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1 Introduction
In this note, we work with two fixed real parameters α and β satisfying α ≥ β ≥ –1/2. We
use the following notations:

�α,β (x) = (1 – x)α(1 + x)β , x ∈ (–1, 1), (1)

and, for 1 ≤ p < ∞,

Lp
(α,β) =

{
f : [–1, 1] →R : ‖f ‖p =

(∫ 1

–1

∣∣f (x)
∣∣p

�α,β (x) dx
)1/p

< ∞
}

.

Moreover, for each n ∈ N0, Pn is the family of all algebraic polynomials of degree not
greater than n,

wα,β
n =

(2n + α + β + 1)�(n + α + β + 1)�(n + α + 1)
�(n + β + 1)�(n + 1)(�(α + 1))2 (2)

(� stands for the gamma function) and

λn = n(n + α + β + 1). (3)

Since α and β are fixed, we set X for one of the spaces C[–1, 1] or Lp
(α,β).
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For n ∈ N, the Jacobi polynomial R(α,β)
n is the unique polynomial of degree n which sat-

isfies

R(α,β)
n (1) = 1 and

∫ 1

–1
Qn–1(x)R(α,β)

n (x)�α,β (x) dx = 0

for all Qn–1 ∈ Pn–1. We also take R(α,β)
0 (x) = 1.

For f ∈ X, the Fourier–Jacobi coefficients are defined by

〈
f , R(α,β)

n
〉

=
∫ 1

–1
f (x)R(α,β)

n (x)�α,β(x) dx, n ∈N0,

and the associated expansion is

f (x) ∼
∞∑

n=0

〈
f , R(α,β)

n
〉
w(α,β)

n R(α,β)
n (x). (4)

It is known that each f ∈ L1
(α,β) is completely determined a.e. by its Fourier–Jacobi coeffi-

cients.

Definition 1.1 For fixed γ > 0 and t > 0, the generalized Jacobi–Weierstrass kernel is de-
fined by

Wt,γ (x) =
∞∑

n=0

e–tλγ
n w(α,β)

n R(α,β)
n (x), x ∈ [–1, 1]. (5)

For f ∈ X, the generalized Jacobi–Weierstrass (or Abel–Cartwright) operator is defined
by

Ct,γ (f , x) =
∫ 1

–1
τy(f , x)Wt,γ (y)�α,β (y) dy, x ∈ [–1, 1], (6)

where τy(f , x) is the translation given in Theorem 2.1 below.

Of course the kernel Wt,γ and the operator Ct,γ also depend on α and β but, for sim-
plicity, we omit these indexes. The (classical) Jacobi–Weierstrass operators correspond to
γ = 1.

The generalized Jacobi–Weierstrass operators have been studied in different papers, but
only for parameters satisfying 0 < γ ≤ 1. This restriction was considered because in such
a case the kernels Wt,γ are positive and the family {Ct,γ } can be considered as formed by
positive operators (see [2, 3], [7], pp. 96–97) and/or as a semigroup of contractions (see [2],
pp. 49–52, and [18]). For γ > 1, one cannot expect the positivity of Wt,γ . For instance, it
is known that the analogous generalized Weierstrass kernels for trigonometric expansion
are not positive when γ > 1 (see [6], p. 263).

In this paper we will prove that the operators Ct,γ can be used as a realization of some
K-functionals which usually appear in some approximation problems related to Jacobi
expansions.
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For fixed real γ > 0, let 	γ (X) denote the family of all f ∈ X for which there exists 
γ (f ) ∈
X satisfying


γ (f )(x) ∼
∞∑

n=0

λγ
n
〈
f , R(α,β)

n
〉
w(α,β)

n R(α,β)
n (x).

The associated K-functional is defined by

Kγ (f , t) = Kγ (f , t)α,β = inf
g∈
γ (X)

{‖f – g‖X + t
∥∥
γ (g)

∥∥
X

}
(7)

for f ∈ X and t > 0. For different realizations of these K-functionals, see [8], Theorem 7.1,
and [10], Lemma 2.3. We will not use the characterization of these K-functionals in terms
of moduli of smoothness. We will show that, for any γ > 0,

sup
0<s≤t

∥∥(I – Cs,γ )(f )
∥∥

X ≈ Kγ (f , t).

