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Abstract
In this paper, we establish bounds on the domination number and the metric
dimension of the co-normal product graph GH of two simple graphs G and H in terms
of parameters associated with G and H. We also give conditions on the graphs G and
H for which the domination number of GH is 1, 2, and the domination number of G.
Moreover, we give formulas for the metric dimension of the co-normal product GH of
some families of graphs G and H as a function of associated parameters of G and H.
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1 Introduction
The domination number is a parameter that has appeared in numerous location problems
[19] and in the analysis of social network problems [4]. The adjacency and non-adjacency
relation between two vertices u, v in a graph G is denoted by u ∼ v and u � v, respectively.
A set D ⊆ V (G), is a dominating set [22] of G if for every v ∈ V (G), we have v ∈ D or
v ∼ u for some u ∈ D. The minimum cardinality of a dominating set in a graph G is called
the domination number of G, denoted by γ (G). The problem of finding a minimum size
dominating set of a graph is in general NP-hard [13].

The metric dimension is a parameter that has appeared in robot navigation problems
[20], strategies for the mastermind game [8], drug discovery problems [7, 17, 18], coin
weighing problems [26], network discovery and verification problems [3]. The notation
dG(u, v) or simply d(u, v) denotes the distance between two vertices u, v ∈ V (G), which is
the length of a shortest path between them. For an ordered set W = {w1, w2, . . . , wk} ⊆ V (G)
and a vertex v ∈ V (G), the k-vector (d(v, w1), d(v, w2), . . . , d(v, wk)), is called the metric rep-
resentation of v with respect to W , denoted by cW (v). A set W ⊆ V (G) is a resolving (lo-
cating) set [14, 27] of G if for any two distinct vertices u, v ∈ V (G), cW (u) �= cW (v), which
means that there exists at least one vertex w ∈ W for which d(v, w) �= d(u, w). A minimum
resolving set of G is called a metric basis of G and its cardinality is called the metric di-
mension of G, denoted by dim(G)(loc(G)). Gary and Johnson [13] noted that the problem
of finding the metric dimension of a graph is NP-hard; however, its explicit construction
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is given by Khuller et al. [20]. The problem of finding the metric dimension of a graph is
formulated as an integer programming problem by Chartrand et al. [7]. Relations between
the domination number and the metric dimension of a graph are given in [1].

It is found in [2] that there are 256 possible products of any two graphs using the adja-
cency and the non-adjacency relations of these graphs. Several interesting types of graph
products have been studied extensively in the literature. For instance, Caceres et al. [6],
Yero et al. [29], Rodriguez-Velazquez et al. [24], Saputroa et al. [25], and Jannesari and
Omoomi [16] investigated the metric dimension of the cartesian product, the corona
product, the strong product, and the lexicographic product of graphs, respectively.

Out of product graphs, there is another well-known product graph introduced by Ore
in 1962 [22], with the name cartesian sum of graphs. It was named co-normal product
of graphs in [12]. Different properties and results regarding coloring and the chromatic
number of the co-normal product of graphs are discussed in [5, 9, 11, 12, 23, 28]. In [21],
Kuziak et al. studied the strong metric dimension of the co-normal product of graphs
using the strong metric dimension of its components. In this paper, we have studied the
domination number and the metric dimension of the co-normal product of graphs.

All considered graphs in this paper are non-trivial, simple and finite. In the next section,
we describe some structural properties of the co-normal product of graphs. In Sect. 3, we
study the domination number of the co-normal product of graphs and describe conditions
on the graphs G and H so that the domination number of GH is 1, 2, and γ (G). We also
give bounds on the domination number of the co-normal product of graphs. In Sect. 4,
we describe some properties of resolving sets in the co-normal product of graphs and
give bounds on the metric dimension of the co-normal product of graphs. Moreover, we
establish formulas for the metric dimension of some families of graphs.

2 Methods
We use the combinatorial computing, combinatorial inequalities and graph theoretic an-
alytic methods to prove the main results. The aim of this research is to provide bounds
on the domination number and the metric dimension of the co-normal product of graphs
and to give exact formulas for the metric dimension of some families of graphs.

2.1 Co-normal product of graphs
The co-normal product (the terminology we have adopted) of a graph G of order m
with the vertex set V (G) = {v1, v2, . . . , vm} and a graph H of order n with the vertex set
V (H) = {u1, u2, . . . , un}, is the graph GH with the vertex set V (G) × V (H) = {vij = (vi, uj) :
vi ∈ V (G) and uj ∈ V (H)} and the adjacency relation defined as vij ∼ vrs if vi ∼ vr in G or
uj ∼ us in H . All results given in this paper for GH also hold for HG due to the commuta-
tivity of this product. Figure 1 shows the co-normal product graph GH of two path graphs.

