, as n → ∞.
Since yn → P⋂∞

m=1 Um (x1), then {yn} is bounded. Since (‖q‖ – ‖Biyn‖)2 ≤ φ(q, Biyn) ≤
φ(q, yn) ≤ (‖q‖ + ‖yn‖)2, then ‖Biyn‖ ≤ ‖q‖ or ‖Biyn‖ ≤ 2‖q‖ + ‖yn‖, i ∈ N . Set K =
sup{‖yn‖ : n ∈ N} + 2‖q‖, then K < +∞.

Since
∑∞

i=1 bi = 1, then for ∀ε > 0, there exists m0 ∈ N such that
∑∞

i=m0+1 bi < ε
4K .

Since JB1yn – JBkyn → 0, as n → ∞, for ∀k ∈ {1, 2, . . . , m0}, then we can choose n0 ∈ N
such that ‖JB1yn – JBkyn‖ < ε

2 for all n ≥ n0 and k ∈ {2, . . . , m0}. Then, if n ≥ n0,

∥∥∥∥∥
JB1yn –

∞∑

i=1

biJBiyn

∥∥∥∥∥
≤

m0∑

i=2

bi‖JB1yn – JBiyn‖ +
∞∑

i=m0+1

bi‖JB1yn – JBiyn‖

<

( m0∑

i=2

bi

)
ε

2
+

( ∞∑

i=m0+1

bi

)

2K <
ε

2
+

ε

2
= ε.

This implies that JB1yn –
∑∞

i=1 biJBiyn → 0, and then JB1yn → JP⋂∞
m=1 Um (x1), as n → ∞.

Thus B1yn → P⋂∞
m=1 Um (x1), as n → ∞. Lemma 2.1 implies that P⋂∞

m=1 Um (x1) ∈ Fix(B1).
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Repeating the above process for showing P⋂∞
m=1 Um (x1) ∈ Fix(B1), we can also prove that

P⋂∞
m=1 Um (x1) ∈ Fix(Bk), ∀k ∈ N . Therefore, P⋂∞

m=1 Um (x1) ∈⋂∞
i=1 Fix(Bi).

This completes the proof. �

Theorem 3.2 Let {xn} be generated by the following iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ X, e1 ∈ X,

yn = J–1[αnJx1 + (1 – αn)
∑∞

i=1 an,iJ(J + rn,iAi)–1J(xn + en)],

zn = J–1[βnJx1 + (1 – βn)
∑∞

i=1 biJBiyn],

U1 = X = V1,

Un+1 = {v ∈ Un : φ(v, yn) ≤ αnφ(v, x1) + (1 – αn)φ(v, xn + en),

φ(v, zn) ≤ βnφ(v, x1) + (1 – βn)φ(v, yn)},
Vn+1 = {v ∈ Un+1 : ‖x1 – v‖2 ≤ ‖PUn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Vn+1, n ∈ N .

(3.4)

If αn → 0, βn → 0, then xn → P⋂∞
m=1 Um (x1) ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)), as n → ∞.

Proof Copy Steps 2, 3, 4, and 5 of Theorem 3.1, and do small changes in Steps 1, 6, and 7
in the following way.

Step 1. Un is a non-empty closed and convex subset of X.
We notice that

φ(v, yn) ≤ αnφ(v, x1) + (1 – αn)φ(v, xn + en)

⇐⇒ 2αn〈v, Jx1〉 + 2(1 – αn)
〈
v, J(xn + en)

〉
– 2〈v, Jyn〉

≤ αn‖x1‖2 + (1 – αn)‖xn + en‖2 – ‖yn‖2

and

φ(v, zn) ≤ βnφ(v, x1) + (1 – βn)φ(v, yn)

⇐⇒ 2βn〈v, Jx1〉 + 2(1 – βn)〈v, Jyn〉 – 2〈v, Jzn〉
≤ βn‖x1‖2 + (1 – βn)‖yn‖2 – ‖zn‖2.

Thus Un is closed and convex for n ∈ N .
Next, we shall prove that (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)) ⊂ Un, which ensures that Un �= ∅.
For this, we shall use inductive method. Now, ∀q ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)).
If n = 1, q ∈ U1 = X is obviously true. In view of the convexity of ‖ · ‖2 and Lemma 2.5,

we have

φ(q, y1) = ‖q‖2 – 2

〈

q,α1Jx1 + (1 – α1)
∞∑

i=1

a1,iJ(J + r1,iAi)–1J(x1 + e1)

〉

+

∥∥∥∥∥
α1Jx1 + (1 – α1)

∞∑

i=1

a1,iJ(J + r1,iAi)–1J(x1 + e1)

∥∥∥∥∥

2
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≤ ‖q‖2 – 2α1〈q, Jx1〉 – 2(1 – α1)
∞∑

i=1

a1,i
〈
q, J(J + r1,iAi)–1J(x1 + e1)

〉

+ α1‖x1‖2 + (1 – α1)
∞∑

i=1

a1,i
∥∥(J + r1,iAi)–1J(x1 + e1)

∥∥2

= α1φ(q, x1) + (1 – α1)
∞∑

i=1

a1,iφ
(
q, (J + r1,iAi)–1J(x1 + e1)

)

≤ α1φ(q, x1) + (1 – α1)φ(q, x1 + e1).

