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Abstract
In this paper, we consider sums of finite products of Chebyshev polynomials of the
second kind and of Fibonacci polynomials and derive Fourier series expansions of
functions associated with them. From these Fourier series expansions, we can express
those sums of finite products in terms of Bernoulli polynomials and obtain some
identities by using those expressions.
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1 Introduction and preliminaries
The Chebyshev polynomials Tn(x) of the first kind, the Chebyshev polynomials Un(x) of
the second kind, and the Fibonacci polynomials Fn(x) are respectively defined by the re-
currence relations as follows (see [13–15]):

Tn+2(x) = 2xTn+1(x) – Tn(x) (n ≥ 0), T0(x) = 1, T1(x) = x, (1.1)

Un+2(x) = 2xUn+1(x) – Un(x) (n ≥ 0), U0(x) = 1, U1(x) = 2x, (1.2)

Fn+2(x) = xFn+1(x) + Fn(x) (n ≥ 0), F0(x) = 0, F1(x) = 1. (1.3)

When x = 1, Fn = Fn(1) (n ≥ 0) is the Fibonacci sequence.
From (1.1), (1.2), and (1.3), it can be easily shown that the generating functions for Tn(x),

Un(x), and Fn(x) are respectively given by (see [13–15]):

1 – xt
1 – 2xt + t2 =

∞∑

n=0

Tn(x)tn, (1.4)

F(t, x) =
1

1 – 2xt + t2 =
∞∑

n=0

Un(x)tn, (1.5)

G(t, x) =
1

1 – xt – t2 =
∞∑

n=0

Fn+1(x)tn. (1.6)
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As is well known, the Bernoulli polynomials Bn(x) are defined by the generating function

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
. (1.7)

For any real number x, we let

〈x〉 = x – [x] ∈ [0, 1) (1.8)

denote the fractional part of x, where [x] indicates the greatest integer ≤ x.
For any integers m, r with m, r ≥ 1, we put

αm,r(x) =
∑

i1+i2+···+ir+1=m

Ui1 (x)Ui2 (x) · · ·Uir+1 (x), (1.9)

where the sum runs over all nonnegative integers i1, i2, . . . , ir+1 with i1 + i2 + · · · + ir+1 = m.
Then we will consider the function αm,r(〈x〉) and derive their Fourier series expansions.

As a corollary to these Fourier series expansions, we will be able to express αm,r(x) in terms
of Bernoulli polynomials Bn(x). Indeed, our result here is as follows.

Theorem A For any integers m, r with m, r ≥ 1, we let

�m,r =
1

2rr!

[ m–1
2 ]∑

k=0

(–1)k
(

m + r – k
k

)
(m + r – 2k)r2m+r–2k .

Then we have the identity

∑

i1+i2+···+ir+1=m

Ui1 (x)Ui2 (x) · · ·Uir+1 (x)

=
1
2r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj(x). (1.10)

Here (x)r = x(x – 1) · · · (x – r + 1) for r ≥ 1, and (x)0 = 1.
Also, for any integers m, r with m ≥ 1, r ≥ 2, we let

βm,r(x) =
∑

i1+i2+···+ir=m

Fi1+1(x)Fi2+1(x) · · ·Fir+1(x), (1.11)

where the sum runs over all nonnegative integers i1, i2, . . . , ir with i1 + i2 + · · · + ir = m.

Then we will consider the function βm,r(〈x〉) and derive their Fourier series expansions.
Again, as an immediate corollary to these, we can express βm,r(x) as a linear combination
of Bernoulli polynomials. In detail, our result is as follows.

Theorem B For any integers m, r with m ≥ 1, r ≥ 2, we let

�m,r =
[ m–1

2 ]∑

l=0

(
m + r – 1 – l

l

)(
m + r – 1 – 2l

r – 1

)
.
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Then we have the identity

∑

i1+i2+···+ir=m

Fi1+1(x)Fi2+1(x) · · ·Fir+1(x)

=
1

r – 1

m∑

j=0

(
r – 2 + j

j

)
�m–j+1,r+j–1Bj(x). (1.12)

One particular thing we have to note here is that neither Un(x) nor Fn(x) is Appell poly-
nomials, while all our related results so far have been only about Appell polynomials (see
[1, 5–8]).

Moreover, we will get some interesting identities that follow from Theorems A and B
together with Lemmas 1 and 2 in [9].

