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Abstract
A two-point Padé approximant method is presented for refining some remarkable
trigonometric inequalities including the Jordan inequality, Kober inequality,
Becker–Stark inequality, and Wu–Srivastava inequality. Simple proofs are provided. It
shows to achieve better approximation results than those of prevailing methods.
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1 Introduction
Trigonometric inequalities have caused interest of a lot of researchers, they analyzed the
Wilker inequality [6–11, 14, 16–19], Jordan inequality [3, 5, 15, 20, 21], Shafer–Fink in-
equality [12], Becker–Stark inequalities [13], and so on.

Recently, Bercu provided a Padé-approximant-based method and obtained the following
inequalities [2].

b1(x) =
–7x2 + 60
3x2 + 60

<
sin(x)

x
<

11x4 – 360x2 + 2520
60x2 + 2520

= b2(x), ∀x ∈ (0,π/2); (1)

b3(x) =
17x4 – 480x2 + 1080

2x4 + 60x2 + 1080
< cos(x) <

3x4 – 56x2 + 120
4x2 + 120

= b4(x), ∀x ∈ (0,π/2); (2)

b5(x) <
tan(x)

x
< b6(x), ∀x ∈ (0, 1.5701); (3)

(
x

sin(x)

)2

+
x

tan(x)
> b7(x), ∀x ∈ (0, 1.5701), (4)

where b5(x) = –28x4–600x2+7200
9x6+12x4–3000x2+7200 , b6(x) = 22x8–60x6–4680x4–237,600x2+2,721,600

1020x6+14,040x4–1,144,800x2+2,721,600 and b7(x) =
11,220x10–205,560x8–14,256,000x6+512,179,200x4–3,157,056,000x2+13,716,864,000

242x12–8580x10+25,560x8–1,080,000x6+103,680,000x4–1,578,528,000x2+6,858,432,000 .
In this paper, we present a two-point Padé-approximant-based method [1] for refining

the rational bounds of several trigonometric inequalities, and also provide a method for
proving the refined bounds. By applying the new method to sin(x)

x and cos(x), we refine the
bounds of Eq. (1) ∼ (2), for ∀x ∈ [0,π/2], see also Theorems 3.1 and 3.2. Applied to tan(x)

x
and ( x

sin(x) )2 + x
tan(x) , it not only provides refined two-sided bounds with better approxima-
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tion effect for Eq. (3) ∼ (4), but also extends the interval (0, 1.5701) to the interval [0,π/2],
see also the theorems and remarks in Sect. 3.

2 Find bounds by using two-point Padé approximant
Given a bounded smooth function f (x), x ∈ [x0, x1], let R(x) =

∑n
i=0 cixi

1+
∑m

i=1 dixi be a rational poly-
nomial interpolating derivatives of f (x) at two points x0 and x1 such that

E(i)(x0) = 0, E(j)(x1) = 0, i = 0, 1, . . . , k, j = 0, 1, . . . , l, (5)

where E(x) = (1 +
∑m

i=1 dixi) · f (x) – (
∑n

i=1 cixi). There are m + n + 2 unknowns in Eq. (5).
By selecting suitable values of k and l, we have that Eq. (5) consists of m + n + 2 linear
equations in the unknown variables ci and dj, and the interpolation polynomial R(x) can
be determined by solving Eq. (5).

We give two examples. Without loss of generality, let � = [0,π/2].

Example 1 Let f1(x) = sin(x). By setting n1 = 13, m1 = 0, n2 = 11, and m2 = 0 and introduc-
ing the following constraints

f (i)
1 (0) = R(i)

j (0), f1(π/2) = Rj(π/2), j = 1, 2, i = 0, 1, . . . , 14 – 2j, (6)

we obtain that

R1(x) = β1(x) + α1 · x13, R2(x) = β2(x) – α2 · x11, (7)

where α1 = π11–440π9+126,720π7–21,288,960π5+1,703,116,800π3–40,874,803,200π+81,749,606,400
9,979,200π13 , β1(x) =

t – t3

6 + t5

120 – t7

5040 + t9

362,880 – x11

39,916,800 , α2 = π9–288π7+48,384π5–3,870,720π3+92,897,280π–185,794,560
90,720π11 ,

β2(x) = t – t3

6 + t5

120 – t7

5040 + t9

362,880 . It can be verified that Rj(x) ≥ 0,∀x ∈ �, j = 1, 2. From
Eq. (6), ∀x ∈ �, there exists ξj(x) ∈ � such that [4]

f1(x) – Rj(x) =
f (16–2j)
1 (ξj(x))
(16 – 2j)!