Moreover, from the definition of weakly relatively non-expansive mapping, we have

φ(q, z1) ≤ ‖q‖2 – 2β1〈q, Jx1〉 – 2(1 – β1)
∞∑

i=1

bi〈q, JBiy1〉

+ β1‖x1‖2 + (1 – β1)
∞∑

i=1

bi‖Biy1‖2

= β1φ(q, x1) + (1 – β1)
∞∑

i=1

biφ(q, Biy1) ≤ β1φ(q, x1) + (1 – β1)φ(q, y1).

Thus q ∈ U2.
Suppose the result is true for n = k + 1. Then, if n = k + 2, we have

φ(q, yk+1) = ‖q‖2 – 2

〈

q,αk+1Jx1 + (1 – αk+1)
∞∑

i=1

ak+1,iJ(J + rk+1,iAi)–1J(xk+1 + ek+1)

〉

+

∥∥∥∥∥
αk+1Jx1 + (1 – αk+1)

∞∑

i=1

ak+1,iJ(J + rk+1,iAi)–1J(xk+1 + ek+1)

∥∥∥∥∥

2

≤ ‖q‖2 – 2αk+1〈q, Jx1〉

– 2(1 – αk+1)
∞∑

i=1

ak+1,i
〈
q, J(J + rk+1,iAi)–1J(xk+1 + ek+1)

〉

+ αk+1‖x1‖2 + (1 – αk+1)
∞∑

i=1

ak+1,i
∥∥(J + rk+1,iAi)–1J(xk+1 + ek+1)

∥∥2

= αk+1φ(q, x1) + (1 – αk+1)
∞∑

i=1

ak+1,iφ
(
q, (J + rk+1,iAi)–1J(xk+1 + ek+1)

)

≤ αk+1φ(q, x1) + (1 – αk+1)φ(q, xk+1 + ek+1).

Moreover,

φ(q, zk+1) ≤ ‖q‖2 – 2βk+1〈q, Jx1〉 – 2(1 – βk+1)
∞∑

i=1

bi〈q, JBiyk+1〉

+ βk+1‖x1‖2 + (1 – βk+1)
∞∑

i=1

bi‖Biyk+1‖2
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= βk+1φ(q, x1) + (1 – βk+1)
∞∑

i=1

biφ(q, Biyk+1)

≤ βk+1φ(q, x1) + (1 – βk+1)φ(q, yk+1).

Then q ∈ Uk+2. Therefore, by induction, ∅ �= (
⋂∞

i=1 A–1
i 0)∩ (

⋂∞
i=1 Fix(Bi)) ⊂ Un, for n ∈ N .

Step 6. xn → P⋂∞
m=1 Um (x1), yn → P⋂∞

m=1 Um (x1), and zn → P⋂∞
m=1 Um (x1), as n → ∞.

Following from the results of Step 2 and Step 5, xn → P⋂∞
m=1 Um (x1), as n → ∞. And then

xn+1 – xn → 0, as n → ∞.
Since xn+1 ∈ Vn+1 ⊂ Un+1, αn → 0, and en → 0, then

0 ≤ φ(xn+1, yn) ≤ αnφ(xn+1, x1) + (1 – αn)φ(xn+1, xn + en)

= αn‖xn+1‖2 + αn‖x1‖2 – 2αn〈xn+1, Jx1〉
+ (1 – αn)‖xn+1‖2 + (1 – αn)‖xn + en‖2 – 2(1 – αn)

〈
xn+1, J(xn + en)

〉

= ‖xn+1‖2 – αn‖x1‖2 – (1 – αn)‖xn + en‖2

+ 2αn〈x1 – xn+1, Jx1〉 + 2(1 – αn)
〈
xn + en – xn+1, J(xn + en)

〉

≤ (‖xn+1‖2 – ‖xn + en‖2) + αn
(‖xn + en‖2 – ‖x1‖2) + 2αn‖x1‖‖xn+1 – x1‖

+ 2(1 – αn)‖xn + en‖‖xn + en – xn+1‖ → 0,

as n → ∞. Lemma 2.4 implies that xn+1 – yn → 0 and then yn → P⋂∞
m=1 Um (x1) as n → ∞.

Since xn+1 ∈ Vn+1 ⊂ Un+1 and βn → 0, then

0 ≤ φ(xn+1, zn) ≤ βnφ(xn+1, x1) + (1 – βn)φ(xn+1, yn) → 0.

Lemma 2.4 implies that xn+1 – zn → 0 and then zn → P⋂∞
m=1 Um (x1) as n → ∞.

Step 7. P⋂∞
m=1 Um (x1) ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)).
First, we shall show that P⋂∞

m=1 Um (x1) ∈⋂∞
i=1 A–1

i 0.
From (3.4) and Lemma 2.5, for ∀q ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)), we have

φ(q, yn) ≤ αnφ(q, x1) + (1 – αn)
∞∑

i=1

an,iφ
(
q, (J + rn,iAi)–1J(xn + en)

)

≤ αnφ(q, x1)

+ (1 – αn)
∞∑

i=1

an,i
[
φ(q, xn + en) – φ

(
(J + rn,iAi)–1J(xn + en), xn + en

)]
.