As was mentioned in [7], studying these kinds of sums of finite products of special poly-
nomials can be well justified by the following. Let us put

γm(x) =
m–1∑

k=1

1
k(m – k)

Bk(x)Bm–k(x) (m ≥ 2). (1.13)

Then from the Fourier series expansion of γm(〈x〉) we can express γm(x) in terms of
Bernoulli polynomials just as in (1.10) and (1.12). Then, after some simple modification of
this expression, we are able to obtain the famous Faber–Pandharipande–Zagier identity
(see [3]) and some slightly different variant of Miki’s identity (see [2, 4, 10, 12]). For the
details on this, the reader is referred to Introduction of the paper [7]. For some related
results, we let the reader refer to the papers [1, 5–8].

2 Fourier series expansions for functions associated with Chebyshev
polynomials of the second kind

By differentiating equation (1.5) it was shown in [15] and mentioned in [13] that the sum
of products in (1.9) can be neatly expressed as in the following. This will play a crucial role
in this paper.

Lemma 2.1 Let n, r be nonnegative integers. Then we have the identity

∑

i1+i2+···+ir+1=n

Ui1 (x)Ui2 (x) · · ·Uir+1 (x) =
1

2rr!
U (r)

n+r(x), (2.1)

where the sum runs over all nonnegative integers i1, i2, . . . , ir+1 with i1 + i2 + · · · + ir+1 = n.

It is well known that the Chebyshev polynomials of the second kind Un(x) are explicitly
given by (see [11, 13])

Un(x) =
[ n

2 ]∑

k=0

(–1)k
(

n – k
k

)
(2x)n–2k . (2.2)

The rth derivative of (2.1) is given by

U (r)
n (x) =

[ n–r
2 ]∑

k=0

(–1)k
(

n – k
k

)
(n – 2k)r2n–2kxn–2k–r. (2.3)
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Then, combining (2.1) and (2.3), we obtain

∑

i1+i2+···+ir+1=n

Ui1 (x)Ui2 (x) · · ·Uir+1 (x)

=
1

2rr!

[ n
2 ]∑

k=0

(–1)k
(

n + r – k
k

)
(n + r – 2k)r2n+r–2kxn–2k . (2.4)

As in (1.9), we let

αm,r(x) =
∑

i1+i2+···+ir+1=m

Ui1 (x)Ui2 (x) · · ·Uir+1 (x),

where m, r ≥ 1, and the sum runs over all nonnegative integers i1, i2, . . . , ir+1 with i1 + i2 +
· · · + ir+1 = m.

Then we will consider the function

αm,r
(〈x〉) =

∑

i1+i2+···+ir+1=m

Ui1
(〈x〉)Ui2

(〈x〉) · · ·Uir+1

(〈x〉), (2.5)

defined on R, which is periodic with period 1.
The Fourier series of αm,r(〈x〉) is

∞∑

n=–∞
A(m,r)

n e2π inx, (2.6)

where

A(m,r)
n =

∫ 1

0
αm,r

(〈x〉)e–2π inx dx

=
∫ 1

0
αm,r(x)e–2π inx dx. (2.7)

For m, r ≥ 1, we put

�m,r = αm,r(1) – αm,r(0)

=
∑

i1+i2+···+ir+1=m

(
Ui1 (1) · · ·Uir+1 (1) – Ui1 (0) · · ·Uir+1 (0)

)
. (2.8)

Then, for (2.4) and (2.8), we get

�m,r =
1

2rr!

[ m–1
2 ]∑

k=0

(–1)k
(

m + r – k
k

)
(m + r – 2k)r2m+r–2k , (2.9)

where we note that

αm,r(0) =

⎧
⎨

⎩
0, if m is odd,

(–1) m
2
( m

2 +r
m
2

)
, if m is even.

(2.10)
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Now, using (2.1), we note the following:

d
dx

αm,r(x) =
d

dx

(
1

2rr!
U (r)

m+r(x)
)

=
1

2rr!
U (r+1)

m+r (x)

= 2(r + 1)αm–1,r+1(x).

Thus we have shown that

d
dx

αm,r(x) = 2(r + 1)αm–1,r+1(x). (2.11)

Replacing m by m + 1 and r by r – 1, from (2.11) we have

d
dx

(
αm+1,r–1(x)

2r

)
= αm,r(x), (2.12)

∫ 1

0
αm,r(x) dx =

1
2r

�m+1,r–1, (2.13)

and

αm,r(0) = αm,r(1) ⇐⇒ �m,r = 0. (2.14)

We are now ready to determine the Fourier coefficients A(m)
n .

