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Abstract
The paper is devoted to the study of oscillation of solutions to a class of second-order
half-linear neutral differential equations with delayed arguments. New oscillation
criteria are established, and they essentially improve the well-known results reported
in the literature, including those for non-neutral differential equations. The adopted
approach refines the classical Riccati transformation technique by taking into account
such part of the overall impact of the delay that has been neglected in the earlier
results. The effectiveness of the obtained criteria is illustrated via examples.
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1 Introduction
In this paper, we are concerned with the oscillation problem of a class of second-order
half-linear neutral delay differential equations

(
r(t)

(
z′(t)

)α)′ + q(t)xα
(
σ (t)

)
= 0, t ≥ t0, (E)

where z(t) := x(t) + p(t)x(τ (t)). Throughout the paper, we always assume that
(H1) α is a quotient of odd positive integers;
(H2) r ∈ C1([t0,∞), (0,∞)), p, q ∈ C([t0,∞), [0,∞)), 0 ≤ p(t) < 1, and q(t) does not van-

ish identically on any half-line of the form [t∗,∞), t∗ ≥ t0;
(H3) τ ,σ ∈ C([t0,∞),R) satisfy τ (t) ≤ t, σ (t) < t, and limt→∞ τ (t) = limt→∞ σ (t) = ∞.

We will consider the following case:
∫ ∞

t0

r–1/α(s) ds = ∞ (1)

in order to complement the recent work [1], where the oscillatory behavior of (E) under
the assumption

∫ ∞

t0

r–1/α(s) ds < ∞
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has been investigated.
By a solution of (E) we mean a nontrivial real-valued function x ∈ C([ta,∞),R) with

ta := min{τ (tb),σ (tb)} for some tb ≥ t0, which has the property r(z′)α ∈ C1([t0,∞),R) and
satisfies (E) on [t0,∞). We consider only those solutions of (E) which exist on some half-
line [tb,∞) and satisfy the condition

sup
{∣∣x(t)

∣∣ : tc ≤ t < ∞}
> 0 for any tc ≥ tb.

As is customary, a solution x of (E) is said to be oscillatory if it has arbitrarily large zeros;
otherwise, it is said to be nonoscillatory. The equation itself is called oscillatory if all its
solutions oscillate.

The oscillation theory of differential equations with deviating arguments was initiated in
a pioneering paper [2] of Fite, which appeared in the first quarter of the twentieth century.
Since then, there has been much research activity concerning the oscillation of solutions
of various classes of differential and functional differential equations. The interest in this
subject has been reflected by extensive references in monographs [3–7]. We also refer the
reader to the papers [8–10] and the references cited therein regarding similar discrete
analogues of (E) and its particular cases and modifications.

A neutral delay differential equation is a differential equation in which the highest order
derivative of the unknown function appears both with and without delay. During the last
three decades, oscillation of neutral differential equations has become an important area
of research; see, e.g., [11–27]. This is due to the fact that such equations arise from a vari-
ety of applications including population dynamics, automatic control, mixing liquids, and
vibrating masses attached to an elastic bar; see Hale [28]. Especially, second-order neutral
delay differential equations are of great interest in biology in explaining self-balancing of
the human body and in robotics in constructing biped robots [29].

One of the traditional tools in the study of oscillation of equations which are special
cases of (E) has been based on a reduction of order and the comparison with oscillation
of first-order delay differential equations. In particular, Koplatadze in 1986 [30] and Wei
in 1988 [31] proved that the second-order delay differential equation

x′′(t) + q(t)x
(
σ (t)

)
= 0 (2)

is oscillatory if

K := lim sup
t→∞

∫ t

σ (t)
σ (s)q(s) ds > 1, σ is nondecreasing (1a)

or

k := lim inf
t→∞

∫ t

σ (t)
σ (s)q(s) ds >

1
e

. (1b)