A graph having n vertices in which each vertex is adjacent to all other vertices is called
a complete graph, denoted by Kn. In [12], Frelih and Miklavic discussed the connectivity
of GH and proved the following theorem.

Theorem 1 (Frelih and Miklavic) GH is connected if and only if one of the following holds:
(1) H = Kn for some n ≥ 2 and G is connected.
(2) G = Km for some m ≥ 2 and H is connected.
(3) G and H are not null graphs and at least one of G or H is without isolated vertices.
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Figure 1 The co-normal product graph of P4 and P4

The diameter of a graph G, denoted by diam(G), is the maximum distance between any
two vertices of G. If G is a disconnected graph then diam(GH ) = ∞. A graph having n
vertices and no edges is called a null graph, denoted by Nn. In [21], Kuziak et al. discussed
the diameter of GH and proved the following theorem.

Theorem 2 (Kuziak, Yero, Rodriguez-Velazquez) Let G and H be two non-trivial graphs
such that at least one of them is non-complete and let n ≥ 2 be an integer. Then the following
assertions hold:

(1) diam(GNn ) = max{2, diam(G)}.
(2) G and H have isolated vertices, then diam(GH ) = ∞.
(3) If neither G nor H has isolated vertices, then diam(GH ) = 2.
(4) If diam(H) ≤ 2, then diam(GH ) = 2.
(5) If diam(H) > 2, H has no isolated vertices and G is not a null graph having at least

one isolated vertex, then diam(GH ) = 3.

The set of all vertices adjacent with a vertex v ∈ V (G), is called the open neighborhood of
v in G, denoted by NG(v) or simply N(v). The cardinality of N(v) is called the degree of v in
G, denoted by degG(v) or simply deg(v). In the next two observations, we give formulas for
the degree and the neighborhood of a vertex in GH using the structure of the co-normal
product of graphs.

Observation 1 For any vertex vij ∈ V (GH ),

deg(vij) =
∣
∣V (H)

∣
∣deg(vi) +

(∣
∣V (G)

∣
∣ – deg(vi)

)

deg(uj).

Observation 2 For any vertex vij ∈ V (GH ),

N(vij) = N(vi) × V (H) ∪ (

N(vi)
)c × N(uj).
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Two vertices having the same neighbors are called false twins. In the next theorem, we
describe conditions for any two distinct vertices in GH to be false twins.

Theorem 3 For any two distinct vertices vij and vrs in GH , N(vij) = N(vrs) if and only if
N(vi) = N(vr) in G and N(uj) = N(us) in H .

Proof Let N(vij) = N(vrs) in GH , then, by Observation 2, we have N(vi) × V (H) ∪ (N(vi)c ×
N(uj)) = N(vr)×V (H)∪ (N(vr)c ×N(us)), which shows that N(vi) = N(vr) in G and N(uj) =
N(us) in H . The converse follows from the definition of the co-normal product of graphs.�

Let vij ∈ V (GH ), the set C(vij) = {vkl ∈ V (GH )|N(vkl) = N(vij)}, is an equivalence class of
false twins in GH . Using Observation 2, we have the following straightforward lemma.

Lemma 1 For any vertex vij ∈ V (GH ), we have C(vij) = C(vi) × C(uj), where C(vi), C(uj)
are equivalence classes of false twins in G and H , respectively.

3 Domination in co-normal product of graphs
A vertex of a graph G is a dominating vertex if its degree is |V (G)| – 1. Throughout this
section and the next section, the graphs G, H and GH are as described in Sect. 2. We
define vertex sets, G(uj) = {vij : vi ∈ V (G)} ⊆ V (GH ) and H(vi) = {vij : uj ∈ V (H)} ⊆ V (GH )
for vi ∈ V (G) and uj ∈ V (H). In Fig. 1, we represent such classes. In the next two results,
we give conditions on G and H for which GH have domination numbers 1 or 2.

Lemma 2 A vertex vij is a dominating vertex in GH if and only if vi and uj are dominating
vertices in G and H , respectively.

Proof Let vij be a dominating vertex in GH . To show that vi, uj are dominating in G and
H , respectively, assume contrary that vi is not dominating in G so there exists vk ∈ V (G)
such that vk /∈ N(vi), then vkj /∈ N(vij) a contradiction.