Case 1: n 
= 0.

A(m,r)
n =

∫ 1

0
αm,r(x)e–2π inx dx

= –
1

2π in
[
αm,r(x)e–2π inx]1

0 +
1

2π in

∫ 1

0

(
d

dx
αm,r(x)

)
e–2π inx dx

=
2(r + 1)

2π in

∫ 1

0
αm–1,r+1(x)e–2π inx dx –

1
2π in

(
αm,r(1) – αm,r(0)

)

=
2(r + 1)

2π in
A(m–1,r+1)

n –
1

2π in
�m,r

=
2(r + 1)

2π in

(
2(r + 2)

2π in
A(m–2,r+2)

n –
1

2π in
�m–1,r+1

)
–

1
2π in

�m,r

=
22(r + 2)2

(2π in)2 A(m–2,r+2)
n –

2∑

j=1

2j–1(r + j – 1)j–1

(2π in)j �m–j+1,r+j–1

= · · ·

=
2m(r + m)m

(2π in)m A(0,r+m)
n –

m∑

j=1

2j–1(r + j – 1)j–1

(2π in)j �m–j+1,r+j–1

= –
m∑

j=1

2j–1(r + j – 1)j–1

(2π in)j �m–j+1,r+j–1

= –
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1. (2.15)
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Case 2: n = 0.

A(m,r)
0 =

∫ 1

0
αm,r(x) dx =

1
2r

�m+1,r–1. (2.16)

Before proceeding further, we recall here that
(a) for m ≥ 2,

Bm
(〈x〉) = –m!

∞∑

n=–∞
n
=0

e2π inx

(2π in)m , (2.17)

(b) for m = 1,

–
∞∑

n=–∞
n
=0

e2π inx

2π in
=

⎧
⎨

⎩
B1(〈x〉) for x ∈R – Z,

0 for x ∈ Z.
(2.18)

From (2.15)–(2.18), we now obtain the Fourier series of αm,r(〈x〉) given by

1
2r

�m+1,r–1 –
∞∑

n=–∞
n
=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

=
1
2r

�m+1,r–1 +
1
2r

m∑

j=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1 ×

(
–j!

∞∑

n=–∞
n
=0

e2π inx

(2π in)j

)

=
1
2r

�m+1,r–1 +
1
2r

m∑

j=2

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1

+ �m,r ×
⎧
⎨

⎩
B1(〈x〉) for x ∈R – Z,

0 for x ∈ Z.

=
1
2r

m∑

j=0
j 
=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

+ �m,r ×
⎧
⎨

⎩
B1(〈x〉) for x ∈R – Z,

0 for x ∈ Z.
(2.19)

αm,r(〈x〉) (m, r ≥ 1) is piecewise C∞. Moreover, αm,r(〈x〉) is continuous for those positive
integers m, r with �m,r = 0, and discontinuous with jump discontinuities at integers for
those positive integers m, r with �m,r 
= 0. Thus, for �m,r = 0, the Fourier series of αm,r(〈x〉)
converges uniformly to αm,r(〈x〉). On the other hand, for �m,r 
= 0, the Fourier series of
αm,r(〈x〉) converges pointwise to αm,r(〈x〉) for x ∈R – Z, and converges to

1
2
(
αm,r(0) + αm,r(1)

)
= αm,r(0) +

1
2
�m,r (2.20)

for x ∈ Z.
From these observations together with (2.19) and (2.20), we have the next two theorems.
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Theorem 2.2 For any integers m, r with m, r ≥ 1, we let

�m,r =
1

2rr!

[ m–1
2 ]∑

k=0

(–1)k
(

m + r – k
k

)
(m + r – 2k)r2m+r–2k .

Assume that �m,r = 0 for some positive integers m, r. Then we have the following:
(a)

∑

i1+i2+···+ir+1=m

Ui1
(〈x〉)Ui2

(〈x〉) · · ·Uir+1

(〈x〉)

has the Fourier series expansion

∑

i1+i2+···+ir+1=m

Ui1
(〈x〉)Ui2

(〈x〉) · · ·Uir+1

(〈x〉)

=
1
2r

�m+1,r–1 –
∞∑

n=–∞
n
=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

for all x ∈R, where the convergence is uniform.
(b)

∑

i1+i2+···+ir+1=m

Ui1
(〈x〉)Ui2

(〈x〉) · · ·Uir+1

(〈x〉)

=
1
2r

m∑

j=0
j 
=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

for all x ∈R.