The notation A(f , t) ≈ B(f , t) means that there exists a positive constant C such that
C–1A(f , t) ≤ B(f , t) ≤ CA(f , t) with C independent of f and t.

Following [19], for γ > 0, define

(I – Ct,1)γ =
∞∑
j=0

(–1)j
(

γ

j

)
Cjt,1, (8)

where

(
γ

0

)
= 1 and

(
γ

j

)
=

j∏
k=1

γ – k + 1
k

for j ∈N.

For these operators, we will show the relations

Kγ

(
f , tγ

) ≈ sup
0<s≤t

∥∥(I – Cs,1)γ (f )
∥∥

X ≈ sup
0<s≤tγ

∥∥(I – Cs,γ )(f )
∥∥

X .

It is known that, if Qn is a trigonometric polynomial of degree not greater than n and r ∈N,
then

∥∥Q(r)
n

∥∥
p ≤

(
n

2 sin(nh)

)r∥∥(1 – Th)r(Qn)
∥∥

p, h ∈ (0,π/n),

where ‖ · ‖p denotes the Lp-norm of 2π-periodic functions and Th is the translation
operator. That is, ThQ(x) = Q(x + h). These inequalities are due to Nikolskii [11] and
Stechkin [13]. For similar inequalities for algebraic polynomials, see [4] and the references
given there. Here we will verify an analogous inequality by considering the operators 
r

and the linear combination of the Jacobi–Weierstrass operators Ct,1.
In Sect. 2 we collect some definitions and results which will be needed later. The main

results are given in Sect. 3, where the result concerning simultaneous approximation is
also included. Finally, in Sect. 4 we present a Nikolskii–Stechkin type inequality.
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2 Auxiliary results
We need a convolution structure due to Askey and Wainger (see [1]).

Theorem 2.1 For each h ∈ [–1, 1), there exists a function τh : X → X with the following
properties:

(i) For each f ∈ X , one has

‖τhf ‖X ≤ ‖f ‖X , lim
h→1–

∥∥τh(f ) – f
∥∥

X = 0

and

〈
τh(f ), R(α,β)

n
〉

= R(α,β)
n (h)

〈
f , R(α,β)

n
〉
, n ∈N0.

(ii) For f ∈ X and g ∈ L1
α,β , the integral

(f ∗ g)(x) :=
∫ 1

–1
τy(f , x)g(y)�α,β (y) dy

exists a.e. in [–1.1],

f ∗ g = g ∗ f , f ∗ g ∈ X, ‖f ∗ g‖p ≤ ‖g‖1‖f ‖X

and

〈
f ∗ g, R(α,β)

n
〉

=
〈
f , R(α,β)

n
〉〈

g, R(α,β)
n

〉
, n ∈N0. (9)

For j > α + 1/2 and f ∈ X, let

Sj
m(f ) =

m∑
k=0

Aj
m–k

Aj
m

〈
f , Rα,β)

k
〉
wα,β

k R(α,β)
k (x), Aj

m =
(

m + j
m

)
,

be the mth Cesàro means of order j. It is known that there exists a constant C such that

∥∥Sj
m
∥∥ ≤ C, (10)

and, for each f ∈ X, one has ([2], Corollary 3.3.3, or [7], Theorem A)

lim
m→∞

∥∥f – Sj
m(f )

∥∥
X = 0. (11)

We need some classical results related to Banach spaces.