Conditions (1a) and (1b), which obviously hold for delay equations only, are analogous to
the well-known oscillation criteria due to Ladas et al. [32] and Koplatadze and Chanturiya
[33], respectively,

L := lim sup
t→∞

∫ t

σ (t)
q(s) ds > 1, σ is nondecreasing, (2a)
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l := lim inf
t→∞

∫ t

σ (t)
q(s) ds >

1
e

(2b)

for the first-order delay differential equation

x′(t) + q(t)x
(
σ (t)

)
= 0. (3)

There is an obvious gap between conditions (1a)–(1b) ((2a)–(2b)) if k < K (l < L). For first-
order equations, filling this gap has been an interesting research problem in the last few
decades; see, e.g., the excellent survey [34] and the references cited therein. In 2000, Ko-
platadze et al. [35] presented the following oscillation criteria for (2) which improve (1a)–
(1b), namely

M := lim sup
t→∞

∫ t

σ (t)
q(s)

(
σ (s) +

∫ σ (s)

t0

ξσ (ξ )q(ξ ) dξ

)
ds > 1, (1′

a)

where σ is nondecreasing, or

m := lim inf
t→∞

∫ t

σ (t)
q(s)

(
σ (s) +

∫ σ (s)

t0

ξσ (ξ )q(ξ ) dξ

)
ds >

1
e

. (1′
b)

One may note that, despite similarities, there is a significant difference between (1a)–
(1b) ((1′

a)–(1′
b)) and (2a)–(2b). According to [33], it is known that if L < 1/e, then (3) has

a nonoscillatory solution. Oscillation of equation (3) is caused by the presence of delay.
However, equation (2) can be oscillatory even in the case where σ (t) = t.

Another widely used technique, applicable also in the above-mentioned case, involves
the Riccati type transformation which has been used to reduce equation (E) to a first-order
Riccati inequality. In 2006, Sun and Meng [36] improved the oscillation result of Džurina
and Stavroulakis [37] by employing the Riccati transformation

w(t) := Rα
(
σ (t)

) r(t)(x′(t))α

xα(σ (t))
, R(t) :=

∫ t

t1

r–1/α(s) ds, t1 ≥ t0 is large enough,

which yields that the particular case of (E), equation

(
r(t)

(
x′(t)

)α)′ + q(t)xα
(
σ (t)

)
= 0, (E′)

is oscillatory if (1) holds, σ ∈ C1([t0,∞),R), σ ′(t) > 0, and

∫ ∞(
Rα

(
σ (s)

)
q(s) –

(
α

α + 1

)α+1
σ ′(s)

R(σ (s))r1/α(σ (s))

)
ds = ∞. (4)

Xu and Meng [23] generalized condition (4) to (E) and proved that if (1) is satisfied, σ ∈
C1([t0,∞),R), σ ′(t) > 0, and

∫ ∞(
Rα

(
σ (s)

)
q(s)

(
1 – p

(
σ (s)

))α –
(

α

α + 1

)α+1
σ ′(s)

R(σ (s))r1/α(σ (s))

)
ds = ∞, (5)
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then (E) is oscillatory. Later on, Erbe et al. [38] showed that (E′) is oscillatory assuming
that (1) holds, α ≥ 1, r′ ≥ 0,

∫ ∞
t0

σα(s)q(s) ds = ∞, and

lim sup
t→∞

∫ t

t0

(
ψ(s)q(s)

(
σ (s)

s

)α

–
(ψ ′

+(s))α+1r(s)
(α + 1)α+1ψα(s)

)
ds = ∞, (6)

where ψ ∈ C1([t0,∞), (0,∞)) and ψ ′
+(t) := max{0,ψ ′(t)}. The similar ideas as those above

have been exploited and extended for (E) and its various generalizations in a number of
papers; see, e.g., [11, 16, 17, 20–23, 26, 27, 39] and the references therein.