Now suppose that vi and uj are dominating vertices in G and H , respectively, then, by
Observation 1, we have deg(vij) = |V (G)| · |V (H)| – 1. �

Lemma 3 If G has a dominating vertex and H has no dominating vertex, then γ (GH ) = 2.

Proof Suppose vi is a dominating vertex of G, so using the definition of co-normal product,
vij ∼ vkl for all vkl ∈ V (GH ) with vi �= vk . Also, H has no dominating vertex so there must be
a vertex ur ∈ V (H) such that ur /∈ N(uj), which shows that vir /∈ N(vij). Now for any vertex
vk ∼ vi, the set {vij, vkl}, is a dominating set for GH for any chosen vertex vkl ∈ H(vk). Hence,
γ (GH ) = 2. �

A set D ⊆ V (G) is a total dominating set [10] of G, if every vertex v ∈ V (G) is adjacent
to an element of D. The total domination number, denoted by γt(G), is the cardinality of
a minimum total dominating set for G. In the next theorem, we give conditions on G and
H so that γ (GH ) = γ (G), by using the total domination number of G.

Theorem 4 For any two connected graphs G and H with 2 ≤ γ (G) < γ (H), γ (GH ) = γ (G)
if and only if γ (G) = γt(G).
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Proof Let γ (G) = γt(G) and D1 = {v́1, v́2, . . . , v́n1} ⊆ V (G) be a minimum total dominat-
ing set of G. Consider the set D = {v́11, v́22, . . . , v́n1n1} ⊆ V (GH ) where v́ii = (v́i, úi), v́i ∈ D1

and úi ∈ V (H). To prove that γ (GH ) = γ (G), we only need to prove that D is a min-
imum dominating set for GH . First, we show that D is a dominating for GH . Clearly,
D́ =

⋃

v́ii∈D N[v́ii] ⊆ V (GH ). Now for vij ∈ V (GH ) if vij ∈ D, then vij ∈ D́ and if vij /∈ D with
vi ∈ D1, then there exists v́k ∈ D1 such that vi ∼ v́k because D1 is a total dominating set
of G so vij ∈ D́. Suppose vi /∈ D1, then there exists v́k ∈ D1 such that vi ∈ N(v́k) so vij ∈ D́.
Hence, D is dominating set for GH .

Now to prove that D is a minimum dominating set, assume contrarily that C ⊆ V (GH )
be a minimum dominating set such that |C| < γ (G) < γ (H). Consider the sets D1 = {vi ∈
V (G) | vij ∈ C for some uj ∈ V (H)} and D2 = {uj ∈ V (H) | vij ∈ C for some vi ∈ V (G)} then
D1 and D2 are not dominating sets for G and H , respectively, which shows that there exists
vk ∈ V (G)\D1 and ul ∈ V (H)\D2 such that N(vk)∩D1 = ∅, N(ul)∩D2 = ∅ and N(vkl)∩C =
∅, a contradiction. Hence, D is a minimum dominating set for GH .

Conversely, suppose γ (GH ) = γ (G) and D be a minimum dominating set for GH . Let D1 =
{vi ∈ V (G) | vij ∈ D for some uj ∈ V (H)} and D2 = {uj ∈ V (H) | vij ∈ D for some vi ∈ V (G)}.
Since γ (GH ) = γ (G), we have |D1| ≤ γ (G) also |D2| < γ (H) by given condition. For |D1| <
γ (G), there exist vi ∈ V (G)\D1 and uj ∈ V (H)\D2 such that N(vi)∩D1 = ∅, N(uj)∩D2 = ∅
and N(vij) ∩ D = ∅ and for |D1| = γ (G) with D1 is not a dominating set for G a similar
argument shows that D is not a dominating set for GH . If D1 is a minimum dominating set
for G, we are to prove that γ (G) = γt(G). Assume to the contrary that γ (G) < γt(G), then
there exist vi ∈ D1 such that N(vi) ∩ D1 = ∅ and uj ∈ V (H) \ D2 such that N(uj) ∩ D2 = ∅,
which shows that N(vij) ∩ D = ∅, a contradiction to the assumption that γ (GH ) = γ (G).
Hence, γ (G) = γt(G). �

Lemma 2, shows that γ (GH ) = 1 if and only if γ (G) = γ (H) = 1. In the next theorem, we
give general bounds on the domination number of GH .