Thus

(1 – αn)
∞∑

i=1

an,iφ
(
(J + rn,iAi)–1J(xn + en), xn + en

)

≤ αnφ(q, x1) – φ(q, yn) + (1 – αn)φ(q, xn + en)

= αn
[
φ(q, x1) – φ(q, xn + en)

]
+
[
φ(q, xn + en) – φ(q, yn)

]

≤ αn
[
φ(q, x1) – φ(q, xn + en)

]
+
(‖xn + en‖2 – ‖yn‖2) + 2‖q‖∥∥J(xn + en) – Jyn

∥∥.
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Since αn → 0, then
∑∞

i=1 an,iφ((J + rn,iAi)–1J(xn + en), xn + en) → 0, which implies from
Lemma 2.4 that (J + rn,iAi)–1J(xn + en) – (xn + en) → 0, as n → ∞. Thus (J + rn,iAi)–1J(xn +
en) → P⋂∞

m=1 Um (x1), as n → ∞.
Let un,i = (J + rn,iAi)–1J(xn + en), then Jun,i + rn,iAiun,i = J(xn + en). Since un,i →

P⋂∞
m=1 Um (x1), xn → P⋂∞

m=1 Um (x1), en → 0, and infn rn,i > 0, then Aiun,i → 0 for i ∈ N , as
n → ∞. Using Lemma 2.2, P⋂∞

m=1 Um (x1) ∈⋂∞
i=1 A–1

i 0.
Next, we shall show that P⋂∞

m=1 Um (x1) ∈⋂∞
i=1 Fix(Bi).

Since zn = J–1[βnJx1 + (1 – βn)
∑∞

i=1 biJBiyn], then Jzn – Jxn = βn(Jx1 – Jxn) + (1 –
βn)(

∑∞
i=1 biJBiyn – Jxn). Since both J and J–1 are uniformly continuous on each bounded

subset of X, zn → P⋂∞
m=1 Um (x1), xn → P⋂∞

m=1 Um (x1), and βn → 0, then
∑∞

i=1 biJBiyn – Jxn →
0, which implies that J–1(

∑∞
i=1 biJBiyn) → P⋂∞

m=1 Um (x1), as n → ∞.
The following proof is the same as the corresponding part in Step 7 of Theorem 3.1.
This completes the proof. �

Theorem 3.3 Suppose that {xn} is generated by the following iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ X, e1 ∈ X,

yn = J–1[αnJx1 + (1 – αn)
∑∞

i=1 an,iJ(J + rn,iAi)–1J(xn + en)],

zn = J–1[βnJxn + (1 – βn)
∑∞

i=1 biJBiyn],

U1 = X = V1,

Un+1 = {v ∈ Un : φ(v, yn) ≤ αnφ(v, x1) + (1 – αn)φ(v, xn + en),

φ(v, zn) ≤ βnφ(v, xn) + (1 – βn)φ(v, yn)},
Vn+1 = {v ∈ Un+1 : ‖x1 – v‖2 ≤ ‖PUn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Vn+1, n ∈ N .

(3.5)

If 0 ≤ supn βn < 1 and αn → 0, then xn → P⋂∞
m=1 Um (x1) ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)), as
n → ∞.

Theorem 3.4 Suppose that {xn} is generated by the following iterative scheme:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ X, e1 ∈ X,

yn = J–1[αnJxn + (1 – αn)
∑∞

i=1 an,iJ(J + rn,iAi)–1J(xn + en)],

zn = J–1[βnJx1 + (1 – βn)
∑∞

i=1 biJBiyn],

U1 = X = V1,

Un+1 = {v ∈ Un : φ(v, yn) ≤ αnφ(v, xn) + (1 – αn)φ(v, xn + en),

φ(v, zn) ≤ βnφ(v, x1) + (1 – βn)φ(v, yn)},
Vn+1 = {v ∈ Un+1 : ‖x1 – v‖2 ≤ ‖PUn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Vn+1, n ∈ N .

(3.6)

If 0 ≤ supn αn < 1 and βn → 0, then xn → P⋂∞
m=1 Um (x1) ∈ (

⋂∞
i=1 A–1

i 0) ∩ (
⋂∞

i=1 Fix(Bi)), as
n → ∞.

Remark 3.5 The main difference between ours and [8] is that: in [8], in each step n, count-
able sets Vn+1,i and Wn+1,i are needed to be evaluated, but in our paper, in each step n,
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two sets Un+1 and Vn+1 are enough. This difference leads to some different techniques for
proving the main results.

Corollary 3.6 If X reduces to a Hilbert space H , then (3.1) becomes as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ H , e1 ∈ H ,

yn = αnxn + (1 – αn)
∑∞

i=1 an,i(I + rn,iAi)–1(xn + en),

zn = βnxn + (1 – βn)
∑∞

i=1 biBiyn,

U1 = H = V1,

Un+1 = {v ∈ Un : ‖v – yn‖2 ≤ αn‖v – xn‖2 + (1 – αn)‖v – xn – en‖2,

‖v – zn‖2 ≤ βn‖v – xn‖2 + (1 – βn)‖v – yn‖2},
Vn+1 = {v ∈ Un+1 : ‖x1 – v‖2 ≤ ‖PUn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Vn+1, n ∈ N .

(3.7)

Similarly, we can get the special forms of (3.4), (3.5), and (3.6) in the frame of Hilbert
space H .