The objective of this paper is to establish new oscillation results for (E), which would
improve the above-mentioned ones. The paper is organized as follows. First, motivated
by [35], we generalize conditions (1′

a) and (1′
b) for linear equation (2) to be applicable

to the half-linear neutral equation (E). Second, we refine classical Riccati transformation
techniques to obtain new oscillation criteria, which, to the best of our knowledge, es-
sentially improve a large number of related results reported in the literature, including
those for second-order delay differential equations. The adopted approach lies in estab-
lishing sharper estimates relating a nonoscillatory solution with its derivatives in the case
when conditions analogous to (1′

a)–(1′
b) fail to apply. We illustrate the effectiveness of the

obtained criteria via a series of examples and comparison with other known oscillation
results.

In what follows, all occurring functional inequalities are assumed to hold eventually,
that is, they are satisfied for all t large enough. As usual and without loss of generality, we
can deal only with eventually positive solutions of (E).

2 Preliminaries
For the sake of brevity and clarity, we let

Q(t) :=
(
1 – p

(
σ (t)

))αq(t),

Q̃(t) :=
∫ ∞

t
Q(s) ds,

R(t) :=
∫ t

t1

r–1/α(s) ds,

R̃(t) := R(t) +
1
α

∫ t

t1

R(s)Rα
(
σ (s)

)
Q(s) ds,

R̂(t) := exp

(
–α

∫ t

σ (t)

ds
R̃(s)r1/α(s)

)

for t ≥ t1, where t1 ≥ t0 is large enough.
To prove our oscillation criteria, we need the following auxiliary results.

Lemma 1 (see [12, Lemma 3]) Let condition (1) hold and assume that x(t) is a positive
solution of (E) on [t0,∞). Then there exists a t1 ≥ t0 such that, for t ≥ t1,

z(t) > 0, z′(t) > 0,
(
r(t)

(
z′(t)

)α)′ ≤ 0. (7)
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Lemma 2 (see [27, Lemma 2.3]) Let g(u) = Au–Bu(α+1)/α , where A and B > 0 are constants,
α is a quotient of odd natural numbers. Then g attains its maximum value on R at u∗ =
(αA/((α + 1)B))α and

max
u∈R

g = g
(
u∗) =

αα

(α + 1)α+1
Aα+1

Bα
. (8)

3 Main results
Now, we state and prove our first oscillation result, which extends [35, Theorem 3] ob-
tained for the linear delay differential equation (2) to the half-linear neutral delay differ-
ential equation (E).

Theorem 3 Let condition (1) be satisfied. If

lim sup
t→∞

∫ t

σ (t)
Q(s)R̃α

(
σ (s)

)
ds > 1, σ is nondecreasing (9)

or

lim inf
t→∞

∫ t

σ (t)
Q(s)R̃α

(
σ (s)

)
ds >

1
e

, (10)

then (E) is oscillatory.

Proof Assume that (E) has a nonoscillatory solution x(t) on [t0,∞). Without loss of gener-
ality, we may assume that there exists a t1 ≥ t0 such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0
for t ≥ t1. By the definition of z(t), we obtain, for t ≥ t1,

x(t) ≥ z(t) – p(t)x
(
τ (t)

) ≥ z(t) – p(t)z
(
τ (t)

) ≥ (
1 – p(t)

)
z(t),

which together with (E) implies that

(
r(t)

(
z′(t)

)α)′ ≤ –Q(t)zα
(
σ (t)

)
. (11)

On the other hand, it follows from the monotonicity of r1/α(t)z′(t) that

z(t) = z(t1) +
∫ t

t1

1
r1/α(s)

r1/α(s)z′(s) ds ≥ R(t)r1/α(t)z′(t). (12)

A simple computation shows that

(
z(t) – R(t)r1/α(t)z′(t)

)′ = –R(t)
(
r1/α(t)z′(t)

)′. (13)

Applying the chain rule, it is easy to see that

R(t)
(
r(t)

(
z′(t)

)α)′ = αR(t)
(
r1/α(t)z′(t)

)α–1(r1/α(t)z′(t)
)′.