· (x – π/2) · x15–2j, x ∈ �, j = 1, 2. (8)

Note that f (14)
1 (x) = – sin(x) ≤ 0 and f (12)

1 (x) = sin(x) ≥ 0, ∀x ∈ �. Combining with Eq. (8),
one obtains that

0 ≤ R1(x) ≤ sin(x) ≤ R2(x), x ∈ �. (9)

Example 2 Let f2(x) = cos(x). By setting n3 = 12, m3 = 0, n4 = 10, and m4 = 0 and introduc-
ing the following constraints

f (i)
2 (0) = R(i)

j (0), f2(π/2) = Rj(π/2), j = 3, 4, i = 0, 1, . . . , 17 – 2j, (10)

we obtain that

R3(x) = β3(x) + α3 · x12, R4(x) = β4(x) – α4 · x10, (11)
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where α3 = π10–360π8+80,640π6–9,676,800π4+464,486,400π2–3,715,891,200
907,200π12 , β3(x) = 1 – x2

2 + x4

24 – x6

720 +
x8

40,320 – x10

3,628,800 , α4 = 10,321,920–1,290,240π2+26,880π4–224π6+π8

10,080π10 , β4(x) = 1 – x2

2 + x4

24 – x6

720 + x8

40,320 .
It can be verified that Rj(x) ≥ 0,∀x ∈ �, j = 3, 4. From Eq. (10), ∀x ∈ �, there exists ξj(x) ∈
�, j = 3, 4, such that [4]

f2(x) – Rj(x) =
f (19–2j)
2 (ξj(x))
(19 – 2j)!

· (x – π/2) · x18–2j, x ∈ �, j = 3, 4. (12)

Note that f (13)
2 (x) = – sin(x) ≤ 0 and f (11)

2 (x) = sin(x) ≥ 0, ∀x ∈ �. Combining with Eq. (12),
one obtains that

0 ≤ R3(x) ≤ cos(x) ≤ R4(x), x ∈ �. (13)

3 Main results
The main results are as follows.

Theorem 3.1 For all ∀x ∈ � = [0,π/2], we have that

[b]c1(x) =
60,480 – 9240x2 + 364x4 – 5x6

840(72 + x2)
≤ sin(x)

x

≤ (166,320 – 22,260x2 + 551x4)
15(11,088 + 364x2 + 5x4)

= c2(x). (14)

Proof Eq. (14) is equivalent to

⎧⎨
⎩

(60,480 – 9240x2 + 364x4 – 5x6)x – 840(72 + x2) sin(x) ≤ 0,
(166,320 – 22,260x2 + 551x4)x – 15(11,088 + 364x2 + 5x4) sin(x) ≥ 0,

∀x ∈ �.

(15)

It is well known that ∀x ∈ �,

β1(x) = t –
t3

6
+

t5

120
–

t7

5040
+

t9

362,880
–

x11

39,916,800

≤ sin(x) ≤ β1(x) +
x13

6,227,020,800
. (16)

Combining with Eq. (16), we have that

(
60,480 – 9240x2 + 364x4 – 5x6)x – 840

(
72 + x2) sin(x)

≤ (
60,480 – 9240x2 + 364x4 – 5x6)x – 840

(
72 + x2)β1(x)

=
x11 · (–38 + x2)

39,916,800
≤ 0, ∀x ∈ �,

(
166,320 – 22,260x2 + 551x4)x – 15

(
11,088 + 364x2 + 5x4) sin(x)

≥ (
166,320 – 22,260x2 + 551x4)x

– 15
(
11,088 + 364x2 + 5x4)(β1(x) +

x13

6,227,020,800

)
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=
x11

6,227,020,800
(
1,661,088 – 40,104x2 + 416x4 – 5x6)

≥ x11

6,227,020,800
(
1,661,088 – 40,104 · 22 – 5 · 26) ≥ 0, ∀x ∈ �,

which is just Eq. (15). So we have completed the proof of Eq. (14). �

Theorem 3.2 For all ∀x ∈ [0,π/2], we have that

c3(x) =
20,160 – 9720x2 + 660x4 – 13x6

360(x2 + 56)
≤ cos(x)

≤ 15,120 – 6900x2 + 313x4

15,120 + 660x2 + 13x4 = c4(x). (17)