Corollary 3.7 If, further, rn,i ≡ rn, Ai ≡ A, and Bi ≡ B, then we can get a special case for
(3.7):

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ H , e1 ∈ H ,

yn = αnxn + (1 – αn)(I + rnA)–1(xn + en),

zn = βnxn + (1 – βn)Byn,

U1 = H = V1,

Un+1 = {v ∈ Un : ‖v – yn‖2 ≤ αn‖v – xn‖2 + (1 – αn)‖v – xn – en‖2,

‖v – zn‖2 ≤ βn‖v – xn‖2 + (1 – βn)‖v – yn‖2},
Vn+1 = {v ∈ Un+1 : ‖x1 – v‖2 ≤ ‖PUn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Vn+1, n ∈ N ,

(3.8)

where A is maximal monotone, B is weakly relatively non-expansive, and {rn} ⊂ [0, +∞)
satisfies infn rn > 0.

Corollary 3.8 If, in Corollary 3.7, αn ≡ 0, then (3.8) can be further simplified as follows:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 ∈ H , e1 ∈ H ,

yn = (I + rnA)–1(xn + en),

zn = βnxn + (1 – βn)Byn,

U1 = H = V1,

Un+1 = {v ∈ Un : ‖v – yn‖ ≤ ‖v – xn – en‖,

‖v – zn‖2 ≤ βn‖v – xn‖2 + (1 – βn)‖v – yn‖2},
Vn+1 = {v ∈ Un+1 : ‖x1 – v‖2 ≤ ‖PUn+1 (x1) – x1‖2 + λn+1},
xn+1 ∈ Vn+1, n ∈ N .

(3.9)
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Remark 3.9 Comparing (3.9) and (1.4), we may find that they are different due to different
construction of Un+1. This indicates again that (3.1) is different from (1.3).

Remark 3.10 Choose H = (–∞, +∞), Ax = 2x, and Bx = x for x ∈ (–∞, +∞). Let en = βn =
λn = 1

n and rn = 2n–1 for n ∈ N . Then A is maximal monotone and B is weakly relatively
non-expansive. Moreover, A–10 ∩ Fix(B) = {0}.

Corollary 3.11 Take the example in Remark 3.10. We can choose the following three iter-
ative sequences {xn} among infinite choices by iterative scheme (3.9).

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 = 1, x2 = 1 –
√

2
2 ,

yn = xn+en
1+2rn

, n ∈ N ,

wn = minm≤n(1 + rm)ym, n ∈ N ,

xn+1 = x1 –
√

(x1 – wn)2 + λn+1, n ∈ N \ {1},

(3.10)

⎧
⎪⎪⎨

⎪⎪⎩

x1 = 1,

yn = xn+en
1+2rn

, n ∈ N ,

xn+1 = (1 + rn)yn, n ∈ N ,

(3.11)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

x1 = 1, x2 = 7
6 –

√
2

4 ,

yn = xn+en
1+2rn

, n ∈ N ,

wn = minm≤n(1 + rm)ym, n ∈ N ,

xn+1 = x1+wn–
√

(x1–wn)2+λn+1
2 , n ∈ N \ {1}.

(3.12)

Then {xn} generated by (3.10), (3.11), and (3.12) converges strongly to 0 ∈ A–10 ∩ Fix(B),
as n → ∞.

Proof We can easily see from iterative scheme (3.9) that

yn =
xn + en

1 + 2rn
for n ∈ N , (3.13)

and

zn = βnxn + (1 – βn)yn for n ∈ N . (3.14)

From (3.14), we can see that (v – zn)2 ≤ βn(v – xn)2 + (1 – βn)(v – yn)2 is always true for
v ∈ (–∞, +∞). Then we can simplify Un+1 and Vn+1 as follows:

Un+1 = Un ∩ {v ∈ (–∞, +∞) : 2(xn + en – yn)v ≤ (xn + en)2 – y2
n
}

for n ∈ N , (3.15)

and

Vn+1 = Un+1 ∩ [x1 –
√(

x1 – PUn+1 (x1)
)2 + λn+1, x1 +

√(
x1 – PUn+1 (x1)

)2 + λn+1
]

for n ∈ N . (3.16)
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Next, we split the proof into three parts.
Part 1. We shall show that both {xn} and {yn} generated by (3.10) converge strongly to

0 ∈ A–10 ∩ Fix(B), as n → ∞.
By using inductive method, we first show that the following is true:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, x2 = 1 –
√

2
2 ,

0 < (1 + rn+1)yn+1 < 1, n ∈ N ,

U1 = (–∞, +∞) = V1,

U2 = (–∞, 4
3 ], V2 = [1 –

√
2

2 , 4
3 ],

Un+1 = (–∞, wn], n ∈ N \ {1},
Vn+1 = [x1 –

√
(x1 – wn)2 + λn+1, wn], n ∈ N \ {1},

we may choose xn+1 = x1 –
√

(x1 – wn)2 + λn+1, n ∈ N \ {1}.