By virtue of (11), the latter equality yields

–R(t)
(
r1/α(t)z′(t)

)′ ≥ 1
α

R(t)
(
r1/α(t)z′(t)

)1–αQ(t)zα
(
σ (t)

)
. (14)
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Combining (13) and (14), we obtain

(
z(t) – R(t)r1/α(t)z′(t)

)′ ≥ 1
α

R(t)
(
r1/α(t)z′(t)

)1–αQ(t)zα
(
σ (t)

)
. (15)

Integrating (15) from t1 to t, we have

z(t) ≥ R(t)r1/α(t)z′(t) +
1
α

∫ t

t1

(
r1/α(s)z′(s)

)1–αR(s)Q(s)zα
(
σ (s)

)
ds.

Taking (12) and the monotonicity of r1/α(t)z′(t) into account, we arrive at

z(t) ≥ R(t)r1/α(t)z′(t)

+
1
α

∫ t

t1

(
r1/α(s)z′(s)

)1–αR(s)Rα
(
σ (s)

)
Q(s)r

(
σ (s)

)(
z′(σ (s)

))α ds

≥ R(t)r1/α(t)z′(t)

+
1
α

∫ t

t1

(
r1/α(s)z′(s)

)1–αR(s)Rα
(
σ (s)

)
Q(s)r(s)

(
z′(s)

)α ds

≥ r1/α(t)z′(t)
(

R(t) +
1
α

∫ t

t1

R(s)Rα
(
σ (s)

)
Q(s) ds

)
. (16)

Thus, we conclude that

z
(
σ (t)

) ≥ r1/α(
σ (t)

)
z′(σ (t)

)
R̃
(
σ (t)

)
. (17)

Using (17) in (11), by virtue of (7), one can see that y(t) := r(t)(z′(t))α is a positive solution
of the first-order delay differential inequality

y′(t) + Q(t)R̃α
(
σ (t)

)
y
(
σ (t)

) ≤ 0. (18)

In view of [40, Theorem 1], the associated delay differential equation

y′(t) + Q(t)R̃α
(
σ (t)

)
y
(
σ (t)

)
= 0 (19)

also has a positive solution. However, it is well known that condition (9) or condition (10)
ensures oscillation of (19). This in turn means that (E) cannot have positive solutions. The
proof is complete. �

Letting p(t) = 0 in (E), the following result is an immediate consequence.

Corollary 1 Let condition (1) hold. If

lim sup
t→∞

∫ t

σ (t)
q(s)R̃α

(
σ (s)

)
ds > 1, σ is nondecreasing (20)

or

lim inf
t→∞

∫ t

σ (t)
q(s)R̃α

(
σ (s)

)
ds >

1
e

, (21)
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then (E′) is oscillatory.

Remark 1 Note that for α = 1, r(t) = 1, and p(t) = 0, Theorem 3 reduces to [35, Theorem 3].

Example 1 For t ≥ 1, consider the second-order neutral differential equation

((
z′(t)

)α)′ +
q0

tα+1 xα(λt) = 0, (Ex)

where z(t) := x(t) + p0x(τ (t)), α is a quotient of odd positive integers, p0 ∈ [0, 1), τ (t) ≤ t,
q0 > 0, and λ ∈ (0, 1). By Theorem 3, (Ex) is oscillatory if

ρ := (1 – p0)αq0λ
α (α + (1 – p0)αq0λ

α)α

αα
ln

1
λ

>
1
e

. (C1)

For a particular case of (Ex), equation

((
x′(t)

)1/3)′ +
q0

t4/3 x1/3(0.9t) = 0, (22)

oscillation of all solutions is guaranteed by condition

q0 > 1.92916. (23)

To the best of our knowledge, the known related criterion for (22) based on comparison
with a first-order delay differential equation (see, e.g., [12, Theorem 2]) gives q0 > 3.61643,
which is a significantly weaker result.