Theorem 2.3 For any integers m, r with m, r ≥ 1, we let

�m,r =
1

2rr!

[ m–1
2 ]∑

k=0

(–1)k
(

m + r – k
k

)
(m + r – 2k)r2m+r–2k .

Assume that �m,r 
= 0 for some positive integers m, r. Then we have the following:
(a)

1
2r

�m+1,r–1 –
∞∑

n=–∞
n
=0

(
1
2r

m∑

j=1

2j(r + j – 1)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
i1+i2+···+ir+1=m Ui1 (〈x〉)Ui2 (〈x〉) · · ·Uir+1 (〈x〉) for x ∈R – Z,

1
2�m,r for x ∈ Z and m odd,

(–1) m
2
( m

2 +r
m
2

)
+ 1

2�m,r for x ∈ Z and m even.
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(b)

1
2r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

=
∑

i1+i2+···+ir+1=m

Ui1
(〈x〉)Ui2

(〈x〉) · · ·Uir+1

(〈x〉) for x ∈R – Z;

1
2r

m∑

j=0
j 
=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(〈x〉)

=

⎧
⎨

⎩

1
2�m,r for x ∈ Z and m odd,

(–1) m
2
( m

2 +r
m
2

)
+ 1

2�m,r for x ∈ Z and m even.

From Theorems 2.2 and 2.3, we immediately obtain the stated result in Theorem A ex-
pressing αm,r(x) as a linear combination of Bernoulli polynomials.

3 Fourier series expansions for functions associated with Fibonacci
polynomials

The following lemma is stated as equation (7) in [14] which is important for our purpose.

Lemma 3.1 Let n, r be integers with n ≥ 0, r ≥ 1. Then we have the identity

∑

i1+i2+···+ir=n

Fi1+1(x)Fi2+1(x) · · ·Fir+1(x) =
1

(r – 1)!
F (r–1)

n+r (x), (3.1)

where the sum runs over all nonnegative integers i1, i2, . . . , ir with i1 + i2 + · · · + ir = n.

An explicit expression for Fn+1(x) (n ≥ 0) is stated in equation (9) of [14].

Fn+1(x) =
[ n

2 ]∑

l=0

(
n – l

l

)
xn–2l. (3.2)

As was noted in (10) of [14], the (r – 1)th derivative of Fn+r(x) is

F (r–1)
n+r (x) =

[ n
2 ]∑

l=0

(n + r – 1 – l)!
l!(n – 2l)!

xn–2l. (3.3)

In addition, it was also noted in [14] that, combining (3.1) and (3.3), we have

∑

i1+i2+···+ir=n

Fi1+1(x)Fi2+1(x) · · ·Fir+1(x)

=
[ n

2 ]∑

l=0

(
n + r – 1 – l

l

)(
n + r – 1 – 2l

r – 1

)
xn–2l. (3.4)

As in (1.11), we let

βm,r(x) =
∑

i1+i2+···+ir=m

Fi1+1(x)Fi2+1(x) · · ·Fir+1(x),
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where m ≥ 1, r ≥ 2, and the sum runs over all nonnegative integers i1, i2, . . . , ir with i1 +
i2 + · · · + ir = m.

Then we will consider the function

βm,r
(〈x〉) =

∑

i1+i2+···+ir=m

Fi1+1
(〈x〉)Fi2+1

(〈x〉) · · ·Fir+1
(〈x〉), (3.5)

defined on R, which is periodic with period 1.
The Fourier series of βm,r(〈x〉) is

∞∑

n=–∞
B(m,r)

n e2π inx, (3.6)

where

B(m,r)
n =

∫ 1

0
βm,r

(〈x〉)e–2π inx dx

=
∫ 1

0
βm,r(x)e–2π inx dx. (3.7)

For m ≥ 1, r ≥ 2, we set

�m,r = βm,r(1) – βm,r(0)

=
∑

i1+i2+···+ir=m

(
Fi1+1(1) · · ·Fir+1(1) – Fi1+1(0) · · ·Fir+1(0)

)
. (3.8)

Then, from (3.4) and (3.8), we have

�m,r =
[ m–1

2 ]∑

l=0

(
m + r – 1 – l

l

)(
m + r – 1 – 2l

r – 1

)
. (3.9)

In particular, we note that �m,r > 0 for any m ≥ 1, r ≥ 2. Also, we note that

βm,r(0) =

⎧
⎨

⎩
0, if m is odd,
( m

2 +r–1
m
2

)
, if m is even.