(3.17)

In fact, if n = 1, y1 = x1+e1
1+2r1

= 2
3 . Since (x1 + e1) – y1 = 2r1y1 = 2y1 = 4

3 > 0, then from (3.15),
U2 = (–∞, +∞) ∩ (–∞, (1 + r1)y1] = (–∞, 4

3 ]. Thus PU2 (x1) = x1. From (3.16), V2 = U2 ∩
[1 –

√
2

2 , 1 +
√

2
2 ] = [1 –

√
2

2 , 4
3 ]. So, we may choose x2 = 1 –

√
2

2 .
If n = 2, y2 = x2+e2

1+2r2
= 3

10 –
√

2
10 and w2 = min{(1 + r1)y1, (1 + r2)y2} = 9–3

√
2

10 = (1 + r2)y2. It is
easy to see that 0 < (1 + r2)y2 < 1, and then x2 + e2 – y2 = 2r2y2 > 0. From (3.15), U3 = U2 ∩
(–∞, 3y2] = [–∞, 4

3 ]∩(–∞, 9–3
√

2
10 ] = (–∞, w2], and then PU3 (x1) = w2 = 9–3

√
2

10 . From (3.16),

V3 = U3 ∩ [x1 –
√

(x1 – w2)2 + λ3, x1 +
√

(x1 – w2)2 + λ3] = [1 –
√

( 1+3
√

2
10 )2 + 1

3 , 9–3
√

2
10 ] = [x1 –

√
(x1 – w2)2 + λ3, w2]. Then we may choose x3 = x1 –

√
(x1 – w2)2 + λ3.

Suppose that (3.17) is true for n = k. We now begin the discussion for n = k + 1.
Since 0 < (1 + rk+1)yk+1 < 1, then xk+1 + ek+1 – yk+1 = 2rk+1yk+1 > 0. From (3.15) and (3.13),

Uk+2 = Uk+1 ∩ (–∞, (1 + rk+1)yk+1] = (–∞, wk+1], and then PUk+2 (x1) = wk+1.
Note that wk+1 < 1 = x1 < x1 +

√
(x1 – wk+1)2 + λk+2 and

√
(x1 – wk+1)2 + λk+2 > x1 – wk+1 >

0, then from (3.16) we know that

Vk+2 =
[
x1 –

√
(x1 – wk+1)2 + λk+2, wk+1

]
.

Then we may choose

xk+2 = x1 –
√

(x1 – wk+1)2 + λk+2.

Since yk+2 = xk+2+ek+2
1+2rk+2

= xk+2
1+2k+2 + 1

(k+2)(1+2k+2) , then (1 + rk+2)yk+2 = 1+rk+2
1+2rk+2

(xk+2 + ek+2). Note
that

(1 + rk+2)yk+2 > 0 ⇐⇒ xk+2 + ek+2 > 0

⇐⇒ 1 +
1

k + 2
>
√

(1 – wk+1)2 + λk+2

⇐⇒ 1 +
2

k + 2
+

1
(k + 2)2 > (1 – wk+1)2 +

1
k + 2

⇐⇒ 1 +
1

k + 2
+

1
(k + 2)2 > (1 – wk+1)2.
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This is obviously true. Then (1 + rk+2)yk+2 > 0. Since

xk+2 +
1

k + 2
= 1 –

√

(1 – wk+1)2 +
1

k + 2
+

1
k + 2

< wk+1 +
1

k + 2

< 1 +
1

k + 2
<

1 + 2k+2

1 + 2k+1 =
1 + 2rk+2

1 + rk+2
,

then (1 + rk+2)yk+2 = 1+rk+2
1+2rk+2

(xk+2 + ek+2) < 1.
By now, we have proved that (3.17) is true.
In this part, it is left to prove that xn → 0, yn → 0, as n → ∞.
From (3.17), {(1 + rn)yn} is bounded, which implies that {wn} is bounded. Thus {xn} is

bounded. Let {xni} be any subsequence of {xn} such that limi→∞ xni = a. Then wni → a and
yni → 0 as i → ∞. Since 0 < wni ≤ (1 + rni )yni < 1, then 0 ≤ a ≤ limi→∞(1 + rni )yni ≤ 1. That
is, 0 ≤ a ≤ limi→∞ rni yni ≤ 1. From the fact that 2rnyn = xn + en – yn, we have limi→∞(1 +
rni )yni = a

2 . By now, we know that 0 ≤ a ≤ a
2 ≤ 1, then a = 0. This means that each strongly

convergent subsequence of {xn} converges strongly to 0. Thus xn → 0 ∈ A–10 ∩ Fix(B), as
n → ∞. And then yn → 0, wn → 0, as n → ∞.

Part 2. We shall show that both {xn} and {yn} generated by (3.11) converge strongly to
0 ∈ A–10 ∩ Fix(B), as n → ∞.

First, we shall use inductive method to show that the following is true:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1,

0 < (1 + rn+1)yn+1 < (1 + rn)yn, n ∈ N ,
1+2n+1

(n+2)2n+1 < (1 + rn+1)yn+1 < 1, n ∈ N \ {1},
U1 = (–∞, +∞) = V1, V2 = [1 –

√
2

2 , 4
3 ], V3 = [1 –

√
3

3 , 11
10 ],

Un+1 = (–∞, (1 + rn)yn], n ∈ N \ {1},
Vn+1 = [x1 –

√
[x1 – (1 + rn)yn]2 + λn+1, (1 + rn)yn], n ∈ N \ {1, 2},

we may choose xn+1 = (1 + rn)yn, n ∈ N .