On the other hand, for equation

((
x′(t)

)1/3)′ +
1
6

(
5

18

)1/6

t–4/3x1/3(0.9t) = 0, (24)

condition (23) fails to hold and x(t) = t1/2 is a nonoscillatory solution of (24).

Obviously, if

∫ t

σ (t)
Q(s)R̃α

(
σ (s)

)
ds ≤ 1

e
, (25)

then Theorem 3 cannot be applied to (E). However, if (25) holds and y(t) is a positive
solution of (18), then it is possible to obtain sharper lower bounds of the ratio y(σ (t))/y(t).
This will allow us to refine classical Riccati transformation techniques which are widely
used in the study of oscillation of second-order differential equations. Zhang and Zhou
[41] obtained such bounds for the first-order delay differential equation (19) by employing
a sequence {fn(ρ)}∞n=0 defined as

f0(ρ) := 1, fn+1(ρ) := eρfn(ρ), n = 0, 1, 2, . . . , (26)

where ρ is a positive constant satisfying

∫ t

σ (t)
Q(s)R̃α

(
σ (s)

)
ds ≥ ρ, t ≥ t1 ≥ t0. (27)
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They showed that, for ρ ∈ (0, 1/e], the sequence is increasing and bounded above and
limt→∞ fn(ρ) = f (ρ) ∈ [1, e], where f (ρ) is a real root of the equation

f (ρ) = eρf (ρ). (28)

Their result plays an essential role when proving the following lemma.

Lemma 4 Let condition (1) hold and assume that σ is strictly increasing, condition (27)
holds for some ρ > 0, and (E) has a positive solution x(t) on [t0,∞). Then, for every n ≥ 0,
y(t) := r(t)(z′(t))α satisfies

y(σ (t))
y(t)

≥ fn(ρ) (29)

for t large enough, where fn(ρ) is defined by (26).

Proof Assume that (E) has a nonoscillatory solution x(t) on [t0,∞). Without loss of gener-
ality, we can suppose that there exists a t1 ≥ t0 such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0
for t ≥ t1. As in the proof of Theorem 3, we deduce that y(t) := r(t)(z′(t))α is a positive so-
lution of the first-order delay differential inequality (18). Proceeding in a similar manner
as in the proof of [41, Lemma 1], we see that estimate (29) holds. �

In what follows, we employ the Riccati substitution technique to obtain new oscillation
criteria for (E), which are especially effective in the case when Theorem 3 fails to apply.

Theorem 5 Let condition (1) be satisfied and assume that σ ∈ C1([t0,∞),R), σ ′(t) > 0,
and condition (27) holds for some ρ > 0. If there exists a function ϕ ∈ C1([t0,∞), (0,∞))
such that, for some sufficiently large T ≥ t1 and for some n ≥ 0,

lim sup
t→∞

∫ t

T

(
ϕ(s)Q(s) –

(ϕ′
+(s))α+1r(σ (s))

(α + 1)α+1fn(ρ)ϕα(s)(σ ′(s))α

)
ds = ∞, (30)

where fn(ρ) is defined by (26) and ϕ′
+(t) = max{0,ϕ′(t)}, then (E) is oscillatory.

Proof Assume that (E) has a nonoscillatory solution x(t) on [t0,∞). Without loss of gener-
ality, we may assume that there exists a t1 ≥ t0 such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0
for t ≥ t1. Define the Riccati function by

w(t) := ϕ(t)r(t)
(

z′(t)
z(σ (t))

)α

, t ≥ t1. (31)

Then w(t) > 0 for t ≥ t1. Differentiating (31), we arrive at

w′(t) =
ϕ′(t)
ϕ(t)

w(t) + ϕ(t)
(r(t)(z′(t))α)′

zα(σ (t))
– αϕ(t)σ ′(t)r(t)