Theorem 5 For any two connected graphs G and H , min{γ (G),γ (H)} ≤ γ (GH ) ≤ γ (G) ·
γ (H).

Proof Let D1 = {v́1, v́2, . . . , v́n1}, D2 = {ú1, ú2, . . . , ún2} be dominating sets for G, H , respec-
tively and D = D1 × D2. To show that D is a dominating set for GH , consider a vertex
vij ∈ V (GH ), we have following cases:

Case 1: If vi ∈ D1 and uj ∈ D2, then vij ∈ ⋃

vij∈D N[vij].
Case 2: If vi ∈ D1 and uj /∈ D2, then there exists uk ∈ D2 such that uj ∈ N(uk). As vik ∈ D

so vij ∈ N(vik).
Case 3: If vi /∈ D1 and uj ∈ D2, then there exists vk ∈ D1 such that vi ∈ N(vk). As vkj ∈ D

so vij ∈ N(vkj).
Case 4: Let vi /∈ D1 and uj /∈ D2, then there exist vk ∈ D1 and ul ∈ D2 such that vi ∈ N(vk)

and uj ∈ N(ul) so vij ∈ N(vkl) for vkl ∈ D. Hence, D is a dominating set for GH and γ (GH ) ≤
γ (G) · γ (H).

Now for lower bound, consider γ (G),γ (H) ≥ 1. Suppose that γ (G) = 1 and γ (H) =
1, then, by Lemma 2, γ (GH ) = 1. Also for γ (G) = 1 and γ (H) ≥ 2, Lemma 3, shows
that γ (GH ) = 2. Suppose 2 ≤ γ (G) ≤ γ (H) and D ⊂ V (GH ) be any set such that |D| <
min{γ (G),γ (H)}. To prove lower bound, we need to prove that D is not a dominating
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set for GH . Let D1 = {vi ∈ V (G)|vij ∈ D for some uj ∈ V (H)} and D2 = {uj ∈ V (H)|vij ∈
D for some vi ∈ V (G)}. Since |D| < min{γ (G),γ (H)}, D1 and D2 are not dominating sets
of G and H , respectively, which shows that there exist vertices vk ∈ V (G) \ D1 and ul ∈
V (H) \ D2 such that N(vk) ∩ D1 = ∅ and N(ul) ∩ D2 = ∅. Using the definition of the co-
normal product of graphs vij ∈ V (GH )\D and N(vij)∩D = ∅. Hence, D is not a dominating
set for GH . �

Note that the lower bound given in Theorem 5, is attainable when γ (G) = γ (H).

4 Metric dimension in co-normal product of graphs
In this section, we study the properties of resolving sets in GH and establish formulas for
the co-normal product of some families of graphs. In Theorem 10, we give bounds on
the metric dimension of the co-normal product of a connected graph G and a graph H
(not necessarily connected). In the rest of this paper, we assume G and H such that GH is
connected. Moreover, GH has diameter at most two unless otherwise stated. In the next
lemma, we will prove that, for every vi ∈ V (G), uj ∈ V (H) and an ordered set W (vi) ⊆
H(vi), the distance of vij, vkj ∈ G(uj) to the vertices of W (vi) is equal if vij /∈ W (vi) and
vi � vk in G.

Lemma 4 Let GH has diameter 2 and W (vi) be an ordered subset of H(vi) for some vi ∈
V (G). If vij /∈ W (vi) for some uj ∈ V (H), then, for every vk � vi in G, cW (vi)(vij) = cW (vi)(vkj).

Proof To show that cW (vi)(vij) = cW (vi)(vkj), we will show that d(x, vij) = d(x, vkj) for each
x ∈ W (vi). Let x = vil ∈ W (vi), for some ul ∈ V (H). Since GH has diameter 2, we have
d(x, vij), d(x, vkj) ∈ {1, 2}. First suppose that d(x, vij) = 1, then uj ∼ ul in H and vkj ∼ vil in
GH . Hence, d(x, vij) = d(x, vkj). Now suppose that d(x, vij) = 2, which shows that ul � uj in
H and vkj � vil in GH . Hence, d(x, vij) = d(x, vkj). �

For W ⊆ V (GH ) and W (vl) = W ∩ H(vl); vl ∈ V (G), clearly W =
⋃

vl∈V (G) W (vl) and
{W (vl); vl ∈ V (G)} gives a partition of W . For any vertex vij ∈ V (GH ), the code of vij with
respect to W can be represented as:

cW (vij) =
(

cW (v1)(vij), cW (v2)(vij), . . . , cW (vm)(vij)
)

.