(3.18)

In fact, if n = 1, y1 = x1+e1
1+2r1

= 2
3 . Since (x1 + e1) – y1 = 2r1y1 = 2y1 = 4

3 > 0, then from (3.15),
U2 = (–∞, +∞) ∩ (–∞, (1 + r1)y1] = (–∞, 4

3 ]. Thus PU2 (x1) = x1. From (3.16), V2 = U2 ∩
[1 –

√
2

2 , 1 +
√

2
2 ] = [1 –

√
2

2 , 4
3 ]. Then we may choose x2 = (1 + r1)y1 = 4

3 .
If n = 2, y2 = x2+e2

1+2r2
= 11

30 . It is easy to see that 0 < (1 + r2)y2 = 11
10 < (1 + r1)y1 = 4

3 . From
(3.15), U3 = U2 ∩ (–∞, 3y2] = (–∞, 11

10 ] = (–∞, (1 + r2)y2], and then PU3 (x1) = x1. From
(3.16), V3 = U3 ∩ [1 –

√
3

3 , 1 +
√

3
3 ] = [1 –

√
3

3 , 11
10 ]. Then we may choose x3 = (1 + r2)y2 = 11

10 .
Thus y3 = x3+e3

1+2r3
= 43

270 . It is easy to check that 0 < (1 + r3)y3 = 43
54 < 11

10 = (1 + r2)y2 and 1+23

(2+2)23 <
(1 + r3)y3 < 1.

Suppose that (3.18) is true for n = k. Next, we show the result is true for n = k + 1.
Since 0 < (1 + rk+1)yk+1 < (1 + rk)yk < 1, then (3.15) implies that Uk+2 = Uk+1 ∩ (–∞, (1 +

rk+1)yk+1] = (–∞, (1 + rk+1)yk+1] and PUk+2 (x1) = (1 + rk+1)yk+1.
Note that (1 + rk+1)yk+1 < 1 = x1 < x1 +

√
[x1 – (1 + rk+1)yk+1]2 + λk+2 and x1 –

√
[x1 – (1 + rk+1)yk+1]2 + λk+2 < (1 + rk+1)yk+1. Then, from (3.16), we know that

Vk+2 =
[
x1 –

√[
x1 – (1 + rk+1)yk+1

]2 + λk+2, (1 + rk+1)yk+1
]
.
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Thus we may choose

xk+2 = (1 + rk+1)yk+1.

And then, yk+2 = xk+2+ek+2
1+2rk+2

= xk+2
1+2k+2 + 1

(k+2)(1+2k+2) . So (1 + rk+2)yk+2 = 1+rk+2
1+2rk+2

(xk+2 + ek+2).
Note that

(1 + rk+2)yk+2 > 0 ⇐⇒ xk+2 + ek+2 > 0 ⇐⇒ (1 + rk+1)yk+1 +
1

k + 2
> 0,

which is obviously true from the assumption. Thus (1 + rk+2)yk+2 > 0.
Since (1 + rk+1)yk+1 < 1, then 1+2k+1

1+2k+2 [(1 + rk+1)yk+1 + 1
k+2 ] < 1+2k+1

1+2k+2
k+3
k+2 < 1. Thus

(1 + rk+2)yk+2 = (1 + rk+2)
xk+2 + ek+2

1 + 2rk+2
=

1 + 2k+1

1 + 2k+2

[
(1 + rk+1)yk+1 +

1
k + 2

]
< 1.

Note that

(1 + rk+2)yk+2 < (1 + rk+1)yk+1

⇐⇒ 1 + rk+2

1 + 2rk+2
(xk+2 + ek+2) < (1 + rk+1)yk+1

⇐⇒ 1 + 2k+1

1 + 2k+2

[
(1 + rk+1)yk+1 +

1
k + 2

]
< (1 + rk+1)yk+1

⇐⇒ 2k+2 – 2k+1

1 + 2k+2 (1 + rk+1)yk+1 >
1 + 2k+1

(k + 2)(1 + 2k+2)

⇐⇒ (1 + rk+1)yk+1 >
1 + 2k+1

(k + 2)2k+1 ,

which is true from the assumption.
Compute the following:

(1 + rk+2)yk+2 =
1 + rk+2

1 + 2rk+2
(xk+2 + ek+2)

=
1 + 2k+1

1 + 2k+2

[
(1 + rk+1)yk+1 +

1
k + 2

]

>
1 + 2k+1

1 + 2k+2

[
1 + 2k+1

(k + 2)2k+1 +
1

k + 2

]

=
1 + 2k+1

(k + 2)2k+1 >
1 + 2k+2

(k + 3)2k+2 .

By now, we have proved that (3.18) is true.
In this part, it is left to prove that xn → 0, yn → 0, as n → ∞.
Since {(1 + rn)yn} is decreasing and bounded in (0, 1), then limn→∞(1 + rn)yn =

limn→∞ xn = a. Coming back to (3.13), we know that rnyn → 0, as n → ∞. Then yn → 0,
and then xn → 0, as n → ∞.

Part 3. We shall show that both {xn} and {yn} generated by (3.12) converge strongly to
0 ∈ A–10 ∩ Fix(B), as n → ∞.
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First, we shall use inductive method to show that the following is true:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 = 1, x2 = 7
6 –

√
2

4 ,

0 < (1 + rn+1)yn+1 < 1, n ∈ N ,

U1 = (–∞, +∞) = V1,

U2 = (–∞, 4
3 ], V2 = [1 –

√
2

2 , 4
3 ],

Un+1 = (–∞, wn], n ∈ N \ {1},
Vn+1 = [x1 –

√
(x1 – wn)2 + λn+1, wn], n ∈ N \ {1},

we may choose xn+1 = x1–
√

(x1–wn)2+λn+1+wn
2 , n ∈ N \ {1}.