(
z′(t)

z(σ (t))

)α z′(σ (t))
z(σ (t))

. (32)

It follows from Lemma 4 that there exists a T ≥ t1 large enough such that

z′(σ (t))
z′(t)

≥
(

fn(ρ)r(t)
r(σ (t))

)1/α

, t ≥ T . (33)
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By virtue of (11) and (33), applications of (31) and (32) yield

w′(t) ≤ –ϕ(t)Q(t) +
ϕ′

+(t)
ϕ(t)

w(t) –
αf 1/α

n (ρ)σ ′(t)
(ϕ(t)r(σ (t))) 1

α

w(α+1)/α(t). (34)

Letting

A :=
ϕ′

+(t)
ϕ(t)

and B :=
αf 1/α

n (ρ)σ ′(t)
(ϕ(t)r(σ (t))) 1

α

in (8), it follows now from Lemma 2 and (34) that

w′(t) ≤ –ϕ(t)Q(t) +
(ϕ′

+(t))α+1r(σ (t))
(α + 1)α+1fn(ρ)ϕα(t)(σ ′(t))α

. (35)

Integrating (35) from T to t, we obtain

∫ t

T

(
ϕ(s)Q(s) –

(ϕ′
+(s))α+1r(σ (s))

(α + 1)α+1fn(ρ)ϕα(s)(σ ′(s))α

)
ds ≤ w(T),

which contradicts condition (30). This completes the proof. �

Remark 2 Theorem 5 is new because of the constant fn(ρ) (for some n ≥ 0) appearing in
(30). So far, all results obtained in a similar manner have been formulated for n = 0; see,
e.g., [16, 17, 20–23, 26, 27, 36, 37]. Thus, for any given n > 0, our result essentially improves
the previous ones.

Letting ϕ(t) = Rα(σ (t)) in (30), Theorem 5 yields the following result.

Corollary 2 Let condition (1) hold and assume that σ ∈ C1([t0,∞),R), σ ′(t) > 0, and con-
dition (27) holds for some ρ > 0. If, for some sufficiently large T ≥ t1 and for some n ≥ 0,

lim sup
t→∞

∫ t

T

(
Rα

(
σ (s)

)
Q(s) –

(
α

α + 1

)α+1
σ ′(s)

fn(ρ)R(σ (s))r1/α(σ (s))

)
ds = ∞, (36)

where fn(ρ) is defined by (26), then (E) is oscillatory.

Example 2 As in Example 1, we consider (Ex). If we assume that ρ ≤ 1/e in (C1), then the
sequence {fn(ρ)}∞n=0 defined by (26) has a finite limit (28), which can be expressed as

f (ρ) = lim
n→∞ fn(ρ) = –

W (–ρ)
ρ

,

where W standardly denotes the principal branch of the Lambert function; see [42] for
details. Then, by Corollary 2, (Ex) is oscillatory if

(1 – p0)αq0λ
αf (ρ) >

(
α

α + 1

)α+1

. (C2)
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In order to illustrate the efficiency of the above criterion, we stress that an application of
(5) yields that condition

(1 – p0)αq0λ
α >

(
α

α + 1

)α+1

(C′
2)

ensures oscillation of (Ex). For a particular case of (Ex), equation

((
x′(t)

)3)′ +
0.3
t4 x3(0.9t) = 0, (37)

condition (C2) gives 3.5876 > 0.3164, which implies that (37) is oscillatory. However, one
may see that the left-hand side of inequality (C′

2) becomes 0.2187, which means that con-
dition (C′

2) fails to hold for (37). Moreover, one can easily verify that the criterion resulting
from Theorem 3 cannot be applied to (37).

The following theorem serves as an alternative to Theorem 5.