Definition 2.2 Let Y be a real Banach space and B(Y ) be the Banach algebra of all
bounded linear operators B : Y → Y . A uniformly bounded family of operators {T(t) :
t ≥ 0} in B(Y ) is called an equi-bounded semigroup of class (C0) if

T(s)T(t) = T(s + t) for s, t ≥ 0, T(0) = I, (12)

and limt→0+ ‖f – T(t)f ‖Y = 0 for each f ∈ Y .
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Let Y , B(Y ) and {T(t) : t > 0} be an equi-bounded semigroup as in Definition 2.2. Let
D(Q) be the family of all g ∈ Y , for which there exists Q(g) ∈ Y such that

Q(g) = lim
t→0+

1
t
[
T(t) – I

]
g (13)

(the limit is considered in the norm of Y ). The operator Q : D(Q) → Y is called the in-
finitesimal generator of the semigroup {T(t) : t ≥ 0}. It is known that Q is a closed linear
operator and D(Q) is dense in Y . For properties of semigroups of operators, see [5].

For r ∈N, set

D
(
Qr+1) =

{
f ∈ Y : f ∈ D

(
Qr) and Qr(f ) ∈ D(Q)

}

and, for f ∈ D(Qr+1),

Qr+1(f ) = Q
(
Qr(f )

)
. (14)

A family of operators S = {St , : t > 0}, St ∈ B(Y ) for each t > 0 is called a (commutative)
strong approximation process for Y if, for all f ∈ Y and s, t > 0,

Ss
(
St(f )

)
= St

(
Ss(f )

)
,

∥∥St(f )
∥∥

Y ≤ �‖f ‖Y and lim
t→0+

∥∥f – St(f )
∥∥

Y = 0,

where � is a constant. In such a case, we set

θS(f , t) = sup
0<s≤t

∥∥f – Ss(f )
∥∥

Y .

Let φ : [0, 1) → R
+ be a positive increasing function, φ(t) → 0 as t → 0, and Y0 be a sub-

space of Y . We say that S is saturated with order φ and with trivial subspace Y0 if every
f ∈ Y satisfying

lim
t→0+

θS(f , t)
φ(t)

= 0

belongs to Y0 and there exists f ∈ Y \ Y0 satisfying θS(f , t) ≤ C(f )φ(t). The following as-
sertion is known (for instance, see [2], Theorem 2.4.2).

Theorem 2.3 Assume that Y is a Banach space, D(B) is a dense subspace of Y , and B :
D(B) → Y is a closed linear operator. Let S = {St : t > 0} be a strong approximation process
in Y satisfying St(f ) ∈ D(B) for any f ∈ Y and each t > 0. If there exists a constant γ0 such
that, for all g ∈ D(B),

lim
t→0+

∥∥∥∥St(g) – g
tγ0

– B(g)
∥∥∥∥

Y
= 0, (15)

then the strong approximation process S is saturated with order tγ0 and the trivial space is
the kernel of B.
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3 The operators Ct,γ as a semigroup
In fact, it is known that, for x ∈ (–1, 1), |R(α,β)

n (x)| < 1, [14], pp. 163–164, and there exists a
constant C such that, for each n ∈ N0,

w(α,β)
n ≤ Cn2α+1. (16)

These relations can be used to prove that the series in (5) converges absolutely and uni-
formly in [–1, 1]. Thus Wt,γ ∈ L1

(α,β) and, for each f ∈ L1
(α,β), the series Ct,γ (f ) converges

absolutely and uniformly in [–1, 1]. Moreover,

Ct,γ (f , x) = (Wt,γ ∗ f )(x) =
∞∑

n=0

e–tλγ
n
〈
f , R(α,β)

n
〉
w(α,β)

n R(α,β)
n (x).

For these assertions, see [2], p. 30.
Our first result seems to be known. For convenience of the reader, we include a proof.

Theorem 3.1 For each γ > 0, the family of operators {Ct,γ : t > 0} is an equi-bounded semi-
group of operators in X.

Proof. It follows from Theorem 3.9 of [15] that the family of operators {Ct,γ : t > 0} is
uniformly bounded.