In the next lemma, we give conditions on an ordered set W ⊆ V (GH ) to be a resolving
set for GH .

Lemma 5 A set W ⊆ V (GH ) is a resolving set for GH if and only if for any two distinct
vertices vij, vrs ∈ V (GH ) there exists at least one vertex vl ∈ V (G) such that N(vij) ∩ W (vl) �=
N(vrs) ∩ W (vl), where W (vl) = W ∩ H(vl).

Proof Suppose W is a resolving set for GH and there exist two distinct vertices vij, vrs in
GH such that, for every vl in G, we have N(vij) ∩ W (vl) = N(vrs) ∩ W (vl). Then cW (vl)(vij) =
cW (vl)(vrs) for every vl ∈ V (G) because GH has diameter two and cW (vij) = cW (vrs) because
cW (vij) = (cW (v1)(vij), cW (v2)(vij), . . . , cW (vm)(vij)), a contradiction.

Conversely, suppose for any two distinct vertices vij, vrs ∈ V (GH ), there exists at least one
vertex vl ∈ V (G) such that N(vij) ∩ W (vl) �= N(vrs) ∩ W (vl). Since GH has diameter at most
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2, we have cW (vl)(vij) �= cW (vl)(vrs) and hence cW (vij) �= cW (vrs) showing that W is a resolving
set for GH . �

In [15], the authors proved the following corollary, which gives the relation between
resolving sets and false twins of a graph.

Corollary 1 (Hernando, Mora, Pelaya, Seara, Wood) Suppose u, v are twins in a connected
graph G and W resolves G. Then u or v is in W . Moreover, if u ∈ W and v /∈ W , then
(W \ {u}) ∪ {v} also resolves G.

Using Corollary 1, and Lemma 1, if H has false twins then, for every resolving set W of
GH , W ∩H(vi) �= ∅ for each vi ∈ V (G). In the next theorem, we give conditions on G and H
for which there exists a resolving set W of GH such that W ∩H(vi) = ∅ for some vi ∈ V (G).

Theorem 6 Let G be a connected graph and H be an arbitrary graph such that diam(G),
diam(H) ≥ 2. There exists a resolving set W for GH such that W ∩ H(vi) = ∅ for some vi ∈
V (G) if and only if H has no false twins.

Proof Let W be a resolving set of GH such that W ∩ H(vi) = ∅, for some vi ∈ V (G). As-
sume contrary that N(uj) = N(us) for two distinct vertices uj, us ∈ V (H), then, by Lemma 3,
N(vkj) = N(vks) in GH for each vk ∈ V (G) so N(vij) = N(vis) in GH . As W ∩ H(vi) = ∅ so by
Corollary 1, W is not a resolving set for GH , a contradiction.

Conversely, consider a set W ⊂ V (GH ) such that V (GH )\W = H(vi), for some vi ∈ V (G),
where vi is not a dominating vertex in G. To prove the converse, we only need to prove
that W is a resolving set for GH . Let vij, vil ∈ H(vi) be two distinct vertices for some uj, ul ∈
V (H). Since H have no false twins and diameter at least 2, there exists at least one vertex,
say ur ∈ V (H), such that ur ∈ N(uj) or ur ∈ N(ul). Now for every vk � vi in G, we have
vkr ∈ N(vij) or vkr ∈ N(vil), which shows that cW (vij) �= cW (vil). Hence, W is a resolving set
for GH . �

The following corollary directly follows from Theorem 6, which gives the relation be-
tween dominating sets and resolving sets of GH , when both G, H are connected.

Corollary 2 For any two connected graphs G and H if at least one of G, H has false twins,
then every resolving set of GH is a dominating set of GH .

In the next theorem, we give conditions on G and H for which the metric dimension of
GH is the order of G times the metric dimension of H .

Theorem 7 Let C(u1), C(u2), . . . , C(uk) be the distinct equivalence classes of false twins
in a connected graph H with the property that |C(ui)| �= 1 for each 1 ≤ i ≤ k and G be a
connected graph having no false twins, then dim(GH ) = |V (G)| · dim(H).