Theorem 6 Let condition (1) be satisfied and assume that there exists a function ψ ∈
C1([t0,∞), (0,∞)) such that, for some sufficiently large T ≥ t1,

lim sup
t→∞

∫ t

T

(
ψ(s)Q(s)R̂(s) –

(ψ ′
+(s))α+1r(s)

(α + 1)α+1ψα(s)

)
ds = ∞, (38)

where ψ ′
+(t) = max{0,ψ ′(t)}. Then (E) is oscillatory.

Proof Assume that (E) has a nonoscillatory solution x(t) on [t0,∞). Without loss of gener-
ality, we can suppose that there exists a t1 ≥ t0 such that x(t) > 0, x(τ (t)) > 0, and x(σ (t)) > 0
for t ≥ t1. Define the Riccati function by

w(t) := ψ(t)r(t)
(

z′(t)
z(t)

)α

, t ≥ t1. (39)

Then w(t) > 0 for t ≥ t1 and

w′(t) =
ψ ′(t)
ψ(t)

w(t) + ψ(t)
(r(t)(z′(t))α)′

zα(t)
– αψ(t)r(t)

(
z′(t)
z(t)

)α+1

. (40)

As in the proof of Theorem 3, we get (16), i.e.,

z(t) ≥ R̃(t)r1/α(t)z′(t)

or

z′(t)
z(t)

≤ 1
R̃(t)r1/α(t)

.

Integrating the latter inequality from σ (t) to t, we obtain

z(σ (t))
z(t)

≥ exp

(
–

∫ t

σ (t)

ds
R̃(s)r1/α(s)

)
. (41)
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Combining (11) and (41), it follows that

(r(t)(z′(t))α)′

zα(t)
≤ –Q(t)

(
z(σ (t))

z(t)

)α

≤ –Q(t) exp

(
–α

∫ t

σ (t)

ds
R̃(s)r1/α(s)

)

= –Q(t)R̂(t).

Hence, by (39) and (40), we deduce that

w′(t) ≤ ψ ′
+(t)

ψ(t)
w(t) – ψ(t)Q(t)R̂(t) –

α

(ψ(t)r(t))1/α w(α+1)/α(t). (42)

Letting

A :=
ψ ′

+(t)
ψ(t)

and B :=
α

(ψ(t)r(t)) 1
α

in (8), it follows from Lemma 2 and (42) that

w′(t) ≤ –ψ(t)Q(t)R̂(t) +
(ψ ′

+(t))α+1r(t)
(α + 1)α+1ψα(t)

. (43)

Let T ≥ t1 be sufficiently large. Integrating (43) from T to t, we have

∫ t

T

(
ψ(s)Q(s)R̂(s) –

(ψ ′
+(s))α+1r(s)

(α + 1)α+1ψα(s)

)
ds ≤ w(T),

which contradicts condition (38). The proof is complete. �

Example 3 As in Example 1, we consider (Ex). By Theorem 6, (Ex) is oscillatory if

(1 – p0)αq0λ
αr̂ >

(
α

α + 1

)α+1

, (C3)

where r̂ := (α/(α + (1 – p0)αq0λ
α))α . An application of (6) yields that (Ex) is oscillatory

provided that

(1 – p0)αq0λ
α >

(
α

α + 1

)α+1

.

It is easy to see that r̂ < 1, and thus our criterion (C3) provides a stronger result.

4 Conclusions
In the present paper, we have studied the oscillatory behavior of the second-order half-
linear neutral delay differential equation (E). As it has been illustrated through several
examples, the results obtained improve a large number of the existing ones. Our tech-
nique lies in establishing some sharper estimates relating a nonoscillatory solution with
its derivatives in the case when criteria analogous to (1′

a)–(1′
b) fail to apply.



Grace et al. Journal of Inequalities and Applications  (2018) 2018:193 Page 12 of 13

The results presented in this paper strongly depend on the properties of first-order delay
differential equations. An interesting problem for further research is to establish different
iterative techniques for testing oscillations in (E) independently on the constant 1/e.
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