Proof Eq. (17) is equivalent to

⎧⎨
⎩

(20,160 – 9720x2 + 660x4 – 13x6) – 360(x2 + 56) cos(x) ≤ 0,

(15,120 – 6900x2 + 313x4) – (15,120 + 660x2 + 13x4) cos(x) ≥ 0,
∀x ∈ �. (18)

It is well known that

β3(x) = 1 –
x2

2
+

x4

24
–

x6

720
+

x8

40,320
–

x10

3,628,800
≤ cos(x)

≤ 1 –
x2

2
+

x4

24
–

x6

720
+

x8

40,320
= β4(x), ∀x ∈ �. (19)

Combining with Eq. (19), we have that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(20,160 – 9720x2 + 660x4 – 13x6) – 360(x2 + 56) cos(x)

≤ (20,160 – 9720x2 + 660x4 – 13x6) – 360(x2 + 56)β3(x)

= x10

3,628,800 (–34 + x2) ≤ 0, ∀x ∈ [0,π/2],

(15,120 – 6900x2 + 313x4) – (15,120 + 660x2 + 13x4) cos(x)

≥ (15,120 – 6900x2 + 313x4) – (15,120 + 660x2 + 13x4)β4(x)

= x10

40,320 (68 – 13x2) ≥ 0, ∀x ∈ [0,π/2].

(20)

Thus, we have completed the proof of both Eq. (18) and Eq. (17). �

Theorem 3.3 For all ∀x ∈ �, we have that

c5(x) =
21(495 – 60x2 + x4)

10,395 – 4725x2 + 210x4 – x6 ≤ tan(x)
x

≤ T1(x)
105(π2 – 4x2) · T2(x)

= c6(x), (21)

where T1(x) = (π6 – 840π4 + 75,600π2 – 665,280)x6 + (210π6 + 52,920π4 – 7,620,480π2 +
69,854,400)x4 +(–17,955π6 +1,323,000π4 +52,390,800π2 –628,689,600)x2 +(155,925(π4 –
112π2 + 1008))π2 and T2(x) = (26π4 – 2664π2 + 23,760)x4 + (–666π4 + 73,980π2 –
665,280)x2 + (1485π4 – 166,320π2 + 1,496,880).
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Proof Eq. (21) is equivalent to

⎧⎪⎪⎨
⎪⎪⎩

H5(x) = 21(495 – 60x2 + x4) · x cos(x)

– (10,395 – 4725x2 + 210x4 – x6) · sin(x) ≤ 0;
H6(x) = 105(π2 – 4x2) · T2(x) · sin(x) – T1(x) · x cos(x) ≤ 0,

∀x ∈ �. (22)

It can be verified that

⎧⎪⎪⎨
⎪⎪⎩

cos(x) ≤ 1 – x2

2 + x4

24 – x6

720 + x8

40,320 – x10

3,628,800 + x12

479,001,600 = β5(x),

β1(x) = t – t3

6 + t5

120 – t7

5040 + t9

362,880 – x11

39,916,800 ≤ sin(x),

495 – 60x2 + x4 > 0, 10,395 – 4725x2 + 210x4 – x6 > 0,

∀x ∈ �. (23)

Combining with Eq. (23), we have that

H5(x) ≤ 21
(
495 – 60x2 + x4) · xβ5(x) –

(
10,395 – 4725x2 + 210x4 – x6) · β1(x)

=
x13

159,667,200
(
–915 – 64x2 + 3x4) ≤ 0, ∀x ∈ �. (24)

Let β6(x) = T1(x) + 105(π2 – 4x2) · T ′
2(x) – 840x · T2(x), β7(x) = 105(π2 – 4x2) · T2(x) – T ′

1(x).
On the other hand, it can be verified that, ∀x ∈ �,

H ′
6(x) = β6(x) · sin(x) + β7(x) · cos(x),

β6(x) ≤ 0, β7(x) ≥ 0, T2(x) ≥ 0, T1(x) ≥ 0,

cos(x) ≥ 1 –
x2

2
+

x4

24
–

x6

720
+

x8

40,320
–

x10

3,628,800
+

x12

479,001,600

–
x14

87,178,291,200
= β8(x),

β9(x) = t –
t3

6
+

t5

120
–

t7

5040
+

t9

362,880
–

x11

39,916,800
+

x13

6,227,020,800
≥ sin(x).