Condition (12) is derived from the properties of the convolution. In fact, it follows from
(9) that, for each f ∈ X and k ∈N0,

〈
Cs+t(f ), R(α,β)

k
〉

= e–(s+t)λγ
n
〈
f , R(α,β)

k
〉

= e–sλγ
n
〈
Ct,γ (f ), R(α,β)

k
〉

=
〈
Cs,γ

(
Ct,γ (f )

)
, R(α,β)

k
〉

and this implies Cs+t(f ) = (Cs,γ ◦ Ct,γ )(f ).
Finally, for each k ∈N0,

Ct,γ
(
R(α,β)

k
)
(x) = e–tλγ

n R(α,β)
k (x). (17)

Hence

lim
t→0+

∥∥R(α,β)
k – Ct,γ

(
R(α,β)

k
)∥∥

X = 0.

Since the operators Ct,γ are linear and uniformly bounded and the polynomials are dense
in X, the last equation holds for every f ∈ X.

Taking into account Theorem 3.1, we denote by Aγ the infinitesimal generator of Ct,γ

and by D(Aγ ) = D(Aγ (α,β)) the domain of Aγ . In the next result we give a description of
the infinitesimal generator.

Theorem 3.2 If γ , t > 0 and Aγ : D(Aγ ) → X is the infinitesimal generator of Ct,γ , then

D(Aγ ) = 
γ (X) and –Aγ (f ) = 
γ (f )

for each f ∈ 
γ (X).
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Moreover, for each r ∈N and f ∈ D(Ar
γ ),

D
(
Ar

γ

)
= 
rγ (X) and (–1)rAr

γ (f ) = 
rγ (f ), (18)

where Ar
γ is defined as in (14).

Proof Since Aγ is the infinitesimal generator of the semi-group (see (13)), Aγ : D(Aγ ) → X
is a closed operator.

If f ∈ D(Aγ ), then

〈
Aγ (f ), R(α,β)

n
〉

= lim
t→0+

1
t
(
e–tλγ

n – 1
)〈

f , R(α,β)
n

〉
= –λγ

n
〈
f , R(α,β)

n
〉
. (19)

Thus f ∈ 
γ (X) and


γ (f ) = –Aγ (f ).

In particular, for each polynomial P, one has P ∈ D(Aγ ) and 
γ (P) = –Aγ (P).
On the other hand, fix an integer j > α + 1/2. For f ∈ 
γ (X), let Sj

m(f ) and Sj
m(
γ (f )) be

the mth Cesàro means of order j of f and 
γ (f ), respectively. We know that (see (11))

Sj
m(f ) → f , m → ∞

and

–Aγ

(
Sj

m(f )
)

= 
γ
(
Sj

m(f )
)

= Sj
m
(

γ (f )

) → 
γ (f ).

Since –Aγ is a closed operator, f ∈ D(Aγ ) and –Aγ (f ) = 
γ (f ).
Equations (18) can be proved by recurrence. For instance, (19) can be written as

〈
A2

γ (f ), R(α,β)
n

〉
=

〈
Aγ

(
Aγ (f )

)
, R(α,β)

n
〉

= –λγ
n
〈
Aγ (f ), R(α,β)

n
〉

= λ2γ
n

〈
f , R(α,β)

n
〉
. �

Theorem 3.3 (i) If for γ , t > 0, and f ∈ X

θγ (f , t) = θγ (f , t)α,β = sup
0<s≤t

∥∥(I – Cs,γ )(f )
∥∥,

and Kγ (f , t) is defined by (7), then

θγ (f , t) ≈ Kγ (f , t).

(ii) The strong approximation process {Ct,γ ; t > 0} is saturated with order t and the trivial
class consists of the constant functions.

Proof (i) From Theorem 3.2 we know that –
γ is the infinitesimal generator of {Ct,γ }
and D(Aγ ) = 
γ (X). Thus, the result is a simple consequence of [17], Theorem 1.1, or [5],
p. 192.
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(ii) We will derive the result from Theorem 2.3, with B = 
γ and D(B) = D(Aγ ). We
should verify that Ct,γ (f ) ∈ D(Aγ ) for any f ∈ X and each t > 0.