Proof Since N(vi) �= N(vk), for any two distinct vertices vi, vk ∈ V (G), G has |V (G)| dis-
tinct equivalence classes of false twins. Lemma 1, shows that the co-normal product GH

has |V (G)| · k equivalence classes of false twins such that no class has cardinality 1, so
dim(GH ) =

∑|V (G)|
i=1

∑k
j=1 |C(vij)| – |V (G)| · k. Also |C(vij)| = |C(uj)| for each vi ∈ V (G) and



Javaid et al. Journal of Inequalities and Applications  (2018) 2018:162 Page 8 of 12

uj ∈ {u1, u2, . . . , uk}, which shows that dim(GH ) =
∑|V (G)|

i=1
∑k

j=1 |C(uj)| – |V (G)| · k. Hence,
dim(GH ) = |V (G)| · dim(H). �

Let Pm; m ≥ 4 be a path graph and Kn1,n2,...,nk ; ni ≥ 2 for each i, be a complete multipartite
graph have k distinct equivalence classes of false twins. Since Pm have no false twins, by
Theorem 7, we have the following corollary.

Corollary 3 If G = Pm; m ≥ 4 and H = Kn1,n2,...,nk , then dim(GH ) = m
∏j=k

j=1(nj – 1).

In [16], Jannesari and Omoomi introduced the concept of the adjacency metric dimen-
sion of a graph and used it to find the metric dimension of lexicographic product of graphs.
A function a : V (G) × V (G) → {0, 1, 2} defined as:

a(u, v) =

⎧

⎪⎪⎨

⎪⎪⎩

0 if u = v,

1 if u ∼ v,

2 if u � v.

for u, v ∈ V (G), is called the adjacency function of G. The k-vector (a(v, w1), a(v, w2), . . . ,
a(v, wk)) for a vertex v ∈ V (G), is called the adjacency metric representation of v with re-
spect to W , denoted by ca

W (v). A set W is an adjacency resolving set for G if for any two
distinct vertices u, v ∈ V (G), ca

W (u) �= ca
W (v) or N(u) ∩ W �= N(v) ∩ W . A minimum ad-

jacency resolving set of G is called an adjacency basis of G and its cardinality is called
the adjacency metric dimension of G, denoted by adim(G). They also gave that if G is a
connected graph with diameter 2, then dim(G) = adim(G) but the converse is not true be-
cause dim(C6) = 2 = adim(C6), while diam(C6) = 3. Our next lemma directly follows from
the definition of adjacency basis and the fact that the induced subgraph 〈H(vi)〉 of GH is
isomorphic to H , for each vi ∈ V (G).

Lemma 6 If GH has diameter at most 3 and W2 is an adjacency basis for H , then, for any
vi ∈ V (G), the vertices of H(vi) are resolved by its subset W2(vi) = {vi} × W2.

Now consider a path graph P4 having the vertex set V (P4) = {v1, v2, v3, v4} such that vi ∼
vi+1; i ≤ 3 and a star graph S4 having the vertex set V (S4) = {u1, u2, u3, u4, u5} such that
u5 ∼ ui; 1 ≤ i ≤ 4. The co-normal product graph of P4 and S4 is shown in Fig. 2. Note that,
for every adjacency basis W2 of S4, ca

W2
(u5) = (1, 1, 1) and W =

⋃

vi∈V (P4)({vi} × W2) is not
a resolving set for GH . Let 1 represents a vector whose each entry is 1 and 2 represents a
vector whose each entry is 2, i.e. 1 = (1, 1, . . . , 1) and 2 = (2, 2, . . . , 2). In the next theorem,
we provide conditions under which W =

⋃

vi∈V (G) W2(vi) is a resolving set for GH , where
W2 is an adjacency basis of H and W2(vi) = {vi} × W2.

Theorem 8 Let G be a connected graph having no false twins and H be a graph such that
GH has diameter at most three. If there exists an adjacency basis W2 of H such that ca

W2
(uj) �=

1 for all uj ∈ V (H), then dim(GH ) ≤ |V (G)| · adim(H).

Proof Let W2(vi) = {vi} × W2 and W =
⋃

vi∈V (G) W2(vi) or W = V (G) × W2. By Lemma 6,
W2(vi) resolves all the vertices of H(vi). To show that W is a resolving set for GH , consider
two distinct vertices vij, vkl ∈ V (GH ) \ W such that vi �= vk . Since G has no false twins, we
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Figure 2 The co-normal product graph of P4 and S4

have N(vi) �= N(vk) for all vi �= vk ∈ V (G) and N(vij)∩W �= N(vkl)∩W for uj = ul , W resolves
vij, vkl . Now for uj �= ul , we have N(uj) ∩ W2 �= N(ul) ∩ W2 also N(vi) ∩ V (G) �= N(vk) ∩
V (G), which shows that W resolves vij, vkl . Hence, by Lemma 5, W =

⋃

vi∈V (G) W2(vi) is a
resolving set for GH . �

Corollary 4 Let G be a complete graph and H �= Kn be an arbitrary graph. If H has an ad-
jacency basis W2 such that ca

W2
(uj) �= 1 for all uj ∈ V (H), then dim(GH ) = |V (G)| · adim(H).