(25)

Combining Eq. (23) with Eq. (25), we have that

H6(x) ≤ 105
(
π2 – 4x2) · T2(x) · β9(x) – T1(x) · xβ8(x)

=
x13

9,153,720,576,000
β10(x) ≤ 0, ∀x ∈

[
0,

31π

64

]
,

H ′
6(x) ≥ β6(x) · β1(x) + β7(x) · β5(x)

=
x12

50,295,168,000
β11(x) ≥ 0, ∀x ∈

[
31π

64
,
π

2

]
,

(26)

where β10(x) = (18,063,360π6 – 8,128,512,000π4 + 643,778,150,400π2 – 5,579,410,636,800) +
(–634,725π6 +305,912,880π4 –24,700,198,320π2 +214,592,716,800)x2 +(6069π6 –4,639,320π4 +
411,823,440π2 – 3,618,457,920)x4 + (28π6 + 52,920π4 – 5,715,360π2 + 51,226,560)x6 + (π6 –
840π4 + 75,600π2 – 665,280)x8 ≤ 0,∀x ∈ [0, 31π

64 ], β11(x) = (–1,290,240π6 + 580,608,000π4 –
45,984,153,600π2 + 398,529,331,200) + (54,405π6 – 25,552,800π4 + 2,048,684,400π2 –
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17,782,934,400)x2 + (–1404π6 + 556,920π4 – 42,366,240π2 + 365,238,720)x4 + (19π6 – 5040π4 +
317,520π2 – 2,661,120)x6 ≥ 0,∀x ∈ [ 31π

64 , π
2 ]. Combining Eq. (26) with H6(π/2) = 0, we obtain that

H6(x) ≤ 0, ∀x ∈
[

0,
π

2

]
. (27)

Combining Eq. (24) with Eq. (27), we have completed the proof of both Eq. (22) and
Eq. (21). �

From Theorems 3.1, 3.2, and 3.3, we directly obtain the following theorem.

Theorem 3.4 We have that

1
c2(x)2 +

1
c6(x)

≤
(

x
sin(x)

)2

+
x

tan(x)
≤ 1

c1(x)2 +
1

c5(x)
, ∀x ∈ [0,π/2].

4 Discussion and conclusions
Firstly, we compare the results of sin(x)

x between bi(x) in [2] and ci(x) in this paper,
i = 1, 2. It can be verified that c1(x) – b1(x) = x6(264–5x2)

840(72+x2)(x2+20) ≥ 0 and c2(x) – b2(x) =
–11x8

12(11,088+364x2+5x4)(x2+42) ≤ 0, ∀x ∈ [0,π/2], we have that

b1(x) ≤ c1(x) ≤ sin(x)
x

≤ c2(x) ≤ b2(x), ∀x ∈ [0,π/2].

Secondly, we compare the approximation results of cos(x) between previous bi(x) and
present ci(x), i = 3, 4. It can be verified that c3(x) – b3(x) = x8(270–13x2)

360(56+x2)(x4+30x2+540) ≥ 0 and

c2(x) – b2(x) = –39x8

4(15,120+660x2+13x4)(x2+30) ≤ 0, ∀x ∈ [0,π/2], we have that

b3(x) ≤ c3(x) ≤ cos(x) ≤ c4(x) ≤ b4(x), ∀x ∈ [0,π/2].

Thirdly, we compare the approximation results of tan(x)
x , which also shows that this paper

achieves a much better result. It can be verified that ∀x ∈ [0,π/2],

c5(x) – b5(x) =
x6(161x2 – 495)(x2 – 33)

3(10,395 – 4725x2 + 210x4 – x6)(x2 + 20)(3x4 – 56x2 + 120)
≥ 0.

However, note that the denominator of b6(x) is T3(x) = 1020x6 + 14,040x4 – 1,144,800x2 +
2,721,600 = 30(17x4 – 480x2 + 1080)(x2 + 42), which has a real root ≈ 1.5701 within
the interval �, and we have T3(x) > 0,∀x ∈ [0, 1.5701]. It can be verified that c6(x) –
b6(x) = –x8H7(x)

210T2(x)T3(x)(π2–4x2) , where H7(x) = 378,675(π4 – 112π2 + 1008)π2 + (–64,350π6 +
5,536,440π4 + 106,323,840π2 – 1,526,817,600)x2 + (1968π6 + 50,400π4 – 25,764,480π2 +
247,484,160)x4 +(–8008π4 +820,512π2 –7,318,080)x6. By using the Maple software, H7(x)
has six real roots ≈ –9.16, –4.97, –2.76, 2.76, 4.97, 9.16, and H7(x), T2(x), T3(x) > 0,∀x ∈
(0, 1.5701), we have that

c6(x) – b6(x) ≤ 0, ∀x ∈ [0, 1.5701].
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