For any f ∈ X, the Fourier–Jacobi coefficients of f are bounded by ‖f ‖L1
(α,β)

. Taking into
account (16), for every x ∈ [–1, 1],

∣∣∣∣∣
∞∑

n=1

λγ
n exp{–tλn}

〈
f , R(α,β)

n
〉
w(α,β)

n R(α,β)
n (x)

∣∣∣∣∣

≤ ‖f ‖L1
(α,β)

∞∑
n=1

λγ
n exp

{
–tλγ

n
}

w(α,β)
n

≤ C‖f ‖L1
(α,β)

∞∑
n=1

λγ
n exp

{
–tλγ

n
}

n2α+1 < ∞.

Since the series converges absolutely and uniformly, it defines a function gt ∈ X satisfying

〈
gt , R(α,β)

n
〉

= λγ
n exp

{
–tλγ

n
}〈

f , R(α,β)
n

〉
= λγ

n
〈
Ct,γ (f ), R(α,β)

n
〉
, n ∈ N.

By definition of the operator 
γ , Ct,γ (f ) ∈ 
γ (X) (Theorem 3.2) and


γ
(
Ct,γ (f )

)
= gt .

We have proved that Ct,γ (X) ∈ D(Aγ ).
If g ∈ 
γ (X) = D(Aγ ), by definition of the infinitesimal generator,

lim
t→0+

∥∥∥∥Ct,γ (g) – g
t

– Aγ (g)
∥∥∥∥

Y
= 0.

If f ∈ 
γ (X) and Aγ (f ) = –
γ (f ) = 0, then 〈f , R(α,β)
n 〉 = 0 for all n ∈ N. Therefore f is a

constant.
From part (i), if g ∈ 
γ (X), then

θγ (g, t) ≤ CKγ (g, t) ≤ Ct
∥∥
γ (g)

∥∥
X .

Hence, the family

{
f ∈ X : ∃C(f ) such that θγ (f , t) ≤ C(f )t

}

contains nonconstant functions.
Now, from Theorem 2.3, we know that the strong approximation process {Ct,γ : t > 0} is

saturated with order t. �

Remark 3.4 Some characterizations of the saturation class of the strong approximation
process {Ct,γ : t > 0} can be given as in [2], Theorems 5.1.1 and 7.4.1, where the case γ = 1
was considered. When γ > 0 is not an integer, fractional derivatives should be considered.
This task would lead us far from our main topic.
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Remark 3.5 A relation similar to (i) in Theorem 3.3 is asserted in [16], p. 2885, for the
discrete case and Gauss–Weierstrass type means

W̃�(n),γ (f , x) =
∞∑

n=0

e–(�(k)/�(n))γ 〈
f , R(α,β)

n
〉
w(α,β)

n R(α,β)
n (x),

with � varying in a specified class of functions. The proof suggested there is different from
the one given here (it does not use the semi-group structure). The main argument in [16]
is that some abstract Riesz means are equivalent (as approximation processes) to some
Gauss–Weierstrass type means. This kind of equivalence can also be derived by using
Corollary 5.4 of [9]. Anyway, the arguments of [16] and the proof given here are related
because both use [15], Theorem 3.9, to obtain a uniformly bounded family of multipliers.
Apart from this, other topics considered here are not connected with [16].

The arguments used in the proof of Theorem 3.2 can be used to derive similar relations
concerning the fractional powers of the Jacobi–Weierstrass operators {Ct,1}.

Recall that A1 : D(A1) → X is the infinitesimal generator of {Ct,1, t > 0}. For γ > 0, let
D((–A1)γ , X) be the family of all f ∈ X, for which there exists an element (–A1)γ (f ) ∈ X
satisfying

lim
t→0+

∥∥∥∥(–A1)γ (f ) –
1
tγ

(I – Ct,1)γ (f )
∥∥∥∥

X
= 0, (20)

where (I – Ct,1)γ (f ) is defined by (8). This induces a map

(
–A1)γ : D

((
–A1)γ , X

) → X

which is called the fractional power of order γ of –A1.