Proof Since G is complete, G has no false twins. Also, W2 satisfies the condition of Theo-
rem 8, so dim(GH ) ≤ |V (G)| · adim(H). Now for some uj ∈ W2, consider W = V (G)× (W2 \
{uj}) and note that, for any vi ∈ V (G), W (vi) = {vi} × (W2 \ {uj}) will not resolves the ver-
tices of H(vi), because W2 is an adjacency basis of H , so there exists ul ∈ V (H)\W2 such
that ca

W2\{uj}(ul) = ca
W2\{uj}(uj) in H , which shows that cW (vk )(vil) = cW (vk )(vij) for all vk �= vi

because G is complete. Hence, dim(GH ) ≥ |V (G)| · adim(H). �

In the next theorem, we give a formula for the metric dimension of GH when G is com-
plete and H is a graph for which each adjacency basis W2 has one vertex uj ∈ V (H) \ W2

such that ca
W2

(uj) = 1.

Theorem 9 Let G be a complete graph and H �= Kn be an arbitrary graph. If for each ad-
jacency basis W2 of H , there exists a vertex uj ∈ V (H) \ W2 such that ca

W2
(uj) = 1, then

dim(GH ) = |V (G)| · (adim(H) + 1) – 1.

Proof By using Lemma 6, W (vi) = {vi} × W2 will resolve the vertices of H(vi). Since G
is complete, cW (vk )(vij) = 1 for all vk �= vi. Also cW (vi)(vij) = 1 for each vi ∈ V (G). Hence,
W =

⋃

vi∈V (G) W (vi) is not a resolving set for GH . Also the induced subgraph of the vertex
set G(uj) = {vij|vi ∈ V (G)} is isomorphic to G and G is complete. Hence, dim(GH ) = |V (G)| ·
adim(H) + |V (G)| – 1. �

Since GH is complete if and only if G and H are complete, dim(GH ) = |V (G)| · |V (H)|– 1.
Also, GH ∼= H if G is trivial and GH ∼= G if H is trivial. Note that dim(GH ) = adim(G) ·
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adim(H) if and only if one of G or H is trivial. In the next theorem, we give bounds for the
metric dimension of GH when G and H are non-trivial and at least one is not a complete
graph.

Theorem 10 Let G be a connected graph and H �= Kn be an arbitrary graph, then

adim(H) · adim(G) < dim(GH ) ≤ ∣
∣V (G)

∣
∣ · adim(H) +

∣
∣V (H)

∣
∣ · adim(G).

Proof Let W = W1 × V (H) ∪ V (G) × W2, where W1, W2 are adjacency basis of G and
H respectively. Let W (vi) = W ∩ H(vi) for vi ∈ V (G) and W (uj) = W ∩ G(uj) for uj ∈
V (H). For any vertex vij ∈ V (GH ), the metric representation is of the form cW (vij) =
(cW (v1)(vij), cW (v2)(vij), . . . , cW (vm)(vij)) or cW (vij) = (cW (u1)(vij), cW (u2)(vij), . . . , cW (un)(vij)). For
any two distinct vertices vij, vkl ∈ V (GH ) \W , we have vi, vk /∈ W1 and uj, ul /∈ W2. To prove
that W is a resolving set for GH , we discuss the following cases:

Case 1: Let vi = vk and W2(vi) = {vi}×W2 ⊆ W (vi). Lemma 6, shows that W2(vi) resolves
the vertices of H(vi) also W2(vi) ⊆ W (vi) shows that cW (vi)(vij) �= cW (vi)(vkl). Hence, cW (vij) �=
cW (vkl).

Case 2: Let uj = ul and W1(uj) = W1 ×{uj} ⊆ W (uj). W1(uj) resolves the vertices of G(uj),
which shows that cW (uj)(vij) �= cW (uj)(vkl). Hence, cW (vij) �= cW (vkl).

Case 3: Let vi �= vk and uj �= ul . Since W1 and W2 are adjacency bases for G and H ,
respectively, we have N(vi) ∩ W1 �= N(vk) ∩ W1 and N(uj) ∩ W2 �= N(ul) ∩ W2. Also,
W = W1 × V (H) ∪ V (G) × W2 shows that N(vij) ∩ W �= N(vkl) ∩ W , which implies W
is a resolving set for GH .