(3.10)

Now, using (3.1), we see the following:

d
dx

βm,r(x) =
d

dx

(
1

(r – 1)!
F (r–1)

m+r (x)
)

=
1

(r – 1)!
F (r)

m+r(x)

= rβm–1,r+1(x).

Thus we have shown that

d
dx

βm,r(x) = rβm–1,r+1(x). (3.11)
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Replacing m by m + 1 and r by r – 1, from (3.11) we get

d
dx

(
βm+1,r–1(x)

r – 1

)
= βm,r(x), (3.12)

∫ 1

0
βm,r(x) dx =

1
r – 1

�m+1,r–1, (3.13)

and

βm,r(0) = βm,r(1) ⇐⇒ �m,r = 0. (3.14)

We are now going to determine the Fourier coefficients B(m)
n .

Case 1: n 
= 0.

B(m,r)
n =

∫ 1

0
βm,r(x)e–2π inx dx

= –
1

2π in
[
βm,r(x)e–2π inx]1

0 +
1

2π in

∫ 1

0

(
d

dx
βm,r(x)

)
e–2π inx dx

=
r

2π in

∫ 1

0
βm–1,r+1(x)e–2π inx dx –

1
2π in

(
βm,r(1) – βm,r(0)

)

=
r

2π in
B(m–1,r+1)

n –
1

2π in
�m,r

=
r

2π in

(
r + 1
2π in

B(m–2,r+2)
n –

1
2π in

�m–1,r+1

)
–

1
2π in

�m,r

=
(r + 1)2

(2π in)2 B(m–2,r+2)
n –

2∑

j=1

(r + j – 2)j–1

(2π in)j �m–j+1,r+j–1

= · · ·

=
(r + 2)m

(2π in)m B(0,r+m)
n –

m∑

j=1

(r + j – 2)j–1

(2π in)j �m–j+1,r+j–1

= –
m∑

j=1

(r + j – 2)j–1

(2π in)j �m–j+1,r+j–1 = –
1

r – 1

m∑

j=1

(r + j – 2)j

(2π in)j �m–j+1,r+j–1. (3.15)

Case 2: n = 0.

B(r,m)
0 =

∫ 1

0
βm,r(x) dx =

1
r – 1

�m+1,r–1. (3.16)

From (2.17), (2.18), (3.15), and (3.16), we now have the following Fourier series expansion
of βm,r(〈x〉) given by

1
r – 1

�m+1,r–1 –
∞∑

n=–∞
n
=0

(
1

r – 1

m∑

j=1

(r + j – 2)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

=
1

r – 1
�m+1,r–1



Kim et al. Journal of Inequalities and Applications  (2018) 2018:148 Page 11 of 14

+
1

r – 1

m∑

j=1

(
r – 2 + j

j

)
�m–j+1,r+j–1 ×

(
–j!

∞∑

n=–∞
n
=0

e2π inx

(2π in)j

)

=
1

r – 1
�m+1,r–1 +

1
r – 1

m∑

j=2

(
r – 2 + j

j

)
�m–j+1,r+j–1Bj

(〈x〉)

+ �m,r ×
⎧
⎨

⎩
B1(〈x〉) for x ∈R – Z,

0 for x ∈ Z

=
1

r – 1

m∑

j=0
j 
=1

(
r – 2 + j

j

)
�m–j+1,r+j–1Bj

(〈x〉)

+ �m,r ×
⎧
⎨

⎩
B1(〈x〉) for x ∈R – Z,

0 for x ∈ Z.
(3.17)

βm,r(〈x〉) (m ≥ 1, r ≥ 2) is piecewise C∞ and discontinuous with jump discontinuities at
integers, as �m,r > 0 for any m ≥ 1, r ≥ 2. Thus the Fourier series of βm,r(〈x〉) converges
pointwise to βm,r(〈x〉) for x ∈R – Z, and converges to

1
2
(
βm,r(0) + βm,r(1)

)
= βm,r(0) +

1
2
�m,r (3.18)

for x ∈ Z.
From these observations together with (3.17) and (3.18), we have the following theorem.

Theorem 3.2 For any integers m, r with m ≥ 1, r ≥ 2, we let

�m,r =
[ m–1

2 ]∑

l=0

(
m + r – 1 – l

l

)(
m + r – 1 – 2l

r – 1

)
.