Proposition 3.6 If γ > 0 and (–A1)γ is the fractional power of order γ of –A1, then

D
(
(–A1)γ , X

)
= 
γ (X)

and, for each f ∈ 
γ (X),


γ (f ) = lim
t→0+

1
tγ

(I – Ct,1)γ (f ) = lim
t→0+

1
t
(
f – Ct,γ (f )

)
. (21)

Proof If γ is a positive integer or |a| < 1, the Taylor expansion gives

(1 – a)γ =
∞∑
j=0

(–1)j
(

γ

j

)
aj.

Notice that

〈
(I – Ct,1)γ (f ), R(α,β)

n
〉

=
∞∑

k=0

(–1)k
(

γ

k

)〈
Ckt,1(f ), R(α,β)

n
〉
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=
∞∑

k=0

(–1)k
(

γ

k

)〈
Wkt , R(α,β)

n
〉〈

f , R(α,β)
n

〉

=
〈
f , R(α,β)

n
〉 ∞∑

k=0

(–1)k
(

γ

k

)
exp(–ktλn))

=
〈
f , R(α,β)

n
〉(

1 – exp(–tλn)
)γ . (22)

Therefore, if f ∈ D((–A1)γ , X), then

〈
(–A1)γ (f ), R(α,β)

n
〉

= (λn)γ
〈
f , R(α,β)

n
〉
.

Hence f ∈ 
γ (X) and (–A1)γ (f ) = 
γ (f ).
It is clear that, for each polynomial P, one has P ∈ D((–A1)γ , X) and

(–A1)γ (P) = 
γ (P).

On the other hand, fix an integer j > α + 1/2. For f ∈ 
γ (X), let Sj
m(f ) and Sj

m(
γ (f )) be
the mth Cesàro means of order j of f and 
γ (f ), respectively. From (11), as in the proof of
Theorem 3.2, one has limm→∞ ‖Sj

m(f ) – f ‖X = 0 and

lim
m→∞

∥∥(
–A1)γ (

Sj
m(f )

)
– 
γ (f )

∥∥
X = lim

m→∞
∥∥
γ

(
Sj

m(f )
)

– 
γ (f )
∥∥

X

= lim
m→∞

∥∥Sj
m
(

γ (f )

)
– 
γ (f )

∥∥
X = 0.

It was proved in [19], Theorem 4, that D((–A1)γ , X) is dense in X and (–A1)γ is a closed
operator. Hence f ∈ D((–A1)γ , X) and (–A1)γ (f ) = 
γ (f ).

The last equality in (21) was proved in Theorem 3.2, because 
γ is the infinitesimal
generator of {Ct,γ , t > 0}. �

Theorem 3.7 For fixed γ > 0, one has

Kγ

(
f , tγ

) ≈ sup
0<s≤t

∥∥(I – Cs,1)γ (f )
∥∥

X ≈ θγ

(
f , tγ

)

for each f ∈ X and t > 0.

Proof From Theorems 3.1 and 3.2 we know that the family {Ct,1, t ≥ 0} is a semi-group of
operators of class (C0) with the infinitesimal generator A1 = –
1. From Theorem 1.1 of
[17], we know that, for all f ∈ X and t > 0,

inf
g∈D((–A1)γ ,X)

(‖f – g‖X + tγ
∥∥(–A1)γ (g)

∥∥
X

) ≈ sup
0<s≤t

∥∥(I – Cs,1)γ (f )
∥∥

X ,

where (–A1)γ is given as in (20). But it was verified in Proposition 3.6 that 
γ (X) =
D((–A1)γ , X) and (–A1)γ (g) = 
γ (g) for each g ∈ 
γ (X).

The equivalence with θγ (f , tγ ) follows from Theorem 3.3. �

Remark 3.8 When γ is an integer, Theorem 3.7 is similar to the Main Theorem in [18],
p. 390, but the authors assumed that the operators are positive (plus other conditions).
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Remark 3.9 The results of Theorem 3.7 allow us to obtain equivalent relations between
fractional powers (I – Cs,1)γ and some Riesz means as in Theorem 5.1 of [9].