For the lower bound, let W1 and W2 be adjacency basis for G and H , respectively and
W = W1 × W2. We consider the following cases:

Case 1: Suppose G or H has false twins. Since, for every vi ∈ V (G) \ W1, we can have
W ∩H(vi) = ∅, by Theorem 6, W is not a resolving set for GH if H has false twins. A similar
argument holds if G has false twins.

Case 2: Suppose neither G nor H have false twins. As W2 is an adjacency basis for H
so there exists at least one vertex uj ∈ W2 such that cW2\{uj}(uj) = cW2\{uj}(ul) for some ul ∈
V (H) \ W2. Also, W ∩ H(vi) = ∅ for vi ∈ V (G) \ W1 and the definition of the co-normal
product graph gives cW (vij) = cW (vil). Hence, W is not a resolving set for GH . �

For a complete graph G and a null graph H , Theorem 2(1) shows that diam(GH ) = 2 and
the metric dimension of GH is given in the next theorem.

Theorem 11 If G is a complete graph and H is a null graph, then dim(GH ) = |V (G)| ·
(|V (H)| – 1).

Proof Let V (G) = {v1, v2, . . . , vm} and V (H) = {u1, u2, . . . , un}. It is clear from the definition
of co-normal product that, for each vi, N(vij) = N(vik) for all 1 ≤ j, k ≤ n. So any resolving
set must contain at least n – 1 vertices from each H(vi), which shows that dim(GH ) ≥
m(n – 1). Since H is a null graph, we have cH(vi)\{vij}(vij) = 2 for each i and cH(vk )(vij) = 1 for
each k �= i, which shows that any subset of V (GH ) containing n – 1 vertices from each H(vi)
will be a resolving set for GH . Hence, dim(GH ) = m(n – 1). �

In the next theorem, we give formula for the metric dimension of GH when G is a path
graph and H is a star graph.
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Theorem 12 For any two integers m, n ≥ 2, if G is a path graph and H is a star graph
having order m and n + 1 respectively, then dim(GH ) = m · dim(H) + adim(G).

Proof Let V (G) = {v1, v2, . . . , vm} and V (H) = {u0, u1, u2, . . . , un}, where deg(u0) = n in H .
Also, N(uk) = N(ul) for all 1 ≤ k, l ≤ n, by using Lemma 3, we have N(vik) = N(vil) for
each i. So, any resolving set W for G must contain at least n – 1 vertices from each H(vi).
Since deg(u0) = n, by the definition of a co-normal product d(vi0, vij) = 1 for all 1 ≤ i ≤ m
and 1 ≤ j ≤ n, which means that the vertices of G(u0) are not resolved by any of vij, 1 ≤ i ≤
m, 1 ≤ j ≤ n. Also, d(vi0, vj0) ≤ 2 in GH and induced subgraph of G(u0) is isomorphic to G
so we must choose adim(G) vertices from G(u0), which shows that dim(GH ) = m ·dim(H) +
adim(G). �

5 Conclusions
To study the product graphs with respect to graph theoretic parameters is always an im-
portant problem. In this paper, we have studied two parameters, the domination num-
ber and the metric dimension of the co-normal product of two graphs G and H . These
two parameters have a lot of applications in networks and facility location problems.
We have given conditions on G and H under which the graph GH has the domination
number 1, 2 and γ (G). We also proved that, for any two connected graphs G and H ,
min{γ (G),γ (H)} ≤ γ (GH ) ≤ γ (G)γ (H). We described some properties of resolving sets
of GH and gave conditions on G and H such that dim(GH ) = |V (G)| · dim(H). We have
also given conditions on G and H under which dim(GH ) ≤ |V (G)| · adim(H). For a com-
plete graph G and a non-complete graph H , we have given conditions on H under which
dim(GH ) = |V (G)| · adim(H) and dim(GH ) = |V (G)| · (adim(H) + 1) – 1. For a connected
graph G and a non-complete graph H , we proved that adim(H) · adim(G) < dim(GH ) ≤
|V (G)| · adim(H) + |V (H)| · adim(G). We have also given explicit formulas for the metric
dimension of the co-normal product of a path graph and a complete multipartite graph, a
complete graph and a null graph, a path graph and a star graph for the first time. Our de-
rived inequality relations can be very helpful in the characterizations of graphs with given
metric dimension or given domination number.
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