(3.19)

In fact, if n = 1, y1 = x1+e1
1+2r1

= 2
3 . Since (x1 + e1) – y1 = 2r1y1 = 2y1 = 4

3 > 0, then from (3.15),
U2 = (–∞, +∞) ∩ (–∞, (1 + r1)y1] = (–∞, 4

3 ]. Then PU2 (x1) = x1. From (3.16), V2 = U2 ∩
[1 –

√
2

2 , 1 +
√

2
2 ] = [1 –

√
2

2 , 4
3 ]. Thus we may choose x2 = 1–

√
2

2 + 4
3

2 = 7
6 –

√
2

4 .
If n = 2, y2 = x2+e2

1+2r2
= 1

3 –
√

2
20 and w2 = min{(1 + r1)y1, (1 + r2)y2} = 1 – 3

√
2

20 . It is easy to
see that 0 < (1 + r2)y2 = 1 – 3

√
2

20 < 1. Thus from (3.15), U3 = U2 ∩ (–∞, 3y2] = (–∞, 4
3 ] ∩

(–∞, 1 – 3
√

2
20 ] = (–∞, w2], and then PU3 (x1) = 1 – 3

√
2

20 = w2.

From (3.16), V3 = U3 ∩ [x1 –
√

(x1 – w2)2 + λ3, x1 +
√

(x1 – w2)2 + λ3] = [1 –
√

18
400 + 1

3 , 1 –
3
√

2
20 ] = [x1 –

√
(x1 – w2)2 + λ3, w2]. Then we may choose x3 = x1–

√
(x1–w2)2+λ3+w2

2 = 1 – 3
√

2
40 –√

1362
120 . We can easily check that 0 < (1 + r3)y3 = 5y3 = 20

27 – 9
√

2+
√

1362
216 < 1.

Suppose that (3.19) is true for n = k. Next, we shall show that (3.19) is true for n = k + 1.
Since 0 < (1 + rk+1)yk+1 < 1, then xk+1 + ek+1 – yk+1 = 2rk+1yk+1 > 0. From (3.15), Uk+2 =

Uk+1 ∩ (–∞, (1 + rk+1)yk+1] = (–∞, wk+1], and PUk+2 (x1) = wk+1. From (3.16), Vk+2 = Uk+2 ∩
[x1 –

√
(x1 – wk+1)2 + λk+2, x1 +

√
(x1 – wk+1)2 + λk+2].

Note that wk+1 < 1 = x1 < x1 +
√

(x1 – wk+1)2 + λk+2 and
√

(x1 – wk+1)2 + λk+2 > x1 –
wk+1 > 0. Then Vk+2 = [x1 –

√
(x1 – wk+1)2 + λk+2, wk+1]. Thus we may choose

xk+2 =
x1 –

√
(x1 – wk+1)2 + λk+2 + wk+1

2
.

Note that

(1 + rk+2)yk+2 > 0 ⇐⇒ xk+2 + ek+2 > 0

⇐⇒
1 –

√
(1 – wk+1)2 + 1

k+2 + wk+1

2
+

1
k + 2

> 0

⇐⇒ 1 + wk+1

2
+

1
k + 2

>

√
(1 – wk+1)2 + 1

k+2

2

⇐⇒
(

k + 4
k + 2

)2

+
2(k + 4)

k + 2
wk+1 > 1 – 2wk+1 +

1
k + 2

⇐⇒
(

k + 4
k + 2

)2

+
12 + 4k

k + 2
wk+1 >

k + 3
k + 2

,

which is obviously true since ( k+4
k+2 )2 > 1 + 1

k+2 . Then (1 + rk+2)yk+2 > 0.
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Moreover,

(1 + rk+2)yk+2 < 1

⇐⇒ 1 + rk+2

1 + 2rk+2

(
xk+2 +

1
k + 2

)
< 1

⇐⇒
1 + wk+1 –

√
(1 – wk+1)2 + 1

k+2

2
<

1 + 2rk+2

1 + rk+2
–

1
k + 2

⇐⇒ 1 + wk+1 <
√

(1 – wk+1)2 +
1

k + 2
+

2(1 + 2k+2)
1 + 2k+1 –

2
k + 2

⇐⇒ wk+1 <
√

(1 – wk+1)2 +
1

k + 2
+

1 + 3 · 2k+1

1 + 2k+1 –
2

k + 2

which is true since 1+3·2k+1

1+2k+1 – 2
k+2 > 1. Then (1 + rk+2)yk+2 = 1+rk+2

1+2rk+2
(xk+2 + ek+2) < 1.

By now, we have proved that (3.19) is true.
In this part, it is left to prove that xn → 0, yn → 0, as n → ∞.
From (3.19), {(1 + rn)yn} is bounded, which implies that {wn} is bounded. Then we

can easily check that {xn} is bounded. Let {xni} be any subsequence of {xn} such that
limi→∞ xni = a. Then wni → a and yni → 0 as i → ∞. Since 2rnyn = xn + en – yn, then
limi→∞(1 + rni )yni = a

2 . Since 0 < wni ≤ (1 + rni )yni < 1, then 0 ≤ a ≤ a
2 ≤ 1. Thus a = 0. This

means that each strongly convergent subsequence of {xn} converges strongly to 0. Thus
xn → 0, as n → ∞. And then yn → 0, wn → 0, as n → ∞.