Some result concerning simultaneous approximation can be derived from the ones given
above.

Theorem 3.10 If γ ,σ , and t are positive real numbers and f ∈ 
σ (X), then

Ct,γ (f ), (I – Ct,1)γ (f ) ∈ 
σ (X),
∥∥
σ (f ) – 
σ

(
Ct,γ (f )

)∥∥
X ≤ Cθγ

(

σ (f ), t

)

and

∥∥
σ
(
(I – Ct,1)γ (f )

)∥∥
X ≤ Cθγ

(

σ (f ), tγ

)
,

where the constant C is independent of f and t.

Proof If f ∈ 
σ (X) and n ∈N0, from (17) we obtain

〈
Ct,γ

(

σ (f )

)
, R(α,β)

n
〉

= exp
(
–tλγ

n
)〈

σ (f ), R(α,β)

n
〉

= λσ
n exp

(
–tλγ

n
)〈

f , R(α,β)
n

〉
= λσ

n
〈
Ct,γ (f ), R(α,β)

n
〉

and from (22) one has

〈
(I – Ct,1)γ

(

σ (f )

)
, R(α,β)

n
〉

=
(
1 – exp(–tλn)

)γ 〈

σ (f ); R(α,β)

n
〉

= λσ
n
(
1 – exp(–tλn)

)γ 〈
f , R(α,β)

n
〉

= λσ
n
〈
(I – Ct,1)γ (f ), R(α,β)

n
〉
.

Therefore Ct,γ (f ), (I – Ct,1)γ (f ) ∈ 
σ (X),


σ
(
Ct,γ (f )

)
= Ct,γ

(

σ (f )

)
and 
σ

(
(I – Ct,1)γ (f )

)
= (I – Ct,1)γ

(

σ (f )

)
.

Now, from Theorem 3.3 one has

∥∥
σ (f ) – 
σ (Ct,γ )
∥∥

X =
∥∥(I – Ct,γ )

(

σ (f )

)∥∥
X ≤ Cθγ

(

σ (f ), t

)
,

and using Theorem 3.7 we obtain

∥∥
σ
(
(I – Ct,1)γ (f )

)∥∥
X =

∥∥(I – Ct,1)γ
(

σ (f )

)∥∥
X ≤ Cθγ

(

σ (f ), tγ

)
. �

4 A Nikolskii–Stechkin type inequality
Theorem 4.1 For each r ∈ N, there exists a constant C, depending upon r, such that, for
every λ ≥ 1 and for each polynomial P ∈ Pξ (λ),

∥∥
r(P)
∥∥

X ≤ Cλr sup
0<h≤1/λ

∥∥(I – Ch,1)r(P)
∥∥

X ,
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where

ξ (λ) = max
{

k ∈N0 : k(k + α + β + 1) < λ
}

.

Proof In this proof the infinitesimal generator of {Ct,1 : t > 0} is denoted by A.
From the proof of Lemma 1 in [12] we know that, given r ∈ N, there exists a constant

C1 = C(r) such that, for each f ∈ X and t > 0, there is gt ∈ D(Ar+1) satisfying

‖f – gt‖X ≤ sup
0<h≤t

∥∥(I – Ch,1)rf
∥∥

X , (23)

∥∥Ar+1(gt)
∥∥

X ≤ C1
1

tr+1 sup
0<h≤t

∥∥(I – Ch,1)rf
∥∥

X (24)

and

∥∥(–A)r(gt)
∥∥

X ≤ C1
1
tr sup

0<h≤t

∥∥(I – Ch,1)rf
∥∥

X . (25)

As in [9], for λ > 0 and f ∈ X, consider the best approximation

Eλ(f ) = inf
{‖f – P‖X : P ∈ Pξ (λ)

}
.