Then we have the following:
(a)

1
r – 1

�m+1,r–1 –
∞∑

n=–∞
n
=0

(
1

r – 1

m∑

j=1

(r – 2 + j)j

(2π in)j �m–j+1,r+j–1

)
e2π inx

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∑
i1+i2+···+ir=m Fi1+1(〈x〉)Fi2+1(〈x〉) · · ·Fir+1(〈x〉) for x ∈R – Z,

1
2�m,r for x ∈ Z and m odd,
( m

2 +r–1
m
2

)
+ 1

2�m,r for x ∈ Z and m even.

(b)

1
r – 1

m∑

j=0

(
r – 2 + j

j

)
�m–j+1,r+j–1Bj

(〈x〉)

=
∑

i1+i2+···+ir=m

Fi1+1
(〈x〉)Fi2+1

(〈x〉) · · ·Fir+1
(〈x〉) for x ∈R – Z;
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1
r – 1

m∑

j=0
j 
=1

(
r – 2 + j

j

)
�m–j+1,r+j–1Bj

(〈x〉)

=

⎧
⎨

⎩

1
2�m,r for x ∈ Z and m odd,
( m

2 +r–1
m
2

)
+ 1

2�m,r for x ∈ Z and m even.

From Theorem 3.2, we immediately get the result in Theorem B expressing βm,r(x) as a
linear combination of Bernoulli polynomials.

4 Applications
Let Tn(x) (n ≥ 0) be the Chebyshev polynomials of the first kind given by (1.1) or (1.4). We
need the following lemma from [9].

Lemma 4.1 ([9, Lemmas 1, 2]) Let n ≥ 0, m ≥ 1 be integers. Then we have the following:

Un

(√
–1
2

)
= (

√
–1)nFn+1, (4.1)

Un

(
Tm

(√
–1
2

))
= (

√
–1)mn Fm(n+1)

Fm
, (4.2)

Un
(
Tm(x)

)
=

Um(n+1)–1(x)
Um–1(x)

. (4.3)

Substituting x =
√

–1
2 into (1.10) and using (4.1), we have

(
√

–1)m
∑

i1+i2+···+ir+1=m

Fi1+1Fi2+1 · · ·Fir+1+1

=
1
2r

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(√
–1
2

)
. (4.4)

On the other hand, with x = 1 and replacing r by r + 1, from (1.12) we obtain

∑

i1+i2+···+ir+1=m

Fi1+1Fi2+1 · · ·Fir+1+1

=
1
r

m∑

j=0

(
r – 1 + j

j

)
�m–j+1,r+jBj(1). (4.5)

Combining (4.4) and (4.5), we get

∑

i1+i2+···+ir+1=m

Fi1+1Fi2+1 · · ·Fir+1+1

=
1
2r

(–
√

–1)m
m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(√
–1
2

)

=
1
r

m∑

j=0

(
r – 1 + j

j

)
�m–j+1,r+jBj + �m,r+1.
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Substituting Ta(
√

–1
2 ) for x in (1.10) and using (4.2), we get: for any positive integer a,

∑

i1+i2+···+ir+1=m

Fa(i1+1)Fa(i2+1) · · ·Fa(ir+1+1)

=
1
2r

(–
√

–1)amFr+1
a

m∑

j=0

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(
Ta

(√
–1
2

))
.

Finally, replacing x by Ta(x) in (1.10) and using (4.3), we have: for any positive integer a,

∑

i1+i2+···+ir+1=m

Ua(i1+1)–1(x)Ua(i2+1)–1(x) · · ·Ua(ir+1+1)–1(x)

=
1
2r

(
Ua–1(x)

)r+1
m∑

j=1

2j
(

r + j – 1
r – 1

)
�m–j+1,r+j–1Bj

(
Ta(x)

)
.

5 Results and discussion
In this paper, we study sums of finite products of Chebyshev polynomials of the second
kind and of Fibonacci polynomials and derive Fourier series expansions of functions asso-
ciated with them. From these Fourier series expansions, we can express those sums of fi-
nite products in terms of Bernoulli polynomials and obtain some identities by using those
expressions. The Fourier series expansion of the Chebyshev polynomials and Fibonacci
polynomials are useful in computing the special values of zeta function or some special
functions (see [5, 7, 9, 11, 13–15]). It is expected that the Fourier series of those polyno-
mials will find some applications in relationship to the generalizations of the special zeta
functions.

6 Conclusion
In this paper, we considered the Fourier series expansions of functions associated with
Chebyshev polynomials of the second kind and of Fibonacci polynomials. The Fourier
series are determined completely.
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