This completes the proof. �

Remark 3.12 Do computational experiments on (3.10), (3.11), and (3.12) in Corollary 3.11.
By using the codes of Visual Basic Six, we get Tables 1–3 and Figs. 1–3.

Table 1 Numerical results of {xn}, {yn}, and {wn} with initial x1 = 1.0 based on (3.10)

n xn yn wn

1 1.000000000000000 0.666666666666667 1.33333333333333
2 0.292893218813452 0.15857864376269 0.475735931288071
3 0.220137097256371 0.061496714509967 0.307483572549836
4 0.145846031275193 0.023285060663247 0.20956554596922
5 0.091822359822189 0.008843101812794 0.150332730817491
6 0.057343575321990 0.003446311415210 0.113728276701933
7 0.036498723210567 0.001390355550912 0.090373110809311
8 0.024079369242186 0.000580075366701 0.074829722304444
9 0.016612409147652 0.000248973723701 0.063986246991232
10 0.012011262300244 0.000109279280293 0.056060270790268
11 0.009075530986527 0.000048796789603 0.050016709342611
12 0.007124586938736 0.000022079062795 0.045239999667432
13 0.005771789196202 0.000010093356050 0.041352479737665
14 0.004794674685823 0.000004652013800 0.038113949064097
15 0.004062531254230 0.000002158417954 0.035365678169425
16 0.003496425067359 0.000001007010163 0.032998716038761
17 0.003047136222354 0.000000472032117 0.030935568833118
18 0.002682885282545 0.000000222161174 0.029119331499637
19 0.002382412236492 0.000000104930661 0.027507048057261
20 0.002130999790903 0.000000049715948 0.026065524753426
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Table 2 Numerical results of {xn} and {yn} with initial x1 = 1.0 based on (3.11)

n xn yn

1 1.000000000000000 0.666666666666667
2 1.333333333333333 0.366666666666667
3 1.100000000000000 0.159259259259259
4 0.796296296296296 0.061546840958606
5 0.553921568627451 0.022846108140226
6 0.388383838383838 0.008539238539239
7 0.281794871794872 0.003291876082574
8 0.213971945367294 0.001318956985865
9 0.17014545117658 0.000548258406019
10 0.14090241034686 0.000235026741802
11 0.12056871854433 0.000103210253516
12 0.10579050985347 0.000046161543370
13 0.094585002365085 0.000020933489477
14 0.085764506388820 0.000009593718512
15 0.078601335767952 0.000004433092326
16 0.072636217763472 0.0000020619835782
17 0.067569139873525 0.0000009642921827
18 0.063196816788736 0.0000004530026220
19 0.059376412673457 0.0000002136378822
20 0.056004102629354 0.0000001010932937

Table 3 Numerical results of {xn}, {yn}, and {wn} with initial x1 = 1.0 based on (3.12)

n xn yn wn

1 1.000000000000000 0.66666666666667 1.333333333333333
2 0.292893218813452 0.15857864376269 0.475735931288071
3 0.347936514272221 0.07569664973395 0.378483248669752
4 0.290404855661242 0.03178852092125 0.286096688291246
5 0.221842355801224 0.01278310169095 0.217312728746085
6 0.167276133945363 0.00513758154788 0.169540191079954
7 0.12855725127519 0.00210398755141 0.136759190841874
8 0.101961142045651 0.00088311728422 0.113922129664937
9 0.083609952177013 0.00037957322278 0.097550318255454
10 0.070649802113264 0.00016648761182 0.085408144862541
11 0.061199308074553 0.00007423543142 0.07609131720753
12 0.054067201574777 0.00003353686476 0.068717035886434
13 0.048505907532604 0.00001530928652 0.062722146871100
14 0.044042300609567 0.00000704735258 0.057738959695359
15 0.040371134215207 0.00000326643477 0.053520533658321
16 0.037290303448763 0.00000152265596 0.049895913052360
17 0.034661992662647 0.00000071323249 0.046743117653451
18 0.032389319001134 0.00000033548179 0.043972605019241
19 0.030402139089697 0.00000015837395 0.041516938205506
20 0.028648273174303 0.00000007500477 0.039324174089535

Remark 3.13 From Tables 1–3 and Figs. 1–3, we can see that for initial value x1 = 1, differ-
ent choices of xn+1 in Vn+1 lead to different rates of convergence. It is a natural phenomenon
that the larger xn+1 is chosen, the slower the rate of convergence is. Although xn+1 in (3.11)
is the slowest sequence among the three, it is worth being considered because of its “nice
and simple” expression compared to the other two.

Remark 3.14 Although both xn+1 in (3.12) and (1.5) are chosen as the mid-point of Vn+1,
they have different rates of convergence. From Table 1 in [8], we may find that the iterative
sequence in (1.5) converges more rapidly than that in (3.12). From this point view, it is not
easy for us to draw the conclusion which one is better, (1.3) or (3.1).
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Figure 1 Convergence of {xn}, {yn}, and {wn} corresponding to Table 1

Figure 2 Convergence of {xn} and {yn} corresponding to Table 2

Figure 3 Convergence of {xn}, {yn}, and {wn} corresponding to Table 3
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