It was proved there (Theorem 6.1) that there exists a constant C2 = C(r,α,β) such that,
for λ > 0 and f ∈ X,

Eλ(f ) ≤ C2Kr+1
(
f ,λ–r–1), (26)

and (Theorem 3.2) for each Q ∈ Pξ (λ),

∥∥
r(Q)
∥∥

X ≤ C2λ
r‖Q‖X . (27)

Now, fix λ > 0 and P ∈ Pξ (λ). Let gt ∈ D(Ar+1) = 
r+1(X) (see (18)) be given as (23)–(25)
with t = 1/λ and f = P.

For ε > 0 and k ∈ N0, choose

q(gt , k) ∈ Pξ (2kλ) (28)

such that

∥∥gt – q(gt , k))
∥∥

X ≤ (1 + ε)E2kλ(gt). (29)

From (26), (18), and (24) we know that

∥∥gt – q(gt , k))
∥∥

X ≤ C2(1 + ε)Kr+1
(
gt ,

(
2kλ

)–r–1)

≤ C2(1 + ε)
(2kλ)r+1

∥∥
r+1(gt)
∥∥

X

=
C2(1 + ε)
(2kλ)r+1

∥∥Ar+1(gt)
∥∥

X
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≤ C1C2(1 + ε)
(2kλ)r+1

1
tr+1 sup

0<h≤t

∥∥(I – Ch,1)rP
∥∥

X

=
C1C2(1 + ε)

(2k)r+1 sup
0<h≤1/λ

∥∥(I – Ch,1)rP
∥∥

X .

On the other hand, from the identity

q(gt , 0) – gt =
∞∑

k=0

(
q(gt , k) – q(gt , k + 1)

)
,

(28), (27), (29), and (26), one has

∥∥
r(q(gt , 0) – gt
)∥∥

X ≤
∞∑

k=0

∥∥
r(q(gt , k) – q(gt , k + 1)
)∥∥

X

≤ C2

∞∑
k=0

(
2k+1λ

)r∥∥q(gt , k) – q(gt , k + 1)
∥∥

X

≤ C2

∞∑
k=0

(
2k+1λ

)r(∥∥q(gt , k) – gt
∥∥

X +
∥∥gt – q(gt , k + 1)

∥∥
X

)

≤ 2C1C2
2(1 + ε) sup

0<h≤1λ

∥∥(I – Ch,1)rP
∥∥

X

∞∑
k=0

(
2k+1λ

)r 1
(2k)r+1

= 2r+1C1C2
2(1 + ε)λr sup

0<h≤1λ

∥∥(I – Ch,1)rP
∥∥

X

∞∑
k=0

1
2k

= C3(1 + ε)λr sup
0<h≤1/λ

∥∥(I – Ch,1)rP
∥∥

X .

We also need the inequality (see (18) and (25))

∥∥
r(gt)
∥∥

X =
∥∥Ar(gt)

∥∥
X ≤ C1

1
tr sup

0<h≤t

∥∥(I – Ch,1)rP
∥∥

X

= C1λ
r sup

0<h≤1/λ

∥∥(I – Ch,1)rP
∥∥

X .

From the inequalities given above, for P ∈ Pξ (λ), we obtain

∥∥
r(P)
∥∥

X ≤ ∥∥
r(P – q(gt , 0)
)∥∥

X +
∥∥
r(q(gt , 0)

)∥∥
X

≤ C2λ
r∥∥P – q(gt , 0)

∥∥
X +

∥∥
r(gt)
∥∥

X +
∥∥
r(gt – q(gt , 0)

)∥∥
X

≤ C1λ
r(‖P – gt‖X +

∥∥gt – q(gt , 0)
∥∥

Xα,β
+ C4λ

r sup
0<h≤1/λ

∥∥(I – Ch,1)rP
∥∥

X

≤ C5λ
r sup

0<h≤1/λ

∥∥(I – Ch,1)rP
∥∥

X . �

Remark 4.2 The problem of obtaining a Nikolskii–Stechkin inequality for fractional
derivatives